Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.449
Filter
1.
Eur Respir J ; 64(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38991709

ABSTRACT

BACKGROUND: Evidence for the impact of smoking on coronavirus disease 2019 (COVID-19) is contradictory, and there is little research on vaping. Here we provide greater clarity on mechanisms perturbed by tobacco cigarette, electronic cigarette and nicotine exposures that may impact the risks of infection and/or disease severity. METHODS: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the Ovid and Web of Science databases were searched. Study design and exposure-induced gene expression changes were extracted. Each study was quality assessed and higher confidence scores were assigned to genes consistently changed across multiple studies following the same exposure. These genes were used to explore pathways significantly altered following exposure. RESULTS: 125 studies provided data on 480 genes altered by exposure to tobacco cigarettes, e-cigarettes, nicotine or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genes involved in both SARS-CoV-2 viral-entry and inflammation were changed following exposure. Pathway analysis revealed that many of those genes with high confidence scores are involved in common cellular processes relating to hyperinflammatory immune responses. CONCLUSION: Exposure to tobacco cigarettes, e-cigarettes or nicotine may therefore impact initial host-pathogen interactions and disease severity. Smokers and vapers of e-cigarettes with nicotine could potentially be at increased risk of SARS-CoV-2 infection, associated cytokine storm, and acute respiratory distress syndrome. However, further research is required, particularly on e-cigarettes, to determine the biological mechanisms involved in perturbation of viral-entry genes and host-pathogen interactions and subsequent responses within the respiratory tract. This will improve our physiological understanding of the impact of smoking and vaping on COVID-19, informing public health advice and providing improved guidance for management of SARS-CoV-2 and other respiratory viruses.


Subject(s)
COVID-19 , Electronic Nicotine Delivery Systems , SARS-CoV-2 , Vaping , Humans , Vaping/adverse effects , COVID-19/genetics , Nicotine , Severity of Illness Index , Disease Susceptibility , Smoking/adverse effects
2.
Semin Immunopathol ; 46(1-2): 4, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990375

ABSTRACT

In the galectin family, a group of lectins is united by their evolutionarily conserved carbohydrate recognition domains. These polypeptides play a role in various cellular processes and are implicated in disease mechanisms such as cancer, fibrosis, infection, and inflammation. Following synthesis in the cytosol, manifold interactions of galectins have been described both extracellularly and intracellularly. Extracellular galectins frequently engage with glycoproteins or glycolipids in a carbohydrate-dependent manner. Intracellularly, galectins bind to non-glycosylated proteins situated in distinct cellular compartments, each with multiple cellular functions. This diversity complicates attempts to form a comprehensive understanding of the role of galectin molecules within the cell. This review enumerates intracellular galectin interaction partners and outlines their involvement in cellular processes. The intricate connections between galectin functions and pathomechanisms are illustrated through discussions of intracellular galectin assemblies in immune and cancer cells. This underscores the imperative need to fully comprehend the interplay of galectins with the cellular machinery and to devise therapeutic strategies aimed at counteracting the establishment of galectin-based disease mechanisms.


Subject(s)
Galectins , Neoplasms , Humans , Galectins/metabolism , Animals , Neoplasms/metabolism , Neoplasms/etiology , Neoplasms/pathology , Protein Binding , Disease Susceptibility , Inflammation/metabolism , Intracellular Space/metabolism
3.
Semin Immunopathol ; 46(1-2): 1, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990389

ABSTRACT

Activation of the maternal immune system during gestation has been associated with an increased risk for neurodevelopmental disorders in the offspring, particularly schizophrenia and autism spectrum disorder. Microglia, the tissue-resident macrophages of the central nervous system, are implicated as potential mediators of this increased risk. Early in development, microglia start populating the embryonic central nervous system and in addition to their traditional role as immune responders under homeostatic conditions, microglia are also intricately involved in various early neurodevelopmental processes. The timing of immune activation may interfere with microglia functioning during early neurodevelopment, potentially leading to long-term consequences in postnatal life. In this review we will discuss the involvement of microglia in brain development during the prenatal and early postnatal stages of life, while also examining the effects of maternal immune activation on microglia and neurodevelopmental processes. Additionally, we discuss recent single cell RNA-sequencing studies focusing on microglia during prenatal development, and hypothesize how early life microglial priming, potentially through epigenetic reprogramming, may be related to neurodevelopmental disorders.


