Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.394
Filter
1.
J Math Biol ; 89(1): 1, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709376

ABSTRACT

In this paper, we introduce the notion of practically susceptible population, which is a fraction of the biologically susceptible population. Assuming that the fraction depends on the severity of the epidemic and the public's level of precaution (as a response of the public to the epidemic), we propose a general framework model with the response level evolving with the epidemic. We firstly verify the well-posedness and confirm the disease's eventual vanishing for the framework model under the assumption that the basic reproduction number R 0 < 1 . For R 0 > 1 , we study how the behavioural response evolves with epidemics and how such an evolution impacts the disease dynamics. More specifically, when the precaution level is taken to be the instantaneous best response function in literature, we show that the endemic dynamic is convergence to the endemic equilibrium; while when the precaution level is the delayed best response, the endemic dynamic can be either convergence to the endemic equilibrium, or convergence to a positive periodic solution. Our derivation offers a justification/explanation for the best response used in some literature. By replacing "adopting the best response" with "adapting toward the best response", we also explore the adaptive long-term dynamics.


Subject(s)
Basic Reproduction Number , Communicable Diseases , Epidemics , Mathematical Concepts , Models, Biological , Humans , Basic Reproduction Number/statistics & numerical data , Epidemics/statistics & numerical data , Epidemics/prevention & control , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Disease Susceptibility/epidemiology , Epidemiological Models , Biological Evolution , Computer Simulation
2.
J Biol Dyn ; 18(1): 2352359, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38717930

ABSTRACT

This article proposes a dispersal strategy for infected individuals in a spatial susceptible-infected-susceptible (SIS) epidemic model. The presence of spatial heterogeneity and the movement of individuals play crucial roles in determining the persistence and eradication of infectious diseases. To capture these dynamics, we introduce a moving strategy called risk-induced dispersal (RID) for infected individuals in a continuous-time patch model of the SIS epidemic. First, we establish a continuous-time n-patch model and verify that the RID strategy is an effective approach for attaining a disease-free state. This is substantiated through simulations conducted on 7-patch models and analytical results derived from 2-patch models. Second, we extend our analysis by adapting the patch model into a diffusive epidemic model. This extension allows us to explore further the impact of the RID movement strategy on disease transmission and control. We validate our results through simulations, which provide the effects of the RID dispersal strategy.


Subject(s)
Communicable Diseases , Epidemics , Models, Biological , Humans , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Disease Susceptibility/epidemiology , Computer Simulation , Epidemiological Models , Population Dynamics
3.
Function (Oxf) ; 5(3): zqae009, 2024.
Article in English | MEDLINE | ID: mdl-38706961

ABSTRACT

Global prevalence of hypertension is on the rise, burdening healthcare, especially in developing countries where infectious diseases, such as malaria, are also rampant. Whether hypertension could predispose or increase susceptibility to malaria, however, has not been extensively explored. Previously, we reported that hypertension is associated with abnormal red blood cell (RBC) physiology and anemia. Since RBC are target host cells for malarial parasite, Plasmodium, we hypothesized that hypertensive patients with abnormal RBC physiology are at greater risk or susceptibility to Plasmodium infection. To test this hypothesis, normotensive (BPN/3J) and hypertensive (BPH/2J) mice were characterized for their RBC physiology and subsequently infected with Plasmodium yoelii (P. yoelii), a murine-specific non-lethal strain. When compared to BPN mice, BPH mice displayed microcytic anemia with RBC highly resistant to osmotic hemolysis. Further, BPH RBC exhibited greater membrane rigidity and an altered lipid composition, as evidenced by higher levels of phospholipids and saturated fatty acid, such as stearate (C18:0), along with lower levels of polyunsaturated fatty acid like arachidonate (C20:4). Moreover, BPH mice had significantly greater circulating Ter119+ CD71+ reticulocytes, or immature RBC, prone to P. yoelii infection. Upon infection with P. yoelii, BPH mice experienced significant body weight loss accompanied by sustained parasitemia, indices of anemia, and substantial increase in systemic pro-inflammatory mediators, compared to BPN mice, indicating that BPH mice were incompetent to clear P. yoelii infection. Collectively, these data demonstrate that aberrant RBC physiology observed in hypertensive BPH mice contributes to an increased susceptibility to P. yoelii infection and malaria-associated pathology.


