Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 407.685
Filter
1.
Mol Biol Rep ; 51(1): 704, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824233

ABSTRACT

BACKGROUND: Tumor modeling using organoids holds potential in studies of cancer development, enlightening both the intracellular and extracellular molecular mechanisms behind different cancer types, biobanking, and drug screening. Intestinal organoids can be generated in vitro using a unique type of adult stem cells which are found at the base of crypts and are characterized by their high Lgr5 expression levels. METHODS AND RESULTS: In this study, we successfully established intestinal cancer organoid models by using both the BALB/c derived and mouse embryonic stem cells (mESCs)-derived intestinal organoids. In both cases, carcinogenesis-like model was developed by using azoxymethane (AOM) treatment. Carcinogenesis-like model was verified by H&E staining, immunostaining, relative mRNA expression analysis, and LC/MS analysis. The morphologic analysis demonstrated that the number of generated organoids, the number of crypts, and the intensity of the organoids were significantly augmented in AOM-treated intestinal organoids compared to non-AOM-treated ones. Relative mRNA expression data revealed that there was a significant increase in both Wnt signaling pathway-related genes and pluripotency transcription factors in the AOM-induced intestinal organoids. CONCLUSION: We successfully developed simple carcinogenesis-like models using mESC-based and Lgr5 + stem cell-based intestinal organoids. Intestinal organoid based carcinogenesi models might be used for personalized cancer therapy in the future.


Subject(s)
Azoxymethane , Carcinogenesis , Mouse Embryonic Stem Cells , Organoids , Wnt Signaling Pathway , Animals , Organoids/metabolism , Organoids/pathology , Mice , Azoxymethane/toxicity , Carcinogenesis/pathology , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Mouse Embryonic Stem Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice, Inbred BALB C , Intestines/pathology , Intestinal Neoplasms/pathology , Intestinal Neoplasms/chemically induced , Intestinal Neoplasms/genetics , Intestinal Neoplasms/metabolism , Disease Models, Animal , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
2.
J Orthop Surg Res ; 19(1): 325, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822418

ABSTRACT

OBJECTIVE: Muscle wasting frequently occurs following joint trauma. Previous research has demonstrated that joint distraction in combination with treadmill exercise (TRE) can mitigate intra-articular inflammation and cartilage damage, consequently delaying the advancement of post-traumatic osteoarthritis (PTOA). However, the precise mechanism underlying this phenomenon remains unclear. Hence, the purpose of this study was to examine whether the mechanism by which TRE following joint distraction delays the progression of PTOA involves the activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), as well as its impact on muscle wasting. METHODS: Quadriceps samples were collected from patients with osteoarthritis (OA) and normal patients with distal femoral fractures, and the expression of PGC-1α was measured. The hinged external fixator was implanted in the rabbit PTOA model. One week after surgery, a PGC-1α agonist or inhibitor was administered for 4 weeks prior to TRE. Western blot analysis was performed to detect the expression of PGC-1α and Muscle atrophy gene 1 (Atrogin-1). We employed the enzyme-linked immunosorbent assay (ELISA) technique to examine pro-inflammatory factors. Additionally, we utilized quantitative real-time polymerase chain reaction (qRT-PCR) to analyze genes associated with cartilage regeneration. Synovial inflammation and cartilage damage were evaluated through hematoxylin-eosin staining. Furthermore, we employed Masson's trichrome staining and Alcian blue staining to analyze cartilage damage. RESULTS: The decreased expression of PGC-1α in skeletal muscle in patients with OA is correlated with the severity of OA. In the rabbit PTOA model, TRE following joint distraction inhibited the expressions of muscle wasting genes, including Atrogin-1 and muscle ring finger 1 (MuRF1), as well as inflammatory factors such as interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in skeletal muscle, potentially through the activation of PGC-1α. Concurrently, the production of IL-1ß, IL-6, TNF-α, nitric oxide (NO), and malondialdehyde (MDA) in the synovial fluid was down-regulated, while the expression of type II collagen (Col2a1), Aggrecan (AGN), SRY-box 9 (SOX9) in the cartilage, and superoxide dismutase (SOD) in the synovial fluid was up-regulated. Additionally, histological staining results demonstrated that TRE after joint distraction reduced cartilage degeneration, leading to a significant decrease in OARSI scores.TRE following joint distraction could activate PGC-1α, inhibit Atrogin-1 expression in skeletal muscle, and reduce C-telopeptides of type II collagen (CTX-II) in the blood compared to joint distraction alone. CONCLUSION: Following joint distraction, TRE might promote the activation of PGC-1α in skeletal muscle during PTOA progression to exert anti-inflammatory effects in skeletal muscle and joint cavity, thereby inhibiting muscle wasting and promoting cartilage regeneration, making it a potential therapeutic intervention for treating PTOA.