Subject(s)
Microglia , Neurodevelopmental Disorders , Prenatal Exposure Delayed Effects , Microglia/immunology , Microglia/metabolism , Humans , Pregnancy , Animals , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/immunology , Prenatal Exposure Delayed Effects/immunology , Female , Brain/immunology , Brain/metabolism , Brain/embryology , Epigenesis, Genetic , Disease Susceptibility
4.
Vet Microbiol ; 295: 110154, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959808

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is one of the costliest diseases to pork producers worldwide. We tested samples from the pregnant gilt model (PGM) to better understand the fetal response to in-utero PRRS virus (PRRSV) infection. Our goal was to identify critical tissues and genes associated with fetal resilience or susceptibility. Pregnant gilts (N=22) were infected with PRRSV on day 86 of gestation. At 21 days post maternal infection, the gilts and fetuses were euthanized, and fetal tissues collected. Fetuses were characterized for PRRS viral load in fetal serum and thymus, and preservation status (viable or meconium stained: VIA or MEC). Fetuses (N=10 per group) were compared: uninfected (UNIF; <1 log/µL PRRSV RNA), resilient (HV_VIA, >5 log virus/µL but viable), and susceptible (HV_MEC, >5 log virus/µL with MEC). Gene expression in fetal heart, kidney, and liver was investigated using NanoString transcriptomics. Gene categories investigated were hypothesized to be involved in fetal response to PRRSV infection: renin- angiotensin-aldosterone, inflammatory, transporter and metabolic systems. Following PRRSV infection, CCL5 increased expression in heart and kidney, and ACE2 decreased expression in kidney, each associated with fetal PRRS susceptibility. Liver revealed the most significant differential gene expression: CXCL10 decreased and IL10 increased indicative of immune suppression. Increased liver gene expression indicated potential associations with fetal PRRS susceptibility on several systems including blood pressure regulation (AGTR1), energy metabolism (SLC16A1 and SLC16A7), tissue specific responses (KL) and growth modulation (TGFB1). Overall, analyses of non-lymphoid tissues provided clues to mechanisms of fetal compromise following maternal PRRSV infection.


Subject(s)
Disease Resistance , Fetus , Porcine Reproductive and Respiratory Syndrome , Transcriptome , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Disease Resistance/genetics , Disease Resistance/immunology , Pregnancy , Animals , Swine , Female , Fetus/immunology , Fetus/virology , Gene Expression Regulation/immunology , Myocardium/immunology , Liver/immunology , Disease Susceptibility/immunology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/veterinary , Kidney/immunology
5.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000086

ABSTRACT

Currently, pharmacotherapy provides successful seizure control in around 70% of patients with epilepsy; however, around 30% of cases are still resistant to available treatment. Therefore, effective anti-epileptic therapy still remains a challenge. In our study, we utilized two mouse lines selected for low (LA) and high (HA) endogenous opioid system activity to investigate the relationship between down- or upregulation of the opioid system and susceptibility to seizures. Pentylenetetrazole (PTZ) is a compound commonly used for kindling of generalized tonic-clonic convulsions in animal models. Our experiments revealed that in the LA mice, PTZ produced seizures of greater intensity and shorter latency than in HA mice. This observation suggests that proper opioid system tone is crucial for preventing the onset of generalized tonic-clonic seizures. Moreover, a combination of an opioid receptor antagonist-naloxone-and a GABA receptor agonist-diazepam (DZP)-facilitates a significant DZP-sparing effect. This is particularly important for the pharmacotherapy of neurological patients, since benzodiazepines display high addiction risk. In conclusion, our study shows a meaningful, protective role of the endogenous opioid system in the prevention of epileptic seizures and that disturbances in that balance may facilitate seizure occurrence.