Subject(s)
Erythrocytes , Hypertension , Malaria , Plasmodium yoelii , Animals , Malaria/immunology , Malaria/parasitology , Malaria/complications , Malaria/blood , Malaria/physiopathology , Mice , Erythrocytes/parasitology , Erythrocytes/metabolism , Disease Susceptibility , Male , Anemia/parasitology , Disease Models, Animal , Hemolysis
4.
Behav Brain Res ; 468: 115028, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38723677

ABSTRACT

Early life stress (ELS) increases the risk of depression later in life. Programmed cell death factor 4 (PDCD4), an apoptosis-related molecule, extensively participates in tumorigenesis and inflammatory diseases. However, its involvement in a person's susceptibility to ELS-related depression is unknown. To examine the effects and underlying mechanisms of PDCD4 on ELS vulnerability, we used a "two-hit" stress mouse model: an intraperitoneal injection of lipopolysaccharide (LPS) into neonatal mice was performed on postnatal days 7-9 (P7-P9) and inescapable foot shock (IFS) administration in adolescent was used as a later-life challenge. Our study shows that compared with mice that were only exposed to the LPS or IFS, the "two-hit" stress mice developed more severe depression/anxiety-like behaviors and social disability. We detected the levels of PDCD4 in the hippocampus of adolescent mice and found that they were significantly increased in "two-hit" stress mice. The results of immunohistochemical staining and Sholl analysis showed that the number of microglia in the hippocampus of "two-hit" stress mice significantly increased, with morphological changes, shortened branches, and decreased numbers. However, knocking down PDCD4 can prevent the number and morphological changes of microglia induced by ELS. In addition, we confirmed through the Golgi staining and immunohistochemical staining results that knocking down PDCD4 can ameliorate ELS-induced synaptic plasticity damage. Mechanically, the knockdown of PDCD4 exerts neuroprotective effects, possibly via the mediation of BDNF/AKT/CREB signaling. Combined, these results suggest that PDCD4 may play an important role in the ELS-induced susceptibility to depression and, thus, may become a therapeutic target for depressive disorders.


Subject(s)
Apoptosis Regulatory Proteins , Depression , Hippocampus , Mice, Inbred C57BL , Neuronal Plasticity , RNA-Binding Proteins , Stress, Psychological , Animals , Hippocampus/metabolism , Neuronal Plasticity/physiology , Stress, Psychological/metabolism , Mice , Depression/metabolism , Depression/physiopathology , Apoptosis Regulatory Proteins/metabolism , RNA-Binding Proteins/metabolism , Male , Disease Models, Animal , Microglia/metabolism , Lipopolysaccharides/pharmacology , Behavior, Animal/physiology , Brain-Derived Neurotrophic Factor/metabolism , Disease Susceptibility , Animals, Newborn
5.
Mol Cancer ; 23(1): 106, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760832

ABSTRACT

Aging and cancer exhibit apparent links that we will examine in this review. The null hypothesis that aging and cancer coincide because both are driven by time, irrespective of the precise causes, can be confronted with the idea that aging and cancer share common mechanistic grounds that are referred to as 'hallmarks'. Indeed, several hallmarks of aging also contribute to carcinogenesis and tumor progression, but some of the molecular and cellular characteristics of aging may also reduce the probability of developing lethal cancer, perhaps explaining why very old age (> 90 years) is accompanied by a reduced incidence of neoplastic diseases. We will also discuss the possibility that the aging process itself causes cancer, meaning that the time-dependent degradation of cellular and supracellular functions that accompanies aging produces cancer as a byproduct or 'age-associated disease'. Conversely, cancer and its treatment may erode health and drive the aging process, as this has dramatically been documented for cancer survivors diagnosed during childhood, adolescence, and young adulthood. We conclude that aging and cancer are connected by common superior causes including endogenous and lifestyle factors, as well as by a bidirectional crosstalk, that together render old age not only a risk factor of cancer but also an important parameter that must be considered for therapeutic decisions.


