Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.207
Filter
1.
Chemosphere ; 358: 142239, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705414

ABSTRACT

So far, about 130 disinfection by-products (DBPs) and several DBPs-groups have had their potential endocrine-disrupting effects tested on some endocrine endpoints. However, it is still not clear which specific DBPs, DBPs-groups/subgroups may be the most toxic substances or groups/subgroups for any given endocrine endpoint. In this study, we attempt to address this issue. First, a list of relevant DBPs was updated, and 1187 DBPs belonging to 4 main-groups (aliphatic, aromatic, alicyclic, heterocyclic) and 84 subgroups were described. Then, the high-priority endocrine endpoints, DBPs-groups/subgroups, and specific DBPs were determined from 18 endpoints, 4 main-groups, 84 subgroups, and 1187 specific DBPs by a virtual-screening method. The results demonstrate that most of DBPs could not disturb the endocrine endpoints in question because the proportion of active compounds associated with the endocrine endpoints ranged from 0 (human thyroid receptor beta) to 32% (human transthyretin (hTTR)). All the endpoints with a proportion of active compounds greater than 10% belonged to the thyroid system, highlighting that the potential disrupting effects of DBPs on the thyroid system should be given more attention. The aromatic and alicyclic DBPs may have higher priority than that of aliphatic and heterocyclic DBPs by considering the activity rate and potential for disrupting effects. There were 2 (halophenols and estrogen DBPs), 12, and 24 subgroups that belonged to high, moderate, and low priority classes, respectively. For individual DBPs, there were 23 (2%), 193 (16%), and 971 (82%) DBPs belonging to the high, moderate, and low priority groups, respectively. Lastly, the hTTR binding affinity of 4 DBPs was determined by an in vitro assay and all the tested DBPs exhibited dose-dependent binding potency with hTTR, which was consistent with the predicted result. Thus, more efforts should be performed to reveal the potential endocrine disruption of those high research-priority main-groups, subgroups, and individual DBPs.


Subject(s)
Disinfectants , Disinfection , Endocrine Disruptors , Water Pollutants, Chemical , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Humans , Disinfectants/analysis , Disinfectants/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
J Hazard Mater ; 472: 134523, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723485

ABSTRACT

Urban ecosystems are subjected to multiple anthropogenic stresses, which impact aquatic communities. Artificial light at night (ALAN) for instance can significantly alter the composition of algal communities as well as the photosynthetic cycles of autotrophic organisms, possibly leading to cellular oxidative stress. The combined effects of ALAN and chemical contamination could increase oxidative impacts in aquatic primary producers, although such combined effects remain insufficiently explored. To address this knowledge gap, a one-month experimental approach was implemented under controlled conditions to elucidate effects of ALAN and dodecylbenzyldimethylammonium chloride (DDBAC) on aquatic biofilms. DDBAC is a biocide commonly used in virucidal products, and is found in urban aquatic ecosystems. The bioaccumulation of DDBAC in biofilms exposed or not to ALAN was analyzed. The responses of taxonomic composition, photosynthetic activity, and fatty acid composition of biofilms were examined. The results indicate that ALAN negatively affects photosynthetic yield and chlorophyll production of biofilms. Additionally, exposure to DDBAC at environmental concentrations induces lipid peroxidation, with an increase of oxylipins. This experimental study provides first insights on the consequences of ALAN and DDBAC for aquatic ecosystems. It also opens avenues for the identification of new biomarkers that could be used to monitor urban pollution impacts in natural environments.


Subject(s)
Biofilms , Fresh Water , Oxidative Stress , Photosynthesis , Water Pollutants, Chemical , Biofilms/drug effects , Photosynthesis/drug effects , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Fresh Water/microbiology , Lipid Peroxidation/drug effects , Disinfectants/toxicity , Chlorophyll/metabolism , Fatty Acids/metabolism
3.
J Hazard Mater ; 472: 134569, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38743981