Subject(s)
Disease Progression , Muscle, Skeletal , Muscular Atrophy , Osteoarthritis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Rabbits , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Osteoarthritis/etiology , Osteoarthritis/metabolism , Osteoarthritis/prevention & control , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Male , Humans , Physical Conditioning, Animal/physiology , Female , Disease Models, Animal
3.
Genome Med ; 16(1): 75, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822427

ABSTRACT

BACKGROUND: Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS). METHODS: The International Mouse Phenotyping Consortium (IMPC) is an effort to establish gene function by knocking-out all genes in the mouse genome and generating corresponding phenotype data. We used mouse embryonic imaging data generated by the Deciphering Mechanisms of Developmental Disorders (DMDD) project to screen 209 embryonic lethal and sub-viable knockout mouse lines for pituitary malformations. RESULTS: Of the 209 knockout mouse lines, we identified 51 that have embryonic pituitary malformations. These genes not only represent new candidates for CH, but also reveal new molecular pathways not previously associated with pituitary organogenesis. We used this list of candidate genes to mine whole exome sequencing data of a cohort of patients with CH, and we identified variants in two unrelated cases for two genes, MORC2 and SETD5, with CH and other syndromic features. CONCLUSIONS: The screening and analysis of IMPC phenotyping data provide proof-of-principle that recessive lethal mouse mutants generated by the knockout mouse project are an excellent source of candidate genes for congenital hypopituitarism in children.


Subject(s)
Hypopituitarism , Mice, Knockout , Pituitary Gland , Hypopituitarism/genetics , Animals , Humans , Pituitary Gland/metabolism , Pituitary Gland/abnormalities , Pituitary Gland/pathology , Mice , Phenotype , Female , Male , Disease Models, Animal , Exome Sequencing , Septo-Optic Dysplasia/genetics
4.
Acta Neuropathol Commun ; 12(1): 85, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822433

ABSTRACT

Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.


Subject(s)
Dimethyl Sulfoxide , Mice, Inbred C57BL , Animals , Mice , Dimethyl Sulfoxide/pharmacology , Biomarkers/metabolism , Mice, Transgenic , Tomography, Optical Coherence , Retinal Rod Photoreceptor Cells/drug effects , Contrast Sensitivity/drug effects , Contrast Sensitivity/physiology , Disease Models, Animal , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Vision, Ocular/drug effects , Vision, Ocular/physiology
5.
Pak J Pharm Sci ; 37(2(Special)): 423-428, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822545

ABSTRACT

This study assessed the inhibitory effect of sodium valproate (VPA) on apoptosis of cardiomyocytes in lethally scalded rats. The model of a 50% total body surface area (TBSA) third-degree full-thickness scald was produced, 48 male SD rats were randomly divided into three groups (n = 16), the sham group and the scald group were given an intraperitoneal injection of 0.25ml of saline, the scald +VPA group was given an intraperitoneal injection of VPA (300 mg/kg) after scalded, Each group was subdivided into two subgroups (n=8) according to the two observation time points of 3h and 6h after scald. Apoptotic cardiomyocytes were observed, and myocardial tissue levels of nitric oxide (NO), cysteine protease-3 (caspase-3) activity, hypoxia-inducible factor-1α (HIF-1α), inducible nitric oxide synthase (iNOS), BCL2/adenovirus E1B interacting protein 3 (BNIP3) and caspase-3 protein were measured. Compared with sham scald group, severe scald elevated CK-MB, cardiomyocyte apoptosis rate, caspase-3 activity and protein levels, NO content, and HIF-1α signalling pathway proteins; whereas VPA decreased CK-MB, cardiomyocyte apoptosis rate and inhibited HIF-1α signalling pathway protein expression. In conclusion, these results suggested that VPA inhibited early cardiomyocyte apoptosis and attenuated myocardial injury in lethally scalded rats, which may be related to the regulation of the HIF-1α signalling pathway.