Subject(s)
Pentylenetetrazole , Seizures , Animals , Pentylenetetrazole/toxicity , Mice , Seizures/metabolism , Seizures/drug therapy , Seizures/chemically induced , Male , Naloxone/pharmacology , Disease Models, Animal , Diazepam/pharmacology , Disease Susceptibility , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Narcotic Antagonists/pharmacology
6.
Mol Med ; 30(1): 103, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030488

ABSTRACT

Myeloid-derived growth factor (MYDGF) is a novel secreted protein with potent antiapoptotic and tissue-repairing properties that is present in nearly 140 human tissues and cell lines, with the highest abundance in the oral epithelium and skin. Initially, MYDGF was found in bone marrow-derived monocytes and macrophages for cardioprotection and repair after myocardial infarction. Subsequent studies have shown that MYDGF plays an important role in other cardiovascular diseases (e.g., atherosclerosis and heart failure), metabolic disorders, renal disease, autoimmune/inflammatory disorders, and cancers. Although the underlying mechanisms have not been fully explored, the role of MYDGF in health and disease may involve cell apoptosis and proliferation, tissue repair and regeneration, anti-inflammation, and glycolipid metabolism regulation. In this review, we summarize the current progress in understanding the role of MYDGF in health and disease, focusing on its structure, function and mechanisms. The graphical abstract shows the current role of MYDGF in different organs and diseases (Fig. 1).


Subject(s)
Cardiovascular Diseases , Humans , Animals , Cardiovascular Diseases/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Apoptosis , Disease Susceptibility
7.
Am J Reprod Immunol ; 92(1): e13905, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39033501

ABSTRACT

PROBLEM: The vaginal microbiome has a substantial role in the occurrence of preterm birth (PTB), which contributes substantially to neonatal mortality worldwide. However, current bioinformatics approaches mostly concentrate on the taxonomic classification and functional profiling of the microbiome, limiting their abilities to elucidate the complex factors that contribute to PTB. METHOD OF STUDY: A total of 3757 vaginal microbiome 16S rRNA samples were obtained from five publicly available datasets. The samples were divided into two categories based on pregnancy outcome: preterm birth (PTB) (N = 966) and term birth (N = 2791). Additionally, the samples were further categorized based on the participants' race and trimester. The 16S rRNA reads were subjected to taxonomic classification and functional profiling using the Parallel-META 3 software in Ubuntu environment. The obtained abundances were analyzed using an integrated systems biology and machine learning approach to determine the key microbes, pathways, and genes that contribute to PTB. The resulting features were further subjected to statistical analysis to identify the top nine features with the greatest effect sizes. RESULTS: We identified nine significant features, namely Shuttleworthia, Megasphaera, Sneathia, proximal tubule bicarbonate reclamation pathway, systemic lupus erythematosus pathway, transcription machinery pathway, lepA gene, pepX gene, and rpoD gene. Their abundance variations were observed through the trimesters. CONCLUSIONS: Vaginal infections caused by Shuttleworthia, Megasphaera, and Sneathia and altered small metabolite biosynthesis pathways such as lipopolysaccharide folate and retinal may increase the susceptibility to PTB. The identified organisms, genes, pathways, and their networks may be specifically targeted for the treatment of bacterial infections that increase PTB risk.


