Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.821
Filter
1.
BMC Plant Biol ; 24(1): 492, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831289

ABSTRACT

Non-hydraulic root source signaling (nHRS) is a unique positive response to soil drying in the regulation of plant growth and development. However, it is unclear how the nHRS mediates the tradeoff between source and sink at the late growth stages and its adaptive mechanisms in primitive wheat. To address this issue, a root-splitting design was made by inserting solid partition in the middle of the pot culture to induce the occurrence of nHRS using four wheat cultivars (MO1 and MO4, diploid; DM22 and DM31, tetraploid) as materials. Three water treatments were designed as 1) both halves watered (CK), 2) holistic root system watered then droughted (FS), 3) one-half of the root system watered and half droughted (PS). FS and PS were designed to compare the role of the full root system and split root system to induce nHRS. Leaves samples were collected during booting and anthesis to compare the role of nHRS at both growth stages. The data indicated that under PS treatment, ABA concentration was significantly higher than FS and CK, demonstrating the induction of nHRS in split root design and nHRS decreased cytokinin (ZR) levels, particularly in the PS treatment. Soluble sugar and proline accumulation were higher in the anthesis stage as compared to the booting stage. POD activity was higher at anthesis, while CAT was higher at the booting stage. Increased ABA (nHRS) correlated with source-sink relationships and metabolic rate (i.e., leaf) connecting other stress signals. Biomass density showed superior resource acquisition and utilization capabilities in both FS and PS treatment as compared to CK in all plants. Our findings indicate that nHRS-induced alterations in phytohormones and their effect on source-sink relations were allied with the growth stages in primitive wheat.


Subject(s)
Diploidy , Plant Roots , Signal Transduction , Tetraploidy , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Cytokinins/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/genetics
2.
Mol Biol Evol ; 41(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38758089

ABSTRACT

Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.


Subject(s)
Chromatin , Diploidy , Evolution, Molecular , Gossypium , Polyploidy , Gossypium/genetics , Chromatin/genetics , Gene Expression Regulation, Plant , Genome, Plant , Nucleosomes/genetics , Genes, Duplicate , Promoter Regions, Genetic
3.
Proc Natl Acad Sci U S A ; 121(21): e2400018121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748576

ABSTRACT

Hybridization blurs species boundaries and leads to intertwined lineages resulting in reticulate evolution. Polyploidy, the outcome of whole genome duplication (WGD), has more recently been implicated in promoting and facilitating hybridization between polyploid species, potentially leading to adaptive introgression. However, because polyploid lineages are usually ephemeral states in the evolutionary history of life it is unclear whether WGD-potentiated hybridization has any appreciable effect on their diploid counterparts. Here, we develop a model of cytotype dynamics within mixed-ploidy populations to demonstrate that polyploidy can in fact serve as a bridge for gene flow between diploid lineages, where introgression is fully or partially hampered by the species barrier. Polyploid bridges emerge in the presence of triploid organisms, which despite critically low levels of fitness, can still allow the transfer of alleles between diploid states of independently evolving mixed-ploidy species. Notably, while marked genetic divergence prevents polyploid-mediated interspecific gene flow, we show that increased recombination rates can offset these evolutionary constraints, allowing a more efficient sorting of alleles at higher-ploidy levels before introgression into diploid gene pools. Additionally, we derive an analytical approximation for the rate of gene flow at the tetraploid level necessary to supersede introgression between diploids with nonzero introgression rates, which is especially relevant for plant species complexes, where interspecific gene flow is ubiquitous. Altogether, our results illustrate the potential impact of polyploid bridges on the (re)distribution of genetic material across ecological communities during evolution, representing a potential force behind reticulation.