ABSTRACT

Recently, a new group of halopyridinol disinfection byproducts (DBPs) was reported in drinking water. The in vivo developmental and acute toxicity assays have shown that they were more toxic than a few commonly known aliphatic DBPs such as bromoform and iodoacetic acid. However, many pyridinol DBPs with the same main structures but different halogen substitutions were still unknown due to complicated water quality conditions and various disinfection methods applied in drinking water treatment plants. Studies on their transformation mechanisms in drinking water disinfection were quite limited. In this study, comprehensive detection and identification of halopyridinols were conducted, and five new halopyridinols were first reported, including 2-chloro-3-pyridinol, 2,6-dichloro-3-pyridinol, 2-bromo-5-chloro-3-pyridinol, 2,4,6-trichloro-3-pyridinol and 2,5,6-trichloro-3-pyridinol. Formation conditions and mechanisms of the halopyridinols were explored, and results showed that chlorination promoted their formation compared with chloramination. Halopyridinols were intermediate DBPs that could undergo further transformation/degradation with increasing contact time, disinfectant dose, bromide concentration, and pH. The in vitro cytotoxicity of the halopyridinols was evaluated using human hepatocellular carcinoma cells. Results showed that the cytotoxicity of 3,5,6-trichloro-2-pyridinol was the highest (EC50 = 474.3 µM), which was 13.0 and 1.6 times higher than that of 2-bromo-3-pyridinol (EC50 = 6214.5 µM) and tribromomethane (EC50 = 753.6 µM), respectively.


Subject(s)
Disinfectants , Disinfection , Drinking Water , Water Pollutants, Chemical , Water Purification , Drinking Water/chemistry , Humans , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Water Purification/methods , Disinfectants/toxicity , Disinfectants/chemistry , Halogenation , Pyridines/toxicity , Pyridines/chemistry , Cell Survival/drug effects
4.
Water Res ; 256: 121551, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38581981

ABSTRACT

Many antibiotic disinfection byproducts have been detected but their toxicity has not been evaluated adequately. In this report, the chlorination reaction kinetics of five common sulfamides (SAs), reaction intermediates and their toxicity were investigated. Chlorination of sulfapyridine (SPD), sulfamethazine (SMT), sulfathiazole (STZ), and sulfisoxazole (SIZ) followed the second-order kinetics, and were degraded completely within 10 min. A large number of reaction intermediates were deteced by LC-MS, among which a total of 16 intermediates were detected for the first time. Toxicity of the five SAs chlorination solutions was evaluated separately by examining their effects on the growth rate of S. salivarius K12, a commensal bacterium in the human digestive system. After 30 min chlorination, solutions of SMT, STZ and sulfadiazine (SDZ) each exhibited severe toxicity by inhibiting the bacteria growth completely, whereas the inhibition was only 50 % and 20  % by SIZ and SPD respectively. Based on the comparison between toxicity test results and mass spectra, three SA chlorination intermediates, m/z 187.2 (C10H10N4), m/z 287.2 (C9H7N3O4S2) and m/z 215 (C7H10N4O2S/C12H14N4) were proposed to be the primary toxicants in the chlorination products. Our study demonstrated the power of combined approach of chemical analysis and toxicity testing in identifying toxic disinfection byproducts, and highlighted the ne ed for more research on the toxicity evaluation and risk assessment of antibiotic disinfection byproducts.


Subject(s)
Disinfection , Sulfonamides , Humans , Sulfonamides/toxicity , Halogenation , Bacteria/drug effects , Disinfectants/toxicity , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry
5.
Water Res ; 256: 121562, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38604064

ABSTRACT

Halophenylacetamides (HPAcAms) have been identified as a new group of nitrogenous aromatic disinfection byproducts (DBPs) in drinking water, but the toxicity mechanisms associated with HPAcAms remain almost completely unknown. In this work, the cytotoxicity of HPAcAms in human hepatoma (HepG2) cells was evaluated, intracellular oxidative stress/damage levels were analyzed, their binding interactions with antioxidative enzyme were explored, and a quantitative structure-activity relationship (QSAR) model was established. Results indicated that the EC50 values of HPAcAms ranged from 2353 µM to 9780 µM, and the isomeric structure as well as the type and number of halogen substitutions could obviously induce the change in the cytotoxicity of HPAcAms. Upon exposure to 2-(3,4-dichlorophenyl)acetamide (3,4-DCPAcAm), various important biomarkers linked to oxidative stress and damage, such as reactive oxygen species, 8­hydroxy-2-deoxyguanosine, and cell apoptosis, exhibited a significant increase in a dose-dependent manner. Moreover, 3,4-DCPAcAm could directly bind with Cu/Zn-superoxide dismutase and induce the alterations in the structure and activity, and the formation of complexes was predominantly influenced by the van der Waals force and hydrogen bonding. The QSAR model supported that the nucleophilic reactivity as well as the molecular compactness might be highly important in their cytotoxicity mechanisms in HepG2 cells, and 2-(2,4-dibromophenyl)acetamide and 2-(3,4-dibromophenyl)acetamide deserved particular attention in future studies due to the relatively higher predicted cytotoxicity. This study provided the first comprehensive investigation on the cytotoxicity mechanisms of HPAcAm DBPs.