Subject(s)
Aging , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/etiology , Animals , Disease Susceptibility , Risk Factors
6.
Mol Genet Genomics ; 299(1): 60, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801463

ABSTRACT

Type 2 diabetes (DM2) is an increasingly prevalent disease that challenges tuberculosis (TB) control strategies worldwide. It is significant that DM2 patients with poor glycemic control (PDM2) are prone to developing tuberculosis. Furthermore, elucidating the molecular mechanisms that govern this susceptibility is imperative to address this problem. Therefore, a pilot transcriptomic study was performed. Human blood samples from healthy controls (CTRL, HbA1c < 6.5%), tuberculosis (TB), comorbidity TB-DM2, DM2 (HbA1c 6.5-8.9%), and PDM2 (HbA1c > 10%) groups (n = 4 each) were analyzed by differential expression using microarrays. We use a network strategy to identify potential molecular patterns linking the differentially expressed genes (DEGs) specific for TB-DM2 and PDM2 (p-value < 0.05, fold change > 2). We define OSM, PRKCD, and SOCS3 as key regulatory genes (KRGs) that modulate the immune system and related pathways. RT-qPCR assays confirmed upregulation of OSM, PRKCD, and SOCS3 genes (p < 0.05) in TB-DM2 patients (n = 18) compared to CTRL, DM2, PDM2, or TB groups (n = 17, 19, 15, and 9, respectively). Furthermore, OSM, PRKCD, and SOCS3 were associated with PDM2 susceptibility pathways toward TB-DM2 and formed a putative protein-protein interaction confirmed in STRING. Our results reveal potential molecular patterns where OSM, PRKCD, and SOCS3 are KRGs underlying the compromised immune response and susceptibility of patients with PDM2 to develop tuberculosis. Therefore, this work paved the way for fundamental research of new molecular targets in TB-DM2. Addressing their cellular implications, and the impact on the diagnosis, treatment, and clinical management of TB-DM2 could help improve the strategy to end tuberculosis for this vulnerable population.


Subject(s)
Diabetes Mellitus, Type 2 , Suppressor of Cytokine Signaling 3 Protein , Tuberculosis , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Pilot Projects , Tuberculosis/genetics , Tuberculosis/blood , Male , Female , Middle Aged , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Glycemic Control , Gene Expression Profiling , Aged , Adult , Gene Regulatory Networks , Case-Control Studies , Transcriptome/genetics , Disease Susceptibility
7.
Sleep Med Clin ; 19(2): 219-228, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692747

ABSTRACT

Obstructive sleep apnea is a prevalent sleep disorder characterized by recurrent episodes of partial or complete upper airway collapse during sleep, leading to disrupted breathing patterns and intermittent hypoxia. OSA results in systemic inflammation but also directly affects the upper and lower airways leading to upregulation of inflammatory pathways and alterations of the local microbiome. These changes result in increased susceptibility to respiratory infections such as influenza, COVID-19, and bacterial pneumonia. This relationship is more complex and bidirectional in individuals with chronic lung disease such as chronic obstructive lung disease, interstitial lung disease and bronchiectasis.


Subject(s)
Respiratory Tract Infections , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/immunology , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/complications , Respiratory Tract Infections/immunology , Respiratory Tract Infections/complications , Disease Susceptibility/immunology , COVID-19/immunology , COVID-19/complications
8.
Mol Syst Biol ; 20(6): 596-625, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745106

ABSTRACT

The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.