Subject(s)
Gene Flow , Hybridization, Genetic , Models, Genetic , Polyploidy , Evolution, Molecular , Diploidy , Alleles
4.
Genes (Basel) ; 15(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38790171

ABSTRACT

Cellular senescence is an irreversible growth arrest that acts as a barrier to cancer initiation and progression. Histone alteration is one of the major events during replicative senescence. However, little is known about the function of H3.3 in cellular senescence. Here we found that the downregulation of H3.3 induced growth suppression with senescence-like phenotypes such as senescence-associated heterochromatin foci (SAHF) and ß-galactosidase (SA-ß-gal) activity. Furthermore, H3.3 depletion induced senescence-like phenotypes with the p53/p21-depedent pathway. In addition, we identified miR-22-3p, tumor suppressive miRNA, as an upstream regulator of the H3F3B (H3 histone, family 3B) gene which is the histone variant H3.3 and replaces conventional H3 in active genes. Therefore, our results reveal for the first time the molecular mechanisms for cellular senescence which are regulated by H3.3 abundance. Taken together, our studies suggest that H3.3 exerts functional roles in regulating cellular senescence and is a promising target for cancer therapy.


Subject(s)
Cellular Senescence , Diploidy , Fibroblasts , Histones , MicroRNAs , Tumor Suppressor Protein p53 , Cellular Senescence/genetics , Humans , Histones/metabolism , Histones/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Fibroblasts/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Down-Regulation/genetics , Heterochromatin/genetics , Heterochromatin/metabolism
5.
Nat Commun ; 15(1): 2964, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580638

ABSTRACT

The high sequencing error rate has impeded the application of long noisy reads for diploid genome assembly. Most existing assemblers failed to generate high-quality phased assemblies using long noisy reads. Here, we present PECAT, a Phased Error Correction and Assembly Tool, for reconstructing diploid genomes from long noisy reads. We design a haplotype-aware error correction method that can retain heterozygote alleles while correcting sequencing errors. We combine a corrected read SNP caller and a raw read SNP caller to further improve the identification of inconsistent overlaps in the string graph. We use a grouping method to assign reads to different haplotype groups. PECAT efficiently assembles diploid genomes using Nanopore R9, PacBio CLR or Nanopore R10 reads only. PECAT generates more contiguous haplotype-specific contigs compared to other assemblers. Especially, PECAT achieves nearly haplotype-resolved assembly on B. taurus (Bison×Simmental) using Nanopore R9 reads and phase block NG50 with 59.4/58.0 Mb for HG002 using Nanopore R10 reads.


Subject(s)
Diploidy , Nanopores , Alleles , Haplotypes , Heterozygote , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods
6.
Sci Rep ; 14(1): 9368, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654044

ABSTRACT

Although colorectal cancer (CRC) remains the second leading cause of cancer-related death in the United States, the overall incidence and mortality from the disease have declined in recent decades. In contrast, there has been a steady increase in the incidence of CRC in individuals under 50 years of age. Hereditary syndromes contribute disproportionately to early onset CRC (EOCRC). These include microsatellite instability high (MSI+) tumors arising in patients with Lynch Syndrome. However, most EOCRCs are not associated with familial syndromes or MSI+ genotypes. Comprehensive genomic profiling has provided the basis of improved more personalized treatments for older CRC patients. However, less is known about the basis of sporadic EOCRC. To define the genomic landscape of EOCRC we used DNA content flow sorting to isolate diploid and aneuploid tumor fractions from 21 non-hereditary cases. We then generated whole exome mutational profiles for each case and whole genome copy number, telomere length, and EGFR immunohistochemistry (IHC) analyses on subsets of samples. These results discriminate the molecular features of diploid and aneuploid EOCRC and provide a basis for larger population-based studies and the development of effective strategies to monitor and treat this emerging disease.


Subject(s)
Aneuploidy , Colorectal Neoplasms , Diploidy , Microsatellite Instability , Humans , Colorectal Neoplasms/genetics , Middle Aged , Female , Male , Adult , Mutation , ErbB Receptors/genetics , Age of Onset , Genomics/methods
7.
BMC Plant Biol ; 24(1): 330, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664602