Subject(s)
Machine Learning , Microbiota , Premature Birth , RNA, Ribosomal, 16S , Systems Biology , Vagina , Humans , Female , Vagina/microbiology , Premature Birth/microbiology , Microbiota/genetics , Pregnancy , RNA, Ribosomal, 16S/genetics , Biomarkers , Disease Susceptibility , Infant, Newborn
8.
Emerg Infect Dis ; 30(8): 1651-1659, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043428

ABSTRACT

White-tailed deer are susceptible to scrapie (WTD scrapie) after oronasal inoculation with the classical scrapie agent from sheep. Deer affected by WTD scrapie are difficult to differentiate from deer infected with chronic wasting disease (CWD). To assess the transmissibility of the WTD scrapie agent and tissue phenotypes when further passaged in white-tailed deer, we oronasally inoculated wild-type white-tailed deer with WTD scrapie agent. We found that WTD scrapie and CWD agents were generally similar, although some differences were noted. The greatest differences were seen in bioassays of cervidized mice that exhibited significantly longer survival periods when inoculated with WTD scrapie agent than those inoculated with CWD agent. Our findings establish that white-tailed deer are susceptible to WTD scrapie and that the presence of WTD scrapie agent in the lymphoreticular system suggests the handling of suspected cases should be consistent with current CWD guidelines because environmental shedding may occur.


Subject(s)
Deer , Scrapie , Wasting Disease, Chronic , Animals , Wasting Disease, Chronic/transmission , Scrapie/transmission , Mice , Sheep , Disease Susceptibility
9.
Elife ; 132024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012339

ABSTRACT

Background: Adverse effects of proton pump inhibitors (PPIs) have raised wide concerns. The association of PPIs with influenza is unexplored, while that with pneumonia or COVID-19 remains controversial. Our study aims to evaluate whether PPI use increases the risks of these respiratory infections. Methods: The current study included 160,923 eligible participants at baseline who completed questionnaires on medication use, which included PPI or histamine-2 receptor antagonist (H2RA), from the UK Biobank. Cox proportional hazards regression and propensity score-matching analyses were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs). Results: Comparisons with H2RA users were tested. PPI use was associated with increased risks of developing influenza (HR 1.32, 95% CI 1.12-1.56) and pneumonia (hazard ratio [HR] 1.42, 95% confidence interval [CI] 1.26-1.59). In contrast, the risk of COVID-19 infection was not significant with regular PPI use (HR 1.08, 95% CI 0.99-1.17), while the risks of severe COVID-19 (HR 1.19. 95% CI 1.11-1.27) and mortality (HR 1.37. 95% CI 1.29-1.46) were increased. However, when compared with H2RA users, PPI users were associated with a higher risk of influenza (HR 1.74, 95% CI 1.19-2.54), but the risks with pneumonia or COVID-19-related outcomes were not evident. Conclusions: PPI users are associated with increased risks of influenza, pneumonia, as well as COVID-19 severity and mortality compared to non-users, while the effects on pneumonia or COVID-19-related outcomes under PPI use were attenuated when compared to the use of H2RAs. Appropriate use of PPIs based on comprehensive evaluation is required. Funding: This work is supported by the National Natural Science Foundation of China (82171698, 82170561, 81300279, 81741067, 82100238), the Program for High-level Foreign Expert Introduction of China (G2022030047L), the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province (2021B1515020003), the Guangdong Basic and Applied Basic Research Foundation (2022A1515012081), the Foreign Distinguished Teacher Program of Guangdong Science and Technology Department (KD0120220129), the Climbing Program of Introduced Talents and High-level Hospital Construction Project of Guangdong Provincial People's Hospital (DFJH201923, DFJH201803, KJ012019099, KJ012021143, KY012021183), and in part by VA Clinical Merit and ASGE clinical research funds (FWL).


Subject(s)
COVID-19 , Influenza, Human , Pneumonia , Proton Pump Inhibitors , Humans , Proton Pump Inhibitors/adverse effects , Influenza, Human/drug therapy , Male , Female , COVID-19/epidemiology , Middle Aged , Aged , Cohort Studies , Pneumonia/epidemiology , Histamine H2 Antagonists/adverse effects , Histamine H2 Antagonists/therapeutic use , SARS-CoV-2 , Adult , United Kingdom/epidemiology , Disease Susceptibility , Proportional Hazards Models
10.
J Infect Dis ; 230(1): e43-e47, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052703