Subject(s)
Apoptosis , Burns , Caspase 3 , Hypoxia-Inducible Factor 1, alpha Subunit , Myocytes, Cardiac , Nitric Oxide , Rats, Sprague-Dawley , Valproic Acid , Animals , Valproic Acid/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Apoptosis/drug effects , Male , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Burns/drug therapy , Burns/metabolism , Burns/pathology , Caspase 3/metabolism , Nitric Oxide/metabolism , Rats , Nitric Oxide Synthase Type II/metabolism , Membrane Proteins/metabolism , Disease Models, Animal , Mitochondrial Proteins
6.
Pak J Pharm Sci ; 37(2(Special)): 435-442, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822547

ABSTRACT

Depression is a common non-motor symptom of Parkinson's disease. Previous studies demonstrated that hydroxysafflor yellow A had properties of improving motor symptoms of Parkinson's disease. The effect of hydroxysafflor yellow A on depression in Parkinson's disease mice is investigated in this study. To induce Parkinson's disease model, male Swiss mice were exposed to rotenone (30 mg/kg) for 6 weeks. The chronic unpredictable mild stress was employed to induce depression from week 3 to week 6. Sucrose preference, tail suspension, and forced swimming tests were conducted. Golgi and Nissl staining of hippocampus were carried out. The levels of dopamine, 5-hydroxytryptamine and the expression of postsynaptic density protein 95, brain-derived neurotrophic factor in hippocampus were assayed. It showed that HSYA improved the depression-like behaviors of Parkinson's disease mice. Hydroxysafflor yellow A attenuated the injury of nerve and elevated contents of dopamine, 5-hydroxytryptamine in hippocampus. Treatment with hydroxysafflor yellow A also augmented the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor. These findings suggest that hydroxysafflor yellow A ameliorates depression-like behavior in Parkinson's disease mice through regulating the contents of postsynaptic density protein 95 and brain-derived neurotrophic factor, therefore protecting neurons and neuronal dendrites of the hippocampus.


Subject(s)
Behavior, Animal , Brain-Derived Neurotrophic Factor , Chalcone , Depression , Hippocampus , Quinones , Serotonin , Animals , Quinones/pharmacology , Quinones/therapeutic use , Chalcone/analogs & derivatives , Chalcone/pharmacology , Chalcone/therapeutic use , Male , Mice , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Behavior, Animal/drug effects , Serotonin/metabolism , Dopamine/metabolism , Rotenone/pharmacology , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/psychology
7.
FASEB J ; 38(11): e23721, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38822662

ABSTRACT

Schistosome infection and schistosome-derived products have been implicated in the prevention and alleviation of inflammatory bowel disease by manipulating the host immune response, whereas the role of gut microbiota in this protective effect remains poorly understood. In this study, we found that the intraperitoneal immunization with Schistosoma japonicum eggs prior to dextran sulfate sodium (DSS) application significantly ameliorated the symptoms of DSS-induced acute colitis, which was characterized by higher body weight, lower disease activity index score and macroscopic inflammatory scores. We demonstrated that the immunomodulatory effects of S. japonicum eggs were accompanied by an influence on gut microbiota composition, abundance, and diversity, which increased the abundance of genus Turicibacter, family Erysipelotrichaceae, phylum Firmicutes, and decreased the abundance of genus Odoribacter, family Marinifilaceae, order Bacteroidales, class Bacteroidia, phylum Bacteroidota. In addition, Lactobacillus was identified as a biomarker that distinguishes healthy control mice from DSS-induced colitis mice. The present study revealed the importance of the gut microbiota in S. japonicum eggs exerting protective effects in an experimental ulcerative colitis (UC) model, providing an alternative strategy for the discovery of UC prevention and treatment drugs.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Disease Models, Animal , Gastrointestinal Microbiome , Schistosoma japonicum , Animals , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/immunology , Mice , Schistosoma japonicum/immunology , Dextran Sulfate/toxicity , Female , Immunization/methods , Ovum , Mice, Inbred C57BL
8.
Cell Biochem Funct ; 42(4): e4066, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822669