ABSTRACT

Whole-genome doubling leads to cell reprogramming, upregulation of stress genes, and establishment of new pathways of drought stress responses in plants. This study investigated the molecular mechanisms of drought tolerance and cuticular wax characteristics in diploid and tetraploid-induced Erysimum cheiri. According to real-time PCR analysis, tetraploid induced wallflowers exhibited increased expression of several genes encoding transcription factors (TFs), including AREB1 and AREB3; the stress response genes RD29A and ERD1 under drought stress conditions. Furthermore, two cuticular wax biosynthetic pathway genes, CER1 and SHN1, were upregulated in tetraploid plants under drought conditions. Leaf morphological studies revealed that tetraploid leaves were covered with unique cuticular wax crystalloids, which produced a white fluffy appearance, while the diploid leaves were green and smooth. The greater content of epicuticular wax in tetraploid leaves than in diploid leaves can explain the decrease in cuticle permeability as well as the decrease in water loss and improvement in drought tolerance in wallflowers. GC‒MS analysis revealed that the wax components included alkanes, alcohols, aldehydes, and fatty acids. The most abundant wax compound in this plant was alkanes (50%), the most predominant of which was C29. The relative abundance of these compounds increased significantly in tetraploid plants under drought stress conditions. These findings revealed that tetraploid-induced wallflowers presented upregulation of multiple drought-related and wax biosynthesis genes; therefore, polyploidization has proved useful for improving plant drought tolerance.


Subject(s)
Diploidy , Droughts , Gene Expression Regulation, Plant , Tetraploidy , Waxes , Waxes/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Epidermis/genetics , Plant Epidermis/metabolism , Plant Epidermis/physiology , Gene Expression Profiling , Drought Resistance
8.
Methods Mol Biol ; 2797: 323-336, 2024.
Article in English | MEDLINE | ID: mdl-38570470

ABSTRACT

Cell line panels have proven to be an invaluable tool for investigators researching a range of topics from drug mechanism or drug sensitivity studies to disease-specific etiology. The cell lines used in these panels may range from heterogeneous tumor populations grown from primary tumor isolations to genetically engineered clonal cell lines which express specific gene isoforms. Mouse embryonic fibroblast (MEF) cells are a commonly used cell line for biological research due to their accessibility and ease of genetic manipulation. This chapter will describe the process of creating a size-sorted diploid (SSDC) clonal cell panel expressing specific RAS isoforms from a previously engineered RAS-less MEF cell line pool.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Animals , Mice , Diploidy , Fibroblasts/pathology , Clone Cells , Cell Line , Neoplasms/pathology , Protein Isoforms
9.
Int J Biol Macromol ; 267(Pt 1): 131177, 2024 May.
Article in English | MEDLINE | ID: mdl-38583842

ABSTRACT

Durum wheat, less immunogenically intolerant than bread wheat, originates from diploid progenitors known for nutritional quality and stress tolerance. Present study involves the analysis of major grain parameters, viz. size, weight, sugar, starch, and protein content of Triticum durum (AABB genome) and its diploid progenitors, Triticum monococcum (AA genome) and Aegilops speltoides (BB genome). Samples were collected during 2-5 weeks after anthesis (WAA), and at maturity. The investigation revealed that T. durum displayed the maximum grain size and weight. Expression analysis of Grain Weight 2 (GW2) and Glutamine Synthase (GS2), negative and positive regulators of grain weight and size, respectively, revealed higher GW2 expression in Ae. speltoides and higher GS2 expression in T. durum. Further we explored total starch, sugar and protein content, observing higher levels of starch and sugar in durum wheat while AA genome species exhibited higher protein content dominated by the fractions of albumin/globulin. HPLC profiling revealed unique sub-fractions in all three genome species. Additionally, a comparative transcriptome analysis also corroborated with the starch and protein content in the grains. This study provides valuable insights into the genetic and biochemical distinctions among durum wheat and its diploid progenitors, offering a foundation for their nutritional composition.


Subject(s)
Diploidy , Starch , Triticum , Triticum/genetics , Triticum/metabolism , Starch/metabolism , Gene Expression Regulation, Plant , Edible Grain/genetics , Edible Grain/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/metabolism , Seeds/genetics , Seeds/chemistry , Seed Storage Proteins/metabolism , Seed Storage Proteins/genetics , Gene Expression Profiling
10.
Sci Data ; 11(1): 412, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649380