Subject(s)
Akkermansia , Citrobacter rodentium , Gastrointestinal Microbiome , Animals , Mice , Citrobacter rodentium/pathogenicity , Humans , Disease Susceptibility , Dietary Fiber/metabolism , Germ-Free Life , Diet , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Verrucomicrobia/genetics , Enterobacteriaceae Infections/microbiology , Colon/microbiology , Mice, Inbred C57BL
9.
Immunol Lett ; 267: 106863, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705482

ABSTRACT

Diabetes mellitus (DM) is a chronic systemic disease characterized by a multifactorial nature, which may lead to several macro and microvascular complications. Diabetic retinopathy (DR) is one of the most severe microvascular complications of DM, which can result in permanent blindness. The mechanisms involved in the pathogenesis of DR are multiple and still poorly understood. Factors such as dysregulation of vascular regeneration, oxidative and hyperosmolar stress in addition to inflammatory processes have been associated with the pathogenesis of DR. Furthermore, compelling evidence shows that components of the immune system, including the complement system, play a relevant role in the development of the disease. Studies suggest that high concentrations of mannose-binding lectin (MBL), an essential component of the complement lectin pathway, may contribute to the development of DR in patients with DM. This review provides an update on the possible role of the complement system, specifically the lectin pathway, in the pathogenesis of DR and discusses the potential of MBL as a non-invasive biomarker for both, the presence and severity of DR, in addition to its potential as a therapeutic target for intervention strategies.


Subject(s)
Biomarkers , Diabetic Retinopathy , Mannose-Binding Lectin , Humans , Diabetic Retinopathy/immunology , Diabetic Retinopathy/etiology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/diagnosis , Mannose-Binding Lectin/metabolism , Animals , Complement Pathway, Mannose-Binding Lectin , Disease Susceptibility , Complement Activation/immunology
11.
Eur J Haematol ; 113(1): 4-15, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38698678

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a mature-type B cell malignancy correlated with significant changes and defects in both the innate and adaptive arms of the immune system, together with a high dependency on the tumor microenvironment. Overall, the tumor microenvironment (TME) in CLL provides a supportive niche for leukemic cells to grow and survive, and interactions between CLL cells and the TME can contribute to disease progression and treatment resistance. Therefore, the increasing knowledge of the complicated interaction between immune cells and tumor cells, which is responsible for immune evasion and cancer progression, has provided an opportunity for the development of new therapeutic approaches. In this review, we outline tumor microenvironment-driven contributions to the licensing of immune escape mechanisms in CLL patients.


Subject(s)
Cell Communication , Leukemia, Lymphocytic, Chronic, B-Cell , Tumor Escape , Tumor Microenvironment , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Tumor Microenvironment/immunology , Humans , Cell Communication/immunology , Animals , Disease Susceptibility
12.
PLoS One ; 19(4): e0301473, 2024.
Article in English | MEDLINE | ID: mdl-38630650

ABSTRACT

BACKGROUND: Emerging epidemiological evidence indicates nature exposure could be associated with greater health benefits among groups in lower versus higher socioeconomic positions. One possible mechanism underpinning this evidence is described by our framework: (susceptibility) adults in low socioeconomic positions face higher exposure to persistent psychosocial stressors in early life, inducing a pro-inflammatory phenotype as a lifelong susceptibility to stress; (differential susceptibility) susceptible adults are more sensitive to the health risks of adverse (stress-promoting) environments, but also to the health benefits of protective (stress-buffering) environments. OBJECTIVE: Experimental investigation of a pro-inflammatory phenotype as a mechanism facilitating greater stress recovery from nature exposure. METHODS: We determined differences in stress recovery (via heart rate variability) caused by exposure to a nature or office virtual reality environment (10 min) after an acute stressor among 64 healthy college-age males with varying levels of susceptibility (socioeconomic status, early life stress, and a pro-inflammatory state [inflammatory reactivity and glucocorticoid resistance to an in vitro bacterial challenge]). RESULTS: Findings for inflammatory reactivity and glucocorticoid resistance were modest but consistently trended towards better recovery in the nature condition. Differences in recovery were not observed for socioeconomic status or early life stress. DISCUSSION: Among healthy college-age males, we observed expected trends according to their differential susceptibility when assessed as inflammatory reactivity and glucocorticoid resistance, suggesting these biological correlates of susceptibility could be more proximal indicators than self-reported assessments of socioeconomic status and early life stress. If future research in more diverse populations aligns with these trends, this could support an alternative conceptualization of susceptibility as increased environmental sensitivity, reflecting heightened responses to adverse, but also protective environments. With this knowledge, future investigators could examine how individual differences in environmental sensitivity could provide an opportunity for those who are the most susceptible to experience the greatest health benefits from nature exposure.