ABSTRACT

Collagen crosslinking, mediated by lysyl oxidase, is an adaptive mechanism of the cardiac repair process initiated by cardiac fibroblasts postmyocardial injury. However, excessive crosslinking leads to cardiac wall stiffening, which impairs the contractile properties of the left ventricle and leads to heart failure. In this study, we investigated the role of periostin, a matricellular protein, in the regulation of lysyl oxidase in cardiac fibroblasts in response to angiotensin II and TGFß1. Our results indicated that periostin silencing abolished the angiotensin II and TGFß1-mediated upregulation of lysyl oxidase. Furthermore, the attenuation of periostin expression resulted in a notable reduction in the activity of lysyl oxidase. Downstream of periostin, ERK1/2 MAPK signaling was found to be activated, which in turn transcriptionally upregulates the serum response factor to facilitate the enhanced expression of lysyl oxidase. The periostin-lysyl oxidase association was also positively correlated in an in vivo rat model of myocardial infarction. The expression of periostin and lysyl oxidase was upregulated in the collagen-rich fibrotic scar tissue of the left ventricle. Remarkably, echocardiography data showed a reduction in the left ventricular wall movement, ejection fraction, and fractional shortening, indicative of enhanced stiffening of the cardiac wall. These findings shed light on the mechanistic role of periostin in the collagen crosslinking initiated by activated cardiac fibroblasts. Our findings signify periostin as a possible therapeutic target to reduce excessive collagen crosslinking that contributes to the structural remodeling associated with heart failure.


Subject(s)
Cell Adhesion Molecules , Fibroblasts , Protein-Lysine 6-Oxidase , Rats, Sprague-Dawley , Animals , Protein-Lysine 6-Oxidase/metabolism , Fibroblasts/metabolism , Rats , Cell Adhesion Molecules/metabolism , Male , MAP Kinase Signaling System , Myocardium/metabolism , Myocardium/cytology , Angiotensin II/pharmacology , Angiotensin II/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Transforming Growth Factor beta1/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Cells, Cultured , Disease Models, Animal , Periostin
9.
Food Res Int ; 188: 114489, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823872

ABSTRACT

Solanum nigrum L. (SN) berry is an edible berry containing abundant polyphenols and bioactive compounds, which possess antioxidant and antiinflammatory properties. However, the effects of SN on alcohol-induced biochemical changes in the enterohepatic axis remain unclear. In the current study, a chronic ethanol-fed mice ALD model was used to test the protective mechanisms of SN berries. Microbiota composition was determined via 16S rRNA sequencing, we found that SN berries extract (SNE) improved intestinal imbalance by reducing the Firmicutes to Bacteroides ratio, restoring the abundance of Akkermansia microbiota, and reducing the abundance of Allobaculum and Shigella. SNE restored the intestinal short-chain fatty acids content. In addition, liver transcriptome data analysis revealed that SNE primarily affected the genes involved in lipid metabolism and inflammatory responses. Furthermore, SNE ameliorated hepatic steatosis in alcohol-fed mice by activating AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), peroxisome proliferator-activated receptor α (PPAR-α). SNE reduced the expression of toll-like receptor 4 (TLR4), myeloid differentiation factor-88 (MyD88) nuclear factor kappa-B (NF-κB), which can indicate that SNE mainly adjusted LPS/TLR4/MyD88/NF-κB pathway to reduce liver inflammation. SNE enhanced hepatic antioxidant capacity by regulating NRF2-related protein expression. SNE alleviates alcoholic liver injury by regulating of gut microbiota, lipid metabolism, inflammation, and oxidative stress. This study may provide a reference for the development and utilization of SN resources.


Subject(s)
Fruit , Gastrointestinal Microbiome , Lipid Metabolism , Liver Diseases, Alcoholic , Oxidative Stress , Plant Extracts , Solanum nigrum , Animals , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Lipid Metabolism/drug effects , Plant Extracts/pharmacology , Mice , Fruit/chemistry , Solanum nigrum/chemistry , Male , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , Mice, Inbred C57BL , Inflammation , Liver/drug effects , Liver/metabolism , Toll-Like Receptor 4/metabolism , Disease Models, Animal , PPAR alpha/metabolism , Antioxidants/pharmacology , Ethanol
10.
Mol Biol Rep ; 51(1): 719, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824271