Subject(s)
Disinfection , Drinking Water , Drinking Water/chemistry , Humans , Hep G2 Cells , Quantitative Structure-Activity Relationship , Acetamides/toxicity , Acetamides/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Oxidative Stress/drug effects , Disinfectants/toxicity , Disinfectants/chemistry , Reactive Oxygen Species/metabolism
6.
Environ Health Perspect ; 132(4): 44004, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38687630

ABSTRACT

Mouse macrophages and human blood cells exposed to very high levels of three trihalophenols showed changes in RNA methylation, pointing to one mechanism by which disinfection by-products may harm health, even as disinfection protects it in other ways.


Subject(s)
Disinfection , Humans , Disinfection/methods , Animals , Water Purification/methods , Disinfectants/toxicity , Mice , Water Pollutants, Chemical/toxicity , Macrophages/drug effects , Phenols/toxicity
7.
Environ Pollut ; 350: 123971, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38641033

ABSTRACT

Haloacetaldehyde disinfection by-products (HAL-DBPs) are among the top three unregulated DBPs found in drinking water. The cytotoxicity and genotoxicity of HALs are much higher than that of the regulated trihalomethanes and haloacetic acids. Previous studies have mainly focused on the toxic effects of single HAL, with few examining the toxic effects of mixed exposures to HALs. The study aimed to observe the effects of mixed exposures of 1∼1000X the realistic level of HALs on the hepatotoxicity and lipid metabolism of C57BL/6J mice, based on the component and concentration of HALs detected in the finished water of Shanghai. Exposure to realistic levels of HALs led to a significant increase in phosphorated acetyl CoA carboxylase 1 (p-ACC1) in the hepatic de novo lipogenesis (DNL) pathway. Additionally, exposure to 100X realistic levels of HALs resulted in significant alterations to key enzymes of DNL pathway, including ACC1, fatty acid synthase (FAS), and diacylglycerol acyltransferase 2 (DGAT2), as well as key proteins of lipid disposal such as carnitine palmitoyltransferase 1 (CPT-1) and peroxisome proliferator activated receptor α (PPARα). Exposure to 1000X realistic levels of HALs significantly increased hepatic and serum triglyceride levels, as well as total cholesterol, low-density lipoprotein, alanine aminotransferase, aspartate transaminase, alkaline phosphatase, and lactate dehydrogenase levels, significantly decreased high-density lipoprotein. Meanwhile, histopathological analysis demonstrated that HALs exacerbated tissue vacuolization and inflammatory cell infiltration in mice livers, which showed the typical phenotypes of non-alcoholic fatty liver disease (NAFLD). These results suggested that the HALs mixture is a critical risk factor for NAFLD and is significantly highly toxic to C57BL/6J mice.


Subject(s)
Acetaldehyde , Lipid Metabolism , Liver , Mice, Inbred C57BL , Animals , Mice , Liver/drug effects , Liver/metabolism , Acetaldehyde/toxicity , Acetaldehyde/analogs & derivatives , Lipid Metabolism/drug effects , Male , Disinfection , Water Pollutants, Chemical/toxicity , Acetyl-CoA Carboxylase/metabolism , PPAR alpha/metabolism , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Lipogenesis/drug effects , Disinfectants/toxicity , Fatty Acid Synthases/metabolism , China , Drinking Water/chemistry
8.
Article in English | MEDLINE | ID: mdl-38615807