ABSTRACT

Dysbiosis of the vaginal microbiome poses a serious risk for sexual human immunodeficiency virus type 1 (HIV-1) transmission. Prevotella spp are abundant during vaginal dysbiosis and associated with enhanced HIV-1 susceptibility; however, underlying mechanisms remain unclear. Here, we investigated the direct effect of vaginal bacteria on HIV-1 susceptibility of vaginal CD4+ T cells. Notably, pre-exposure to Prevotella timonensis enhanced HIV-1 uptake by vaginal T cells, leading to increased viral fusion and enhanced virus production. Pre-exposure to antiretroviral inhibitors abolished P timonensis-enhanced infection. Our study shows that the vaginal microbiome directly affects mucosal CD4+ T-cell susceptibility, emphasizing importance of vaginal dysbiosis diagnosis and treatment.


Subject(s)
CD4-Positive T-Lymphocytes , Dysbiosis , HIV Infections , HIV-1 , Prevotella , Vagina , Humans , Female , Prevotella/isolation & purification , Dysbiosis/microbiology , Vagina/microbiology , Vagina/virology , Vagina/immunology , CD4-Positive T-Lymphocytes/immunology , HIV Infections/microbiology , HIV Infections/immunology , HIV Infections/virology , Disease Susceptibility , Microbiota , Virus Internalization
11.
J Infect Dis ; 230(1): 198-208, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052710

ABSTRACT

Staphylococcus aureus is a prevalent pathogen in pneumonia and harbors glycolipids, which may serve as molecular patterns in Mincle (macrophage-inducible C-type lectin)-dependent pathogen recognition. We examined the role of Mincle in lung defense against S aureus in wild-type (WT), Mincle knockout (KO), and Mincle transgenic (tg) mice. Two glycolipids, glucosyl-diacylglycerol (Glc-DAG) and diglucosyl-diacylglycerol (Glc2-DAG), were purified, of which only Glc-DAG triggered Mincle reporter cell activation and professional phagocyte responses. Proteomic profiling revealed that Glc2-DAG blocked Glc-DAG-induced cytokine responses, thereby acting as inhibitor of Glc-DAG/Mincle signaling. WT mice responded to S aureus with a similar lung pathology as Mincle KO mice, most likely due to Glc2-DAG-dependent inhibition of Glc-DAG/Mincle signaling. In contrast, ectopic Mincle expression caused severe lung pathology in S aureus-infected mice, characterized by bacterial outgrowth and fatal pneumonia. Collectively, Glc2-DAG inhibits Glc-DAG/Mincle-dependent responses in WT mice, whereas sustained Mincle expression overrides Glc2-DAG-mediated inhibitory effects, conferring increased host susceptibility to S aureus.


Subject(s)
Lectins, C-Type , Membrane Proteins , Mice, Knockout , Pneumonia, Staphylococcal , Staphylococcus aureus , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Pneumonia, Staphylococcal/microbiology , Pneumonia, Staphylococcal/immunology , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , Lung/microbiology , Lung/pathology , Mice, Transgenic , Mice, Inbred C57BL , Signal Transduction , Disease Susceptibility , Cytokines/metabolism
12.
Sci Adv ; 10(30): eadi7438, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39047095

ABSTRACT

Dehydration and malnutrition are common and often underdiagnosed in hospital settings. Multidrug-resistant bacterial infections result in more than 35,000 deaths a year in nosocomial patients. The effect of temporal dietary and water restriction (DWR) on susceptibility to multidrug-resistant pathogens is unknown. We report that DWR markedly increased susceptibility to systemic infection by ESKAPE pathogens. Using a murine bloodstream model of methicillin-resistant Staphylococcus aureus infection, we show that DWR leads to significantly increased mortality and morbidity. DWR causes increased bacterial burden, severe pathology, and increased numbers of phagocytes in the kidney. DWR appears to alter the functionality of these phagocytes and is therefore unable to control infection. Mechanistically, we show that DWR impairs the ability of macrophages to phagocytose multiple bacterial pathogens and efferocytose apoptotic neutrophils. Together, this work highlights the crucial impact that diet and hydration play in protecting against infection.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Phagocytosis , Staphylococcal Infections , Animals , Mice , Staphylococcal Infections/microbiology , Phagocytosis/drug effects , Disease Susceptibility , Macrophages/metabolism , Macrophages/immunology , Disease Models, Animal , Neutrophils/immunology , Neutrophils/metabolism , Humans , Water , Diet , Mice, Inbred C57BL
13.
Sci Total Environ ; 946: 174298, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38944299