Subject(s)
Glucocorticoids , Stress, Psychological , Male , Adult , Humans , Stress, Psychological/psychology , Environment , Disease Susceptibility , Social Class
13.
Sci Rep ; 14(1): 9699, 2024 04 27.
Article in English | MEDLINE | ID: mdl-38678053

ABSTRACT

Clinical depression is characterized by multiple concurrent symptoms, manifesting as a complex heterogeneous condition. Although some well-established classical behavioral assessments are widespread in rodent models, it remains uncertain whether rats also display stress-induced depression-related phenotypes in a multidimensional manner, i.e., simultaneous alterations in multiple behavioral tests. Here, we investigated multivariate patterns and profiles of depression-related behavioral traits in male Wistar rats subjected to inescapable footshocks (IS) or no-shocks (NS), followed by a comprehensive battery of behavioral tests and ethological characterization. We observed generalized stronger intra-test but weaker inter-test correlations. However, feature clustering of behavioral measures successfully delineated variables linked to resilience and susceptibility to stress. Accordingly, a noteworthy covariation pattern emerged, characterized by increased open field locomotion, reduced time in the elevated plus maze open arms, lower sucrose preference, and increased shuttle box escape failures that consistently differentiated IS from NS. Surprisingly there is little contribution from forced swim. In addition, individual clustering revealed a diversity of behavioral profiles, naturally separating NS and IS, including subpopulations entirely characterized by resilience or susceptibility. In conclusion, our study elucidates intricate relationships among classical depression-related behavioral measures, highlighting multidimensional individual variability. Our work emphasizes the importance of a multivariate framework for behavioral assessment in animal models to understand stress-related neuropsychiatric disorders.


Subject(s)
Behavior, Animal , Depression , Rats, Wistar , Stress, Psychological , Animals , Male , Rats , Resilience, Psychological , Disease Models, Animal , Disease Susceptibility
14.
Nature ; 629(8010): 154-164, 2024 May.
Article in English | MEDLINE | ID: mdl-38649488

ABSTRACT

Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.


Subject(s)
Aging , Muscle, Skeletal , Single-Cell Analysis , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Aging/genetics , Aging/pathology , Aging/physiology , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatin/genetics , Disease Susceptibility , Epigenesis, Genetic , Frailty/genetics , Frailty/pathology , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Sarcopenia/genetics , Sarcopenia/pathology , Transcriptome
15.
PLoS One ; 19(4): e0299813, 2024.
Article in English | MEDLINE | ID: mdl-38593169

ABSTRACT

Many countries have experienced multiple waves of infection during the COVID-19 pandemic. We propose a novel but parsimonious extension of the SIR model, a CSIR model, that can endogenously generate waves. In the model, cautious individuals take appropriate prevention measures against the virus and are not exposed to infection risk. Incautious individuals do not take any measures and are susceptible to the risk of infection. Depending on the size of incautious and susceptible population, some cautious people lower their guard and become incautious-thus susceptible to the virus. When the virus spreads sufficiently, the population reaches "temporary" herd immunity and infection subsides thereafter. Yet, the inflow from the cautious to the susceptible eventually expands the susceptible population and leads to the next wave. We also show that the CSIR model is isomorphic to the SIR model with time-varying parameters.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/epidemiology , Disease Susceptibility/epidemiology , Immunity, Herd
16.
QJM ; 117(4): 241, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608182
17.
Pharmacol Biochem Behav ; 239: 173757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574898