ABSTRACT

While wastewater and paint particles discharged from the in-water cleaning process of ship hulls are consistently released into benthic ecosystems, their hazardous effects on non-target animals remain largely unclear. In this study, we provide evidence on acute harmful effects of hull cleaning wastewater in marine polychaete Perinereis aibuhitensis by analyzing physiological and biochemical parameters such as survival, burrowing activity, and oxidative status. Raw wastewater samples were collected during ship hull cleaning processes in the field. Two wastewater samples for the exposure experiment were prepared in the laboratory: 1) mechanically filtered in the in-water cleaning system (MF) and 2) additionally filtered with a 0.45 µm filter in the laboratory (LF). These wastewater samples contained high concentrations of metals (zinc and copper) and metal-based booster biocides (copper pyrithione and zinc pyrithione) compared to those analyzed in seawater. Polycheates were exposed to different concentrations of the two wastewater samples for 96 h. Higher mortality was observed in response to MF compared to LF-exposed polychaetes. Both wastewater samples dose-dependently decreased burrowing activity and AChE activity. Drastic oxidative stress was observed in response to the two wastewater samples. MDA levels were significantly increased by MF and LF samples. Significant GSH depletion was observed with MF exposure, while increased and decreased GSH contents were observed in LF-exposed polychaetes. Enzymatic activities of antioxidant components, catalase, superoxide dismutase, and glutathione S-transferase were significantly modulated by both wastewater samples. These results indicate that even filtered hull cleaning wastewater can have deleterious effects on the health status of polychaetes.


Subject(s)
Oxidative Stress , Polychaeta , Wastewater , Water Pollutants, Chemical , Animals , Polychaeta/drug effects , Polychaeta/metabolism , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Wastewater/toxicity , Wastewater/chemistry , Acetylcholinesterase/metabolism , Disinfectants/toxicity , Ships
9.
Sci Total Environ ; 930: 172834, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38688374

ABSTRACT

Dissolved black carbon (DBC), the soluble component of black carbon, which mainly comes from the incomplete combustion of fossil fuels or biomass, is widely spread in source water and significantly contributes to the formation of dissolved organic matter (DOM). However, the origin of DBC in different types of source water in China has not been well studied, as well as its subsequent transformation and toxicity contribution during disinfection of source water DOM by chlor(am)ine. In this study, DBC from 17 different source water in East China at different seasons was collected. The δ13C compositions indicated that straw burning was the main origin of DBC in source water. After simulated chlor(am)ination of DBC, 5 categories of aliphatic disinfection byproducts (DBPs) including trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, halonitromethanes and 6 categories of aromatic DBPs including halophenols, halonitrophenols, halohydroxybenzaldehyde, halohydroxybenzoic acid, halobenzoquinones and haloaniline were detected. Compared with chlorination of DBC, higher levels of nitrogenous DBPs and aromatic DBPs were generated during chloramination. Detected DBPs accounted for 42 % of total organic halogen. What's more, Chinese hamster ovary cells cytotoxicity tests showed that the cytotoxicity of DBPs formed by chlor(am)ination of DBC was 4 times higher than that by chlor(am)ination of DOM. Haloacetonitriles contributed to the highest cytotoxicity in the chloramination of DBC, and haloacetic acids contributed to the highest cytotoxicity in chlorination. 67 % of the total cytotoxicity attributed to the undetected DBPs. As a result, DBPs generated from DBC contributed to 11.7 % of the total cytotoxicity in the chlor(am)ination of the source water DOM although DBC only took up 2 % of DOC in the source water. Results obtained from this study systematically revealed the DBPs formation from DBC and their potential cytotoxicity contribution in the chlor(am)ination of source water DOM, which should not be ignored in drinking water treatment.