ABSTRACT

Microplastics (MPs) are particles with sizes of ≤5 mm formed when plastic materials break down. These contaminants are often found in marine environments, making it easy for sea turtles to ingest them and for their microbiome to be exposed. MPs can disrupt microbiome balance, leading to dysbiosis and making organisms more susceptible to diseases. Owing to the significance of these processes, it is crucial to dedicate research to studying the metabolic and genetic analysis of the gut microbiome in sea turtles. The objective of this study was to describe the effects of exposure to MPs on the gut microbiome of sea turtles, based on current knowledge. This review also aimed to explore the potential link between MP exposure and disease susceptibility in these animals. We show that the metabolites produced by the gut microbiome, such as short-chain fatty acids (SCFAs), polyamines, and polysaccharide A, can regulate the expression of host genes. Regulation occurs through various mechanisms, including histone acetylation, DNA methylation, and the modulation of cytokine gene expression. These processes are essential for preserving the integrity of the gut mucosa and enhancing the functionality of immune cells. Exposure to MPs disrupts the gut microbiome and alters gene expression, leading to immune system disturbances in sea turtles. This vulnerability makes turtles more susceptible to opportunistic microorganisms such as chelonid alphaherpesvirus 5 (ChAHV5), which is linked to the development of fibropapillomatosis (FP). Additionally, targeted dietary interventions or the use of live microorganisms such as probiotics can help restore microbial biodiversity and recover lost metabolic pathways. The goal of these interventions is to restore the functionality of the immune system in sea turtles undergoing rehabilitation at specialized centers. The gut microbiome plays a crucial role in sea turtle health, sparking discussions and investigations that can potentially lead to promising treatments for these animals.


Subject(s)
Gastrointestinal Microbiome , Microplastics , Turtles , Water Pollutants, Chemical , Animals , Turtles/microbiology , Gastrointestinal Microbiome/drug effects , Water Pollutants, Chemical/toxicity , Disease Susceptibility
14.
Fish Shellfish Immunol ; 151: 109707, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885802

ABSTRACT

Infection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.


Subject(s)
Catfishes , Fish Diseases , Vibrio Infections , Vibrio mimicus , Animals , Catfishes/immunology , Catfishes/genetics , Fish Diseases/immunology , Fish Diseases/microbiology , Vibrio Infections/veterinary , Vibrio Infections/immunology , Vibrio mimicus/immunology , Disease Susceptibility/veterinary , Disease Susceptibility/immunology , Epidermis/immunology , Epidermis/microbiology , Nutrients
15.
Math Biosci Eng ; 21(4): 5446-5455, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38872543

ABSTRACT

We study an extension of the stochastic SIS (Susceptible-Infectious-Susceptible) model in continuous time that accounts for variation amongst individuals. By examining its limiting behaviour as the population size grows we are able to exhibit conditions for the infection to become endemic.