ABSTRACT

Diploid wild oat Avena longiglumis has nutritional and adaptive traits which are valuable for common oat (A. sativa) breeding. The combination of Illumina, Nanopore and Hi-C data allowed us to assemble a high-quality chromosome-level genome of A. longiglumis (ALO), evidenced by contig N50 of 12.68 Mb with 99% BUSCO completeness for the assembly size of 3,960.97 Mb. A total of 40,845 protein-coding genes were annotated. The assembled genome was composed of 87.04% repetitive DNA sequences. Dotplots of the genome assembly (PI657387) with two published ALO genomes were compared to indicate the conservation of gene order and equal expansion of all syntenic blocks among three genome assemblies. Two recent whole-genome duplication events were characterized in genomes of diploid Avena species. These findings provide new knowledge for the genomic features of A. longiglumis, give information about the species diversity, and will accelerate the functional genomics and breeding studies in oat and related cereal crops.


Subject(s)
Avena , Diploidy , Genome, Plant , Avena/genetics , Chromosomes, Plant
11.
Nat Commun ; 15(1): 3475, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658552

ABSTRACT

Somatic copy number alterations (SCNAs) are pervasive in advanced human cancers, but their prevalence and spatial distribution in early-stage, localized tumors and their surrounding normal tissues are poorly characterized. Here, we perform multi-region, single-cell DNA sequencing to characterize the SCNA landscape across tumor-rich and normal tissue in two male patients with localized prostate cancer. We identify two distinct karyotypes: 'pseudo-diploid' cells harboring few SCNAs and highly aneuploid cells. Pseudo-diploid cells form numerous small-sized subclones ranging from highly spatially localized to broadly spread subclones. In contrast, aneuploid cells do not form subclones and are detected throughout the prostate, including normal tissue regions. Highly localized pseudo-diploid subclones are confined within tumor-rich regions and carry deletions in multiple tumor-suppressor genes. Our study reveals that SCNAs are widespread in normal and tumor regions across the prostate in localized prostate cancer patients and suggests that a subset of pseudo-diploid cells drive tumorigenesis in the aging prostate.


Subject(s)
DNA Copy Number Variations , Prostatic Neoplasms , Single-Cell Analysis , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Aneuploidy , Prostate/pathology , Prostate/metabolism , Clone Cells , Diploidy , Aged
12.
Cell Rep Methods ; 4(5): 100754, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38614089

ABSTRACT

Precision medicine's emphasis on individual genetic variants highlights the importance of haplotype-resolved assembly, a computational challenge in bioinformatics given its combinatorial nature. While classical algorithms have made strides in addressing this issue, the potential of quantum computing remains largely untapped. Here, we present the vehicle routing problem (VRP) assembler: an approach that transforms this task into a vehicle routing problem, an optimization formulation solvable on a quantum computer. We demonstrate its potential and feasibility through a proof of concept on short synthetic diploid and triploid genomes using a D-Wave quantum annealer. To tackle larger-scale assembly problems, we integrate the VRP assembler with Google's OR-Tools, achieving a haplotype-resolved local assembly across the human major histocompatibility complex (MHC) region. Our results show encouraging performance compared to Hifiasm with phasing accuracy approaching the theoretical limit, underscoring the promising future of quantum computing in bioinformatics.


Subject(s)
Diploidy , Haplotypes , Polyploidy , Humans , Haplotypes/genetics , Computational Biology/methods , Algorithms , Quantum Theory , Genome, Human , Major Histocompatibility Complex/genetics
13.
Plant Cell Rep ; 43(4): 85, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453711