ABSTRACT

Depression is a major chronic mental illness worldwide, characterized by anhedonia and pessimism. Exposed to the same stressful stimuli, some people behave normally, while others exhibit negative behaviors and psychology. The exact molecular mechanisms linking stress-induced depressive susceptibility and resilience remain unclear. Connexin 43 (Cx43) forms gap junction channels between the astrocytes, acting as a crucial role in the pathogenesis of depression. Cx43 dysfunction could lead to depressive behaviors, and depression down-regulates the expression of Cx43 in the prefrontal cortex (PFC). Besides, accumulating evidence indicates that inflammation is one of the most common pathological features of the central nervous system dysfunction. However, the roles of Cx43 and peripheral inflammation in stress-susceptible and stress-resilient individuals have rarely been investigated. Thus, animals were classified into the chronic unpredictable stress (CUS)-susceptible group and the CUS-resilient group based on the performance of behavioral tests following the CUS protocol in this study. The protein expression of Cx43 in the PFC, the Cx43 functional changes in the PFC, and the expression levels including interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, IL-2, IL-10, and IL-18 in the peripheral serum were detected. Here, we found that stress exposure triggered a significant reduction in Cx43 protein expression in the CUS-susceptible mice but not in the CUS-resilient mice accompanied by various Cx43 phosphorylation expression and the changes of inflammatory signals. Stress resilience is associated with Cx43 in the PFC and fluctuation in inflammatory signaling, showing that therapeutic targeting of these pathways might promote stress resilience.


Subject(s)
Connexin 43 , Inflammation , Prefrontal Cortex , Stress, Psychological , Animals , Prefrontal Cortex/metabolism , Connexin 43/metabolism , Mice , Stress, Psychological/metabolism , Male , Inflammation/metabolism , Resilience, Psychological , Mice, Inbred C57BL , Depression/metabolism , Cytokines/metabolism , Disease Susceptibility , Behavior, Animal
18.
Curr Treat Options Oncol ; 25(5): 659-678, 2024 May.
Article in English | MEDLINE | ID: mdl-38656685

ABSTRACT

OPINION STATEMENT: Diffuse large B-cell lymphoma (DLBCL) is a curable disease with variable outcomes due to underlying heterogeneous clinical and molecular features-features that are insufficiently characterized with our current tools. Due to these limitations, treatment largely remains a "one-size-fits-all" approach. Circulating tumor DNA (ctDNA) is a novel biomarker in cancers that is increasingly utilized for risk stratification and response assessment. ctDNA is readily detectable from the plasma of patients with DLBCL but has not yet been incorporated into clinical care to guide treatment. Here, we describe how ctDNA sequencing represents a promising technology in development to personalize the care of patients with DLBCL. We will review the different types of ctDNA assays being studied and the rapidly growing body of evidence supporting the utility of ctDNA in different treatment settings in DLBCL. Risk stratification by estimation of tumor burden and liquid genotyping, molecular response assessment during treatment, and monitoring for measurable residual disease (MRD) to identify therapy resistance and predict clinical relapse are all potential applications of ctDNA. It is time for clinical trials in DLBCL to utilize ctDNA as an integral biomarker for patient selection, response-adapted designs, and surrogate endpoints. As more ctDNA assays become commercially available for routine use, clinicians should consider liquid biopsy when treatment response is equivocal on imaging. Incorporating MRD may also guide decision-making if patients experience severe treatment toxicities. Though important barriers remain, we believe that ctDNA will soon be ready to transition from bench to bedside to individualize treatment for our patients with DLBCL.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Lymphoma, Large B-Cell, Diffuse , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/blood , Lymphoma, Large B-Cell, Diffuse/genetics , Humans , Circulating Tumor DNA/blood , Biomarkers, Tumor/blood , Liquid Biopsy/methods , Disease Management , Translational Research, Biomedical , Precision Medicine/methods , Prognosis , Clinical Decision-Making , Disease Susceptibility
19.
Curr Treat Options Oncol ; 25(5): 679-701, 2024 May.
Article in English | MEDLINE | ID: mdl-38676836