Subject(s)
Communicable Diseases , Computer Simulation , Epidemics , Stochastic Processes , Humans , Epidemics/statistics & numerical data , Communicable Diseases/epidemiology , Disease Susceptibility/epidemiology , Population Density , Basic Reproduction Number/statistics & numerical data , Epidemiological Models , Algorithms , Models, Biological
16.
Gut Microbes ; 16(1): 2361490, 2024.
Article in English | MEDLINE | ID: mdl-38860456

ABSTRACT

The role of gut microbiota in host defense against nontuberculous mycobacterial lung disease (NTM-LD) was poorly understood. Here, we showed significant gut microbiota dysbiosis in patients with NTM-LD. Reduced abundance of Prevotella copri was significantly associated with NTM-LD and its disease severity. Compromised TLR2 activation activity in feces and plasma in the NTM-LD patients was highlighted. In the antibiotics-treated mice as a study model, gut microbiota dysbiosis with reduction of TLR2 activation activity in feces, sera, and lung tissue occurred. Transcriptomic analysis demonstrated immunocompromised in lung which were closely associated with increased NTM-LD susceptibility. Oral administration of P. copri or its capsular polysaccharides enhanced TLR2 signaling, restored immune response, and ameliorated NTM-LD susceptibility. Our data highlighted the association of gut microbiota dysbiosis, systematically compromised immunity and NTM-LD development. TLR2 activation by P. copri or its capsular polysaccharides might help prevent NTM-LD.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Mycobacterium Infections, Nontuberculous , Toll-Like Receptor 2 , Dysbiosis/microbiology , Animals , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Humans , Mice , Male , Female , Mycobacterium Infections, Nontuberculous/microbiology , Middle Aged , Feces/microbiology , Aged , Prevotella , Lung Diseases/microbiology , Nontuberculous Mycobacteria , Disease Susceptibility , Mice, Inbred C57BL , Lung/microbiology
17.
Article in English | MEDLINE | ID: mdl-38928968

ABSTRACT

The effects of exposure to airborne particulate matter with a size of 10 µm or less (PM10) on C57BL/6 mouse corneas, their response to Pseudomonas aeruginosa (PA) infection, and the protective effects of SKQ1 were determined. C57BL/6 mouse corneas receiving PBS or SKQ1 were exposed to control (air) or PM10 for 2 weeks, infected, and the disease was documented by clinical score, PMN quantitation, bacterial plate count, RT-PCR and Western blot. PBS-treated, PM10-exposed corneas did not differ at 1 day postinfection (dpi), but exhibited earlier (3 dpi) corneal thinning compared to controls. By 3 dpi, PM10 significantly increased corneal mRNA levels of several pro-inflammatory cytokines, but decreased IL-10, NQO1, GR1, GPX4, and Nrf2 over control. SKQ1 reversed these effects and Western blot selectively confirmed the RT-PCR results. PM10 resulted in higher viable bacterial plate counts at 1 and 3 dpi, but SKQ1 reduced them at 3 dpi. PM10 significantly increased MPO in the cornea at 3 dpi and was reduced by SKQ1. SKQ1, used as an adjunctive treatment to moxifloxacin, was not significantly different from moxifloxacin alone. Exposure to PM10 increased the susceptibility of C57BL/6 to PA infection; SKQ1 significantly reversed these effects, but was not effective as an adjunctive treatment.


Subject(s)
Cornea , Mice, Inbred C57BL , Particulate Matter , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Particulate Matter/toxicity , Pseudomonas aeruginosa/drug effects , Mice , Cornea/drug effects , Cornea/microbiology , Disease Susceptibility , Cytokines/metabolism , Female , Air Pollutants/toxicity
18.
Virus Res ; 346: 199399, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823688