ABSTRACT

KEY MESSAGE: The shock produced by the allopolyploidization process on a potato interspecific diploid hybrid displays a non-random remobilization of the small RNAs profile on a variety of genomic features. Allopolyploidy, a complex process involving interspecific hybridization and whole genome duplication, significantly impacts plant evolution, leading to the emergence of novel phenotypes. Polyploids often present phenotypic nuances that enhance adaptability, enabling them to compete better and occasionally to colonize new habitats. Whole-genome duplication represents a genomic "shock" that can trigger genetic and epigenetic changes that yield novel expression patterns. In this work, we investigate the polyploidization effect on a diploid interspecific hybrid obtained through the cross between the cultivated potato Solanum tuberosum and the wild potato Solanum kurtzianum, by assessing the small RNAs (sRNAs) profile of the parental diploid hybrid and its derived allopolyploid. Small RNAs are key components of the epigenetic mechanisms involved in silencing by RNA-directed DNA Methylation (RdDM). A sRNA sequencing (sRNA-Seq) analysis was performed to individually profile the 21 to 22 nucleotide (21 to 22-nt) and 24-nt sRNA size classes due to their unique mechanism of biogenesis and mode of function. The composition and distribution of different genomic features and differentially accumulated (DA) sRNAs were evaluated throughout the potato genome. We selected a subset of genes associated with DA sRNAs for messenger RNA (mRNA) expression analysis to assess potential impacts on the transcriptome. Interestingly, we noted that 24-nt DA sRNAs that exclusively mapped to exons were correlated with differentially expressed mRNAs between genotypes, while this behavior was not observed when 24-nt DA sRNAs were mapped to intronic regions. These findings collectively emphasize the nonstochastic nature of sRNA remobilization in response to the genomic shock induced by allopolyploidization.


Subject(s)
RNA, Small Untranslated , Solanum tuberosum , Solanum tuberosum/genetics , Diploidy , Genome , Genomics , RNA, Messenger , RNA, Small Untranslated/genetics
14.
Am J Bot ; 111(3): e16305, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38517199

ABSTRACT

PREMISE: The western North American fern genus Pentagramma (Pteridaceae) is characterized by complex patterns of ploidy variation, an understanding of which is critical to comprehending both the evolutionary processes within the genus and its current diversity. METHODS: We undertook a cytogeographic study across the range of the genus, using a combination of chromosome counts and flow cytometry to infer ploidy level. Bioclimatic variables and elevation were used to compare niches. RESULTS: We found that diploids and tetraploids are common and widespread, and triploids are rare and sporadic; in contrast with genome size inferences in earlier studies, no hexaploids were found. Diploids and tetraploids show different geographic ranges: only tetraploids were found in the northernmost portion of the range (Washington, Oregon, and British Columbia) and only diploids were found in the Sierra Nevada of California. Diploid, triploid, and tetraploid cytotypes were found to co-occur in relatively few localities: in the southern (San Diego County, California) and desert Southwest (Arizona) parts of the range, and along the Pacific Coast of California. CONCLUSIONS: Tetraploids occupy a wider bioclimatic niche than diploids both within P. triangularis and at the genus-wide scale. It is unknown whether the wider niche of tetraploids is due to their expansion upon the diploid niche, if diploids have contracted their niche due to competition or changing abiotic conditions, or if this wider niche occupancy is due to multiple origins of tetraploids.


Subject(s)
Ferns , Pteridaceae , Diploidy , Tetraploidy , Polyploidy
15.
Mol Biol Evol ; 41(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427813

ABSTRACT

Aneuploidy is common in eukaryotes, often leading to decreased fitness. However, evidence from fungi and human tumur cells suggests that specific aneuploidies can be beneficial under stressful conditions and facilitate adaptation. In a previous evolutionary experiment with yeast, populations evolving under heat stress became aneuploid, only to later revert to euploidy after beneficial mutations accumulated. It was therefore suggested that aneuploidy is a "stepping stone" on the path to adaptation. Here, we test this hypothesis. We use Bayesian inference to fit an evolutionary model with both aneuploidy and mutation to the experimental results. We then predict the genotype frequency dynamics during the experiment, demonstrating that most of the evolved euploid population likely did not descend from aneuploid cells, but rather from the euploid wild-type population. Our model shows how the beneficial mutation supply-the product of population size and beneficial mutation rate-determines the evolutionary dynamics: with low supply, much of the evolved population descends from aneuploid cells; but with high supply, beneficial mutations are generated fast enough to outcompete aneuploidy due to its inherent fitness cost. Our results suggest that despite its potential fitness benefits under stress, aneuploidy can be an evolutionary "diversion" rather than a "stepping stone": it can delay, rather than facilitate, the adaptation of the population, and cells that become aneuploid may leave less descendants compared to cells that remain diploid.