Subject(s)
Cricetulus , Disinfectants , Disinfection , Water Pollutants, Chemical , Disinfectants/analysis , Disinfectants/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , CHO Cells , China , Animals , Water Purification/methods , Carbon/analysis , Halogenation
10.
Environ Toxicol Pharmacol ; 107: 104431, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38554987

ABSTRACT

The use of disinfectants, such as Sodium Dodecylbenzene Sulfonic acid salt (SDBS), has grown since the SARS-CoV-2 pandemic, with environmentally unknown consequences. The present study analyzed SDBS effects in the fish species Danio rerio, using a combination of biomarkers. Our data reported that larvae had their total locomotor activity increased when exposed to 1 mg/L of SDBS, but this parameter was decreased in fish exposed to 5 mg/L. A significant increment of erratic movements was reported in fish exposed to 1 and 5 mg/L of SDBS. These concentrations inhibited CYP1A1/CYP1A2, and of GSTs inhibition, suggesting SDBS is not preferentially biotransformed by these routes. Results concerning the antioxidant defense biomarkers (CAT and GPx) showed no straightforward pattern, suggesting SDBS exposure may have resulted in changes in redox balance. Finally, acetylcholinesterase activity increased. In summary, increased use of SDBS in a near future may result in deleterious effects in environmentally exposed fish.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Animals , Zebrafish/metabolism , SARS-CoV-2/metabolism , Oxidative Stress , Disinfectants/toxicity , Pandemics , Acetylcholinesterase , Biomarkers/metabolism , Water Pollutants, Chemical/toxicity
11.
J Hazard Mater ; 469: 133940, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38457979

ABSTRACT

Glutaraldehyde-Didecyldimethylammonium bromides (GDs) has been frequently and widely employed in livestock and poultry breeding farms to avoid epidemics such as African swine fever, but its long-term effect on the active sludge microorganisms of the receiving wastewater treatment plant was keep unclear. Four simulation systems were built here to explore the performance of aerobic activated sludge with the long-term exposure of GDs and its mechanism by analyzing water qualities, resistance genes, extracellular polymeric substances and microbial community structure. The results showed that the removal rates of CODCr and ammonia nitrogen decreased with the exposure concentration of GDs increasing. It is worth noting that long-term exposure to GDs can induce the horizontal transfer and coordinated expression of a large number of resistance genes, such as qacE, sul1, tetx, and int1, in drug-resistant microorganisms. Additionally, it promotes the secretion of more extracellular proteins, including arginine, forming a "barrier-like" protection. Therefore, long-term exposure to disinfectants can alter the treatment capacity of activated sludge receiving systems, and the abundance of resistance genes generated through horizontal transfer and coordinated expression by drug-resistant microorganisms does pose a significant threat to ecosystems and health. It is recommended to develop effective pretreatment methods to eliminate disinfectants.


Subject(s)
African Swine Fever , Disinfectants , Animals , Swine , Sewage/chemistry , Extracellular Polymeric Substance Matrix , Waste Disposal, Fluid/methods , Disinfectants/toxicity , Ecosystem
12.
J Hazard Mater ; 469: 133989, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38461660

ABSTRACT

Drinking water disinfection can result in the formation disinfection byproducts (DBPs, > 700 have been identified to date), many of them are reportedly cytotoxic, genotoxic, or developmentally toxic. Analyzing the toxicity levels of these contaminants experimentally is challenging, however, a predictive model could rapidly and effectively assess their toxicity. In this study, machine learning models were developed to predict DBP cytotoxicity based on their chemical information and exposure experiments. The Random Forest model achieved the best performance (coefficient of determination of 0.62 and root mean square error of 0.63) among all the algorithms screened. Also, the results of a probabilistic model demonstrated reliable model predictions. According to the model interpretation, halogen atoms are the most prominent features for DBP cytotoxicity compared to other chemical substructures. The presence of iodine and bromine is associated with increased cytotoxicity levels, while the presence of chlorine is linked to a reduction in cytotoxicity levels. Other factors including chemical substructures (CC, N, CN, and 6-member ring), cell line, and exposure duration can significantly affect the cytotoxicity of DBPs. The similarity calculation indicated that the model has a large applicability domain and can provide reliable predictions for DBPs with unknown cytotoxicity. Finally, this study showed the effectiveness of data augmentation in the scenario of data scarcity.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Animals , Cricetinae , Disinfection , Disinfectants/toxicity , Disinfectants/analysis , Halogenation , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Halogens , Chlorine , Drinking Water/analysis , CHO Cells
13.
Ecotoxicol Environ Saf ; 272: 116078, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38335575