ABSTRACT

BACKGROUND: Promoting the balance between bone formation and bone resorption is the main therapeutic goal for postmenopausal osteoporosis (PMOP), and bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important regulatory role in this process. Recently, several long non-coding RNAs (lncRNAs) have been reported to play an important regulatory role in the occurrence and development of OP and participates in a variety of physiological and pathological processes. However, the role of lncRNA tissue inhibitor of metalloproteinases 3 (lncTIMP3) remains to be investigated. METHODS: The characteristics of BMSCs isolated from the PMOP rat model were verified by flow cytometry assay, alkaline phosphatase (ALP), alizarin red and Oil Red O staining assays. Micro-CT and HE staining assays were performed to examine histological changes of the vertebral trabeculae of the rats. RT-qPCR and western blotting assays were carried out to measure the RNA and protein expression levels. The subcellular location of lncTIMP3 was analyzed by FISH assay. The targeting relationships were verified by luciferase reporter assay and RNA pull-down assay. RESULTS: The trabecular spacing was increased in the PMOP rats, while ALP activity and the expression levels of Runx2, Col1a1 and Ocn were all markedly decreased. Among the RNA sequencing results of the clinical samples, lncTIMP3 was the most downregulated differentially expressed lncRNA, also its level was significantly reduced in the OVX rats. Knockdown of lncTIMP3 inhibited osteogenesis of BMSCs, whereas overexpression of lncTIMP3 exhibited the reverse results. Subsequently, lncTIMP3 was confirmed to be located in the cytoplasm of BMSCs, implying its potential as a competing endogenous RNA for miRNAs. Finally, the negative targeting correlations of miR-214 between lncTIMP3 and Smad4 were elucidated in vitro. CONCLUSION: lncTIMP3 may delay the progress of PMOP by promoting the activity of BMSC, the level of osteogenic differentiation marker gene and the formation of calcium nodules by acting on the miR-214/Smad4 axis. This finding may offer valuable insights into the possible management of PMOP.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Osteoporosis, Postmenopausal , RNA, Long Noncoding , Smad4 Protein , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/metabolism , Osteoporosis, Postmenopausal/pathology , Female , Cell Differentiation/genetics , Rats , Smad4 Protein/metabolism , Smad4 Protein/genetics , Humans , Disease Models, Animal , Rats, Sprague-Dawley , Bone Marrow Cells/metabolism
11.
J Neuroinflammation ; 21(1): 145, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824526

ABSTRACT

BACKGROUND: Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS: Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS: Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS: A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.


Subject(s)
Astrocytes , CASP8 and FADD-Like Apoptosis Regulating Protein , Glaucoma , Neuroinflammatory Diseases , Animals , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Mice , Astrocytes/metabolism , Astrocytes/pathology , Glaucoma/metabolism , Glaucoma/pathology , Glaucoma/genetics , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Mice, Transgenic , Disease Models, Animal , Cytokines/metabolism , Retina/metabolism , Retina/pathology , Mice, Inbred C57BL , Optic Nerve/pathology , Optic Nerve/metabolism , Glial Fibrillary Acidic Protein/metabolism
12.
J Exp Clin Cancer Res ; 43(1): 157, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824552

ABSTRACT

Phosphoinositide-3-kinase γ (PI3Kγ) plays a critical role in pancreatic ductal adenocarcinoma (PDA) by driving the recruitment of myeloid-derived suppressor cells (MDSC) into tumor tissues, leading to tumor growth and metastasis. MDSC also impair the efficacy of immunotherapy. In this study we verify the hypothesis that MDSC targeting, via PI3Kγ inhibition, synergizes with α-enolase (ENO1) DNA vaccination in counteracting tumor growth.Mice that received ENO1 vaccination followed by PI3Kγ inhibition had significantly smaller tumors compared to those treated with ENO1 alone or the control group, and correlated with i) increased circulating anti-ENO1 specific IgG and IFNγ secretion by T cells, ii) increased tumor infiltration of CD8+ T cells and M1-like macrophages, as well as up-modulation of T cell activation and M1-like related transcripts, iii) decreased infiltration of Treg FoxP3+ T cells, endothelial cells and pericytes, and down-modulation of the stromal compartment and T cell exhaustion gene transcription, iv) reduction of mature and neo-formed vessels, v) increased follicular helper T cell activation and vi) increased "antigen spreading", as many other tumor-associated antigens were recognized by IgG2c "cytotoxic" antibodies. PDA mouse models genetically devoid of PI3Kγ showed an increased survival and a pattern of transcripts in the tumor area similar to that of pharmacologically-inhibited PI3Kγ-proficient mice. Notably, tumor reduction was abrogated in ENO1 + PI3Kγ inhibition-treated mice in which B cells were depleted.These data highlight a novel role of PI3Kγ in B cell-dependent immunity, suggesting that PI3Kγ depletion strengthens the anti-tumor response elicited by the ENO1 DNA vaccine.