Subject(s)
Aneuploidy , Fungi , Humans , Bayes Theorem , Diploidy
16.
Med Sci (Paris) ; 40(3): 288-289, 2024 Mar.
Article in French | MEDLINE | ID: mdl-38520106

Subject(s)
Depression , Diploidy , Humans
18.
Nat Methods ; 21(4): 574-583, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38459383

ABSTRACT

Draft genomes generated from Oxford Nanopore Technologies (ONT) long reads are known to have a higher error rate. Although existing genome polishers can enhance their quality, the error rate (including mismatches, indels and switching errors between paternal and maternal haplotypes) can be significant. Here, we develop two polishers, hypo-short and hypo-hybrid to address this issue. Hypo-short utilizes Illumina short reads to polish an ONT-based draft assembly, resulting in a high-quality assembly with low error rates and switching errors. Expanding on this, hypo-hybrid incorporates ONT long reads to further refine the assembly into a diploid representation. Leveraging on hypo-hybrid, we have created a diploid genome assembly pipeline called hypo-assembler. Hypo-assembler automates the generation of highly accurate, contiguous and nearly complete diploid assemblies using ONT long reads, Illumina short reads and optionally Hi-C reads. Notably, our solution even allows for the production of telomere-to-telomere diploid genomes with additional manual steps. As a proof of concept, we successfully assembled a fully phased telomere-to-telomere diploid genome of HG00733, achieving a quality value exceeding 50.


Subject(s)
Nanopores , Diploidy , Haploidy , High-Throughput Nucleotide Sequencing/methods , Telomere/genetics , Sequence Analysis, DNA/methods
19.
Sci Adv ; 10(10): eadk9001, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457500

ABSTRACT

Canonical mitotic and meiotic cell divisions commence with replicated chromosomes consisting of two sister chromatids. Here, we developed and explored a model of premature cell division, where nonreplicated, G0/G1-stage somatic cell nuclei are transplanted to the metaphase cytoplasm of mouse oocytes. Subsequent cell division generates daughter cells with reduced ploidy. Unexpectedly, genome sequencing analysis revealed proper segregation of homologous chromosomes, resulting in complete haploid genomes. We observed a high occurrence of somatic genome haploidization in nuclei from inbred genetic backgrounds but not in hybrids, emphasizing the importance of sequence homology between homologs. These findings suggest that premature cell division relies on mechanisms similar to meiosis I, where genome haploidization is facilitated by homologous chromosome interactions, recognition, and pairing. Unlike meiosis, no evidence of recombination between somatic cell homologs was detected. Our study offers an alternative in vitro gametogenesis approach by directly reprogramming diploid somatic cells into haploid oocytes.


Subject(s)
Diploidy , Meiosis , Animals , Mice , Haploidy , Meiosis/genetics , Cell Nucleus/genetics , Chromatids
20.
Nat Commun ; 15(1): 2447, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503752

ABSTRACT

Long-read sequencing offers long contiguous DNA fragments, facilitating diploid genome assembly and structural variant (SV) detection. Efficient and robust algorithms for SV identification are crucial with increasing data availability. Alignment-based methods, favored for their computational efficiency and lower coverage requirements, are prominent. Alternative approaches, relying solely on available reads for de novo genome assembly and employing assembly-based tools for SV detection via comparison to a reference genome, demand significantly more computational resources. However, the lack of comprehensive benchmarking constrains our comprehension and hampers further algorithm development. Here we systematically compare 14 read alignment-based SV calling methods (including 4 deep learning-based methods and 1 hybrid method), and 4 assembly-based SV calling methods, alongside 4 upstream aligners and 7 assemblers. Assembly-based tools excel in detecting large SVs, especially insertions, and exhibit robustness to evaluation parameter changes and coverage fluctuations. Conversely, alignment-based tools demonstrate superior genotyping accuracy at low sequencing coverage (5-10×) and excel in detecting complex SVs, like translocations, inversions, and duplications. Our evaluation provides performance insights, highlighting the absence of a universally superior tool. We furnish guidelines across 31 criteria combinations, aiding users in selecting the most suitable tools for diverse scenarios and offering directions for further method development.


Subject(s)
Algorithms , Genome, Human , Humans , Sequence Analysis, DNA/methods , Diploidy , Benchmarking , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...