ABSTRACT

Since disinfectants are used all over the world to treat illnesses in people and other animals, they pose a major risk to human health. The comprehensive effects of disinfectant treatments on fish liver, especially the impacts on oxidative stress, toxicological effects, transcriptome profiles, and apoptosis, have not yet been fully analyzed. In the current investigation, healthy grass carp were exposed to 80 µg/L glutaraldehyde or 50 µg/L povidone-iodine for 30 days. First, the findings of enzyme activity tests demonstrated that the administration of glutaraldehyde could considerably increase oxidative stress by lowering T-SOD, CAT, and GPx and raising MDA. Furthermore, KEGG research revealed that exposure to glutaraldehyde and povidone-iodine stimulated the PPAR signal pathway. To further elucidate the transcriptome results, the relative expressions of related DEGs in the PPAR signal pathway were verified. Glutaraldehyde induced apoptosis in liver tissue of grass carp; however, it activated cytotoxicity and apoptosis in grass carp hepatocytes when exposed to glutaraldehyde or povidone-iodine. According to the current study, disinfectants can cause the impairment of the immune system, oxidative stress, and attenuation of the PPAR signal pathway in the liver of grass carp, making them detrimental as dietary supplements for grass carp, particularly in the aquaculture sector.


Subject(s)
Carps , Disinfectants , Animals , Humans , Povidone-Iodine/toxicity , Glutaral/toxicity , Peroxisome Proliferator-Activated Receptors , Liver , Hepatocytes , Disinfectants/toxicity , Apoptosis
14.
J Hazard Mater ; 468: 133792, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368685

ABSTRACT

Disinfectants and antibiotics are widely used for the prevention and control of bacterial infectious diseases. Frequent disinfection is thought to exacerbate antibiotic resistance. However, little is known about how disinfectants and antibiotics co-induce changes in the soil antibiotic resistance genes (ARGs). This study determined the ARG profiles and bacterial community dynamics between unamended soil and manure-amended soil exposed to benzalkonium chloride (C12) (BC, 10 mg kg-1) disinfectant and sulfamethazine (SMZ, 1 mg kg-1), using high-throughput quantitative PCR and 16 S rRNA gene sequencing. Manure application enriched the soil in terms of ARGs abundance and diversity, which synergistically amplified the co-selection effect of BC and SMZ on soil antibiotic resistome. Compared with the control treatment, BC and SMZ exposure had a smaller impact on the bacterial infectious diseases and antimicrobial resistance-related functions in manure-amended soil, in which bacterial communities with greater tolerance to antimicrobial substances were constructed. Manure application increased the proportion of rank I ARGs and potential human pathogenic bacteria, while BC and SMZ exposure increased the drug-resistant pathogens transmission risk. This study validated that BC and SMZ aggravated the antimicrobial resistance under manure application, providing a reference for managing the spread risk of antimicrobial resistance in agricultural activities.


Subject(s)
Communicable Diseases , Disinfectants , Humans , Soil , Anti-Bacterial Agents/toxicity , Manure/microbiology , Genes, Bacterial , Disinfectants/toxicity , Disinfectants/analysis , Soil Microbiology , Bacteria/genetics , Sulfamethazine
15.
Article in English | MEDLINE | ID: mdl-38354993

ABSTRACT

Sodium dichloroisocyanurate (NaDCC, C3Cl2N3NaO3) is a solid chlorine-containing product that is widely used as a disinfectant in living environments, which has potential toxic effects on human and rats. Phascolosoma esculenta is a species native to the southeast coast of China and can be used as an indicator organism. In the present study, 150 P. esculenta were used to determine the LC50 of NaDCC for P. esculenta, then 100 P. esculenta were used to analysis the change of histopathology, oxidative stress and transcriptome after NaDCC exposure. The results showed that the LC50 of NaDCC for 48 h was 50 mg/L. NaDCC stress induced pathological events in P. esculenta, including blisters, intestinal structural damage and epithelial cell ruptured or even loss. The highest and lowest intestinal activity of superoxide dismutase in individual survivors was detected at 12 h and 72 h, respectively. Malondialdehyde levels in the intestine declined gradually from 3 h and increased at 9 h, and peaked at 12 h. Total antioxidant capacity declined at 3 h and dropped below the levels of control group after 9 h. Transcriptome sequencing analysis yielded a total of 48.65 Gb of clean data. A total of 34,759 new genes were found including 957 differentially expressed genes (DEGs). The DEGs were significantly enriched in ferroptosis, response to chemicals, response to stress, immune system, ion transport, cell death, oxidation-reduction, cellular homeostasis, protein ubiquitination, and protein neddylation. Additionally, the levels of detoxification enzymes, such as glutathione-S-transferase, cytochrome P450, ABC, UDP-glycosyltransferase and SLC transporters of endogenous and exogenous solutes were significantly changed. Overall, the results provide reference for reasonable use of disinfectants during farming, and also provide insight into the mechanisms related to NaDCC toxicity in P. esculenta.