ABSTRACT

Coronaviruses have caused three severe epidemics since the start of the 21st century: SARS, MERS and COVID-19. The severity of the ongoing COVID-19 pandemic and increasing likelihood of future coronavirus outbreaks motivates greater understanding of factors leading to severe coronavirus disease. We screened ten strains from the Collaborative Cross mouse genetic reference panel and identified strains CC006/TauUnc (CC006) and CC044/Unc (CC044) as coronavirus-susceptible and resistant, respectively, as indicated by variable weight loss and lung congestion scores four days post-infection. We generated a genetic mapping population of 755 CC006xCC044 F2 mice and exposed the mice to one of three genetically distinct mouse-adapted coronaviruses: clade 1a SARS-CoV MA15 (n=391), clade 1b SARS-CoV-2 MA10 (n=274), and clade 2 HKU3-CoV MA (n=90). Quantitative trait loci (QTL) mapping in SARS-CoV MA15- and SARS-CoV-2 MA10-infected F2 mice identified genetic loci associated with disease severity. Specifically, we identified seven loci associated with variation in outcome following infection with either virus, including one, HrS43, that is present in both groups. Three of these QTL, including HrS43, were also associated with HKU3-CoV MA outcome. HrS43 overlaps with a QTL previously reported by our lab that is associated with SARS-CoV MA15 outcome in CC011xCC074 F2 mice and is also syntenic with a human chromosomal region associated with severe COVID-19 outcomes in humans GWAS. The results reported here provide: (a) additional support for the involvement of this locus in SARS-CoV MA15 infection, (b) the first conclusive evidence that this locus is associated with susceptibility across the Sarbecovirus subgenus, and (c) demonstration of the relevance of mouse models in the study of coronavirus disease susceptibility in humans.


Subject(s)
COVID-19 , Disease Models, Animal , Quantitative Trait Loci , SARS-CoV-2 , Animals , Mice , SARS-CoV-2/genetics , COVID-19/virology , Disease Susceptibility , Humans , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Chromosome Mapping , Coronavirus Infections/virology , Female , Collaborative Cross Mice/genetics , Genetic Predisposition to Disease , Male
19.
EBioMedicine ; 105: 105198, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38889480

ABSTRACT

BACKGROUND: Disease susceptibility and progression of Mycobacterium avium complex pulmonary disease (MAC-PD) is associated with multiple factors, including low body mass index (BMI). However, the specific impact of low BMI on MAC-PD progression remains poorly understood. This study aims to examine the progression of MAC-PD in the context of low BMI, utilising a disease-resistant mouse model. METHODS: We employed a MAC infection-resistant female A/J mouse model to compare the progression of MAC-PD under two dietary conditions: one group was fed a standard protein diet, representing protein-energy unrestricted conditions, and the other was fed a low protein diet (LPD), representing protein-energy restriction. FINDINGS: Our results reveal that protein-energy restriction significantly exacerbates MAC-PD progression by disrupting lipid metabolism. Mice fed an LPD showed elevated fatty acid levels and related gene expressions in lung tissues, similar to findings of increased fatty acids in the serum of patients who exhibited the MAC-PD progression. These mice also exhibited increased CD36 expression and lipid accumulation in macrophages upon MAC infection. In vitro experiments emphasised the crucial role of CD36-mediated palmitic acid uptake in bacterial proliferation. Importantly, in vivo studies demonstrated that administering anti-CD36 antibody to LPD-fed A/J mice reduced macrophage lipid accumulation and impeded bacterial growth, resulting in remarkable slowing disease progression. INTERPRETATION: Our findings indicate that the metabolic status of host immune cells critically influences MAC-PD progression. This study highlights the potential of adequate nutrient intake in preventing MAC-PD progression, suggesting that targeting CD36-mediated pathways might be a host-directed therapeutic strategy to managing MAC infection. FUNDING: This research was funded by the National Research Foundation of Korea, the Korea Research Institute of Bioscience and Biotechnology, and the Korea National Institute of Health.


Subject(s)
Disease Models, Animal , Disease Progression , Lipid Metabolism , Mycobacterium avium-intracellulare Infection , Animals , Female , Mice , Mycobacterium avium-intracellulare Infection/microbiology , Mycobacterium avium-intracellulare Infection/metabolism , CD36 Antigens/metabolism , CD36 Antigens/genetics , Macrophages/metabolism , Humans , Mycobacterium avium Complex , Lung/metabolism , Lung/microbiology , Lung/pathology , Fatty Acids/metabolism , Mycobacterium avium , Disease Susceptibility
SELECTION OF CITATIONS
SEARCH DETAIL
...