Subject(s)
Vaccines, DNA , Animals , Mice , Vaccines, DNA/pharmacology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Humans , Cell Line, Tumor , Cancer Vaccines/immunology , Cancer Vaccines/pharmacology , Disease Models, Animal , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism
13.
J Cardiothorac Surg ; 19(1): 312, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824570

ABSTRACT

OBJECTIVE: About 10% of patients after cardiopulmonary bypass (CPB) would undergo acute liver injury, which aggravated the mortality of patients. Ac2-26 has been demonstrated to ameliorate organic injury by inhibiting inflammation. The present study aims to evaluate the effect and mechanism of Ac2-26 on acute liver injury after CPB. METHODS: A total of 32 SD rats were randomized into sham, CPB, Ac, and Ac/AKT1 groups. The rats only received anesthesia, and rats in other groups received CPB. The rats in Ac/AKT1 were pre-injected with the shRNA to interfere with the expression of AKT1. The rats in CPB were injected with saline, and rats in Ac and Ac/AKT1 groups were injected with Ac2-26. After 12 h of CPB, all the rats were sacrificed and the peripheral blood and liver samples were collected to analyze. The inflammatory factors in serum and liver were detected. The liver function was tested, and the pathological injury of liver tissue was evaluated. RESULTS: Compared with the sham group, the inflammatory factors, liver function, and pathological injury were worsened after CPB. Compared with the CPB group, the Ac2-26 significantly decreased the pro-inflammatory factors and increased the anti-inflammatory factor, improved liver function, and ameliorated the pathological injury. All the therapeutic effects of Ac2-26 were notably attenuated by the shRNA of AKT1. The Ac2-26 increased the GSK3ß and eNOS, and this promotion was inhibited by the shRNA. CONCLUSION: The Ac2-26 significantly treated the liver injury, inhibited inflammation, and improved liver function. The effect of Ac2-26 on liver injury induced by CPB was partly associated with the promotion of AKT1/GSK3ß/eNOS.


Subject(s)
Cardiopulmonary Bypass , Glycogen Synthase Kinase 3 beta , Nitric Oxide Synthase Type III , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Animals , Cardiopulmonary Bypass/adverse effects , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Rats , Nitric Oxide Synthase Type III/metabolism , Male , Disease Models, Animal , Liver/pathology , Signal Transduction
14.
J Neuroinflammation ; 21(1): 146, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824594

ABSTRACT

T cells play an important role in the acquired immune response, with regulatory T cells (Tregs) serving as key players in immune tolerance. Tregs are found in nonlymphoid and damaged tissues and are referred to as "tissue Tregs". They have tissue-specific characteristics and contribute to immunomodulation, homeostasis, and tissue repair through interactions with tissue cells. However, important determinants of Treg tissue specificity, such as antigen specificity, tissue environment, and pathology, remain unclear. In this study, we analyzed Tregs in the central nervous system of mice with ischemic stroke and experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. The gene expression pattern of brain Tregs in the EAE model was more similar to that of ischemic stroke Tregs in the brain than to that of spinal cord Tregs. In addition, most T-cell receptors (TCRs) with high clonality were present in both the brain and spinal cord. Furthermore, Gata3+ and Rorc+ Tregs expressed TCRs recognizing MOG in the spinal cord, suggesting a tissue environment conducive to Rorc expression. Tissue-specific chemokine/chemokine receptor interactions in the spinal cord and brain influenced Treg localization. Finally, spinal cord- or brain-derived Tregs had greater anti-inflammatory capacities in EAE mice, respectively. Taken together, these findings suggest that the tissue environment, rather than pathogenesis or antigen specificity, is the primary determinant of the tissue-specific properties of Tregs. These findings may contribute to the development of novel therapies to suppress inflammation through tissue-specific Treg regulation.