ABSTRACT

OPINION STATEMENT: Cardio-oncology is an emerging interdisciplinary field dedicated to the early detection and treatment of adverse cardiovascular events associated with anticancer treatment, and current clinical management of anticancer-treatment-related cardiovascular toxicity (CTR-CVT) remains limited by a lack of detailed phenotypic data. However, the promise of diagnosing CTR-CVT using deep phenotyping has emerged with the development of precision medicine, particularly the use of omics-based methodologies to discover sensitive biomarkers of the disease. In the future, combining information produced by a variety of omics methodologies could expand the clinical practice of cardio-oncology. In this review, we demonstrate how omics approaches can improve our comprehension of CTR-CVT deep phenotyping, discuss the positive and negative aspects of available omics approaches for CTR-CVT diagnosis, and outline how to integrate multiple sets of omics data into individualized monitoring and treatment. This will offer a reliable technical route for lowering cardiovascular morbidity and mortality in cancer patients and survivors.


Subject(s)
Cardiotoxicity , Cardiovascular Diseases , Genomics , Neoplasms , Precision Medicine , Humans , Precision Medicine/methods , Neoplasms/diagnosis , Neoplasms/complications , Neoplasms/therapy , Genomics/methods , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/etiology , Cardiovascular Diseases/therapy , Cardiotoxicity/etiology , Cardiotoxicity/diagnosis , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects , Biomarkers , Metabolomics/methods , Proteomics/methods , Medical Oncology/methods , Disease Management , Disease Susceptibility , Cardio-Oncology
20.
J Infect Public Health ; 17(5): 889-896, 2024 May.
Article in English | MEDLINE | ID: mdl-38564817

ABSTRACT

BACKGROUND: Households are considered ideal settings for studying the transmission dynamics of an infectious disease. METHODS: A prospective study was conducted, based on the World Health Organization FFX protocol from October 2020 to January,2021. Household contacts of laboratory-confirmed index cases were followed up for their symptomatic history, nasal swabs for RT-PCR,and blood samples for anti-SARS CoV-2 antibodies were collected at enrollment and days 7, 14 and 28. We estimated secondary attack rate (SAR), effective household case cluster size and determinants of secondary infection among susceptible household contacts using multivariable logistic regression. RESULTS: We enrolled 77 index cases and their 543 contacts. Out of these, 252 contacts were susceptible at the time of enrollment. There were 77 household clusters, out of which, transmission took place in 20 (25.9%) giving rise to 34 cases. The acquired secondary attack rate (SAR) was 14.0% (95% CI 9.0-18.0). The effective household case cluster size was 0.46 (95%CI 0.33,0.56). Reported symptoms of nausea and vomiting (aOR, 7.9; 95% CI, 1.4-45.5) and fatigue (aOR, 9.3; 95% CI, 3.8-22.7) were associated with SARS-CoV-2 transmission. CONCLUSIONS: We observed a low SARS-CoV-2 secondary attack rate in the backdrop of high seroprevalence and asymptomatic transmission among households in Karachi, Pakistan.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Prospective Studies , Incidence , Pakistan/epidemiology , Longitudinal Studies , Seroepidemiologic Studies , Disease Susceptibility
SELECTION OF CITATIONS
SEARCH DETAIL
...