Subject(s)
Brain , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Spinal Cord , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Spinal Cord/immunology , Spinal Cord/pathology , Spinal Cord/metabolism , Brain/immunology , Brain/metabolism , Brain/pathology , Female , Disease Models, Animal
17.
Environ Health Perspect ; 132(5): 54003, 2024 May.
Article in English | MEDLINE | ID: mdl-38814861

ABSTRACT

The anticaking agent, used in a wide variety of powdered food products, interfered with immune tolerance of ovalbumin, a model antigen; and it worsened gut inflammation in a mouse model of celiac disease.


Subject(s)
Food Hypersensitivity , Silicon Dioxide , Animals , Mice , Silicon Dioxide/toxicity , Ovalbumin , Food Additives/toxicity , Celiac Disease/chemically induced , Disease Models, Animal , Nanoparticles/toxicity
18.
Neurología (Barc., Ed. impr.) ; 39(4): 321-328, May. 2024. graf
Article in English | IBECS | ID: ibc-232514

ABSTRACT

Introduction: The aim of this study was to compare the effect of five types of PEGlated nanoliposomes (PNLs) on α-synuclein (α-syn) fibrillization, attenuation of microglial activation, and silence of the SNCA gene, which encodes α-syn. Methods: To evaluate the inhibition of α-syn fibrillization, we used standard in vitro assay based on Thioflavin T (ThT) fluorescence. Next, to evaluate the attenuation of microglial activation, the concentration of TNF-a and IL-6 was quantified by ELISA assay in BV2 microglia cells treated with 100 nM A53T α-syn and PNLs. In order to determine the silencing of the SNCA, real-time PCR and Western blot analysis was used. Finally, the efficacy of PNLs was confirmed in a transgenic mouse model expressing human α-syn.Results: ThT assay showed both PNL1 and PNL2 significantly inhibited a-syn fibrillization. ELISA test also showed the production of TNF-a and IL-6 was significantly attenuated when microglial cells treated with PNL1 or PNL2. We also found that SNCA gene, at both mRNA and protein levels, was significantly silenced when BV2 microglia cells were treated with PNL1 or PNL2. Importantly, the efficacy of PNL1 and PNL2 was finally confirmed in vivo in a transgenic mouse model. Conclusions: In conclusion, the novel multifunctional nanoliposomes tested in our study inhibit α-syn fibrillization, attenuate microglial activation, and silence SNCA gene. Our findings suggest the therapeutic potential of PNL1 and PNL2 for treating synucleinopathies.(AU)


Introducción: El objetivo de este estudio fue comparar el efecto de cinco tipos de nanoliposomas PEGlados (PNL) sobre la fibrilización de la α-sinucleína (α-syn), la atenuación de la activación microglial y el silencio del gen synuclein alpha (SNCA), que codifica α-syn. Métodos: Para evaluar la inhibición de la fibrilización α-syn, utilizamos un ensayo in vitro estándar basado en la fluorescencia de la tioflavina T (ThT). A continuación, para evaluar la atenuación de la activación microglial, se cuantificó la concentración de factor de necrosis tumoral alpha (TNF-a) e interleucina 6 (IL-6)mediante ensayo ELISA en células de microglía BV2 tratadas con 100 nM de α-syn de A53T y PNL. Para determinar el silenciamiento del SNCA, se utilizó reacción en cadena de la polimerasa (PCR) en tiempo real y análisis de Western blot. Finalmente, la eficacia de las PNL se confirmó en un modelo de ratón transgénico que expresa α-syn humana. Resultados: El ensayo ThT mostró que tanto PNL1 como PNL2 inhibieron significativamente la fibrilización de α-syn. La prueba enzyme-linked immunosorbent assay (ELISA) también mostró que la producción de TNF-a e IL-6 se atenuó significativamente cuando las células microgliales se trataron con PNL1 o PNL2. También encontramos que el gen SNCA, tanto a nivel de ARN mensajero (ARNm) como de proteína, se silenciaba significativamente cuando las células de microglía BV2 se trataban con PNL1 o PNL2. Es importante destacar que la eficacia de PNL1 y PNL2 finalmente se confirmó in vivo en un modelo de ratón transgénico.Conclusiones: Los nuevos nanoliposomas multifuncionales probados en nuestro estudio inhiben la fibrilización α-syn, atenúan la activación microglial y silencian el gen SNCA. Nuestros hallazgos sugieren el potencial terapéutico de PNL1 y PNL2 para el tratamiento de sinucleinopatías.(AU)


Subject(s)
Humans , Synucleins , Liposomes , alpha-Synuclein/genetics , Microglia , Disease Models, Animal
19.
Narra J ; 4(1): e653, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798832

ABSTRACT

In Indonesia, malaria remains a problem, with 94,610 active cases in 2021 and its current therapy includes chloroquine and artemisinin; however, resistance has been commonly reported. To overcome this problem, studies about potential medicinal plants that can be used as antimalaria, such as moringa (Moringa oleifera) started to receive more attention. The aim of this study was to investigate the effects of moringa in parasitemia, monocyte activation, and organomegaly on animal model malaria. This experimental study used male Mus musculus, infected by Plasmodium berghei ANKA, as an animal malaria model. The extract was made by maceration of dry moringa leaves, which were then divided into three concentrations: 25%, 50%, and 75%. Dihydroartemisinin-piperazine was used as a positive control treatment, and distilled water as a negative control treatment. The animals were observed for six days to assess the parasitemia count and the number of monocyte activation. On day 7, the animals were terminated, and the liver, spleen, and kidney were weighed. The results showed that the effective concentrations in reducing parasitemia and inducing monocyte activation were 50% and 25% of moringa leaf extract, respectively. The smallest liver and spleen enlargement was observed among animals within the group treated with a 50% concentration of M. oleifera extract. In contrast, the smallest kidney enlargement was observed in the group treated with 25% of M. oleifera extract. Further analysis is recommended to isolate compounds with antimalarial properties in moringa leaves.


Subject(s)
Disease Models, Animal , Malaria , Monocytes , Parasitemia , Plant Extracts , Plasmodium berghei , Animals , Mice , Plasmodium berghei/drug effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Male , Malaria/drug therapy , Malaria/parasitology , Malaria/immunology , Monocytes/drug effects , Monocytes/parasitology , Monocytes/immunology , Parasitemia/drug therapy , Antimalarials/pharmacology , Antimalarials/therapeutic use , Moringa/chemistry , Moringa oleifera/chemistry , Plant Leaves/chemistry , Spleen/drug effects , Spleen/parasitology , Spleen/pathology , Spleen/immunology , Organ Size/drug effects
20.
Narra J ; 4(1): e670, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798866

ABSTRACT

The evidence on the role of diets in the production of short-chain fatty acids (SCFAs) was limited. The aim of this study was to assess the potential effects of high-fat high-fructose (HFHF), high-fat, and Western diets on the levels of SCFA. A research experiment employing a post-test-only control group design was carried out from January to April 2022. A total of 27 rats were randomly allocated to each study group. SCFA was measured two weeks after diet administration. Analysis of variance (ANOVA) test was used to analyze the differences among groups, and the effect estimate of each group was analyzed using post hoc Tukey. The concentrations of SCFAs post HFHF diets were recorded as follows: acetic acid at 54.60±10.58 mmol/g, propionic acid at 28.03±8.81 mmol/g, and butyric acid at 4.23±1.68 mmol/g. Following the high-fat diet, acetic acid measured 61.85±14.25 mmol/gr, propionic acid measured 25.19±5.55 mmol/gr, and butyric acid measured 6.10±2.93 mmol/gr. After the administration of Western diet, the levels of SCFA were 68.18±25.73, 29.69±12.76, and 7.48±5.51 mmol/g for acetic acid, propionic acid, and butyric acid, respectively. The level of butyric acid was significantly lower in HFHF diet group compared to the normal diet (mean difference (MD) 6.34; 95%CI: 0.61, 12.04; p=0.026). The levels of acetic acid (p=0.419) and propionic acid (p=0.316) were not statistically different among diet types (HFHF, high-fat, and Western diet). In conclusion, HFHF diet is associated with a lower level of butyric acid than the normal diet in a rat model.


Subject(s)
Diet, High-Fat , Diet, Western , Disease Models, Animal , Fatty Acids, Volatile , Fructose , Non-alcoholic Fatty Liver Disease , Animals , Rats , Diet, High-Fat/adverse effects , Fatty Acids, Volatile/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Fructose/administration & dosage , Diet, Western/adverse effects , Male , Rats, Sprague-Dawley , Acetic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...