Subject(s)
Disinfectants , Triazines , Humans , Animals , Rats , Disinfectants/toxicity , Disinfectants/chemistry , Intestines , Oxidative Stress , Gene Expression Profiling
16.
Ecotoxicol Environ Saf ; 270: 115926, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38181603

ABSTRACT

BACKGROUND: Biocides have emerged as a contributor to the rising cases of atopic dermatitis among children and adolescents. Previous animal studies suggested that phenols, parabens, and pyrethroid insecticides present in these products might play a role in atopic dermatitis. However, there's limited epidemiological evidence confirming the individual or combined effects of exposure to these chemicals on atopic dermatitis in young populations. This study aimed to investigate the association between phenol, paraben, and pyrethroid metabolite levels in urine and atopic dermatitis among Korean children and adolescents METHODS: We analyzed 556 preschool children (3-5 years), 701 schoolchildren (6-11 years), and 731 adolescents (12-17 years) enrolled in the 4th Korean National Environmental Health Survey (KoNEHS) (2018-2020). We used logistic regression and Bayesian kernel machine regression to evaluate the association between atopic dermatitis and individual or mixed exposure to urinary triclosan (TCS), parabens (methylparaben, ethylparaben, propylparaben, and butylparaben), and 3-phenoxybenzoic acid (3-PBA) levels. RESULTS: Urinary TCS levels were positively associated with atopic dermatitis in schoolchildren. When stratified by sex, male schoolchildren exhibited an increasing prevalence of atopic dermatitis as their urinary TCS and 3-PBA levels increased. The combined effect of biocide mixtures on atopic dermatitis was also significantly increased in male schoolchildren, with TCS as the main contributor. CONCLUSIONS: These study findings suggest that biocides at levels found in Korean children and adolescents affect atopic dermatitis.


Subject(s)
Benzoates , Dermatitis, Atopic , Disinfectants , Pyrethrins , Triclosan , Animals , Child, Preschool , Humans , Male , Adolescent , Child , Parabens/toxicity , Parabens/analysis , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/epidemiology , Cross-Sectional Studies , Disinfectants/toxicity , Bayes Theorem , Triclosan/urine , Phenols/urine , Republic of Korea/epidemiology
17.
Ecotoxicol Environ Saf ; 270: 115925, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38183752

ABSTRACT

Disinfection by-products (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs), have attracted attention due to their carcinogenic properties, leading to varying conclusions. This meta-analysis aimed to evaluate the dose-response relationship and the dose-dependent effect of DBPs on cancer risk. We performed a selective search in PubMed, Web of Science, and Embase databases for articles published up to September 15th, 2023. Our meta-analysis eventually included 25 articles, encompassing 8 cohort studies with 6038,525 participants and 10,668 cases, and 17 case-control studies with 10,847 cases and 20,702 controls. We observed a positive correlation between increased cancer risk and higher concentrations of total trihalomethanes (TTHM) in water, longer exposure durations, and higher cumulative TTHM intake. These associations showed a linear trend, with relative risks (RRs) and 95 % confidence intervals (CIs) being 1.02 (1.01-1.03), 1.04 (1.02-1.06), and 1.02 (1.00-1.03), respectively. Gender-specific analyses revealed slightly U-shaped relationships in both males and females, with males exhibiting higher risks. The threshold dose for TTHM in relation to cancer risk was determined to be 55 µg/L for females and 40 µg/L for males. A linear association was also identified between bladder cancer risk and TTHM exposure, with an RR and 95 % CI of 1.08 (1.05-1.11). Positive linear associations were observed between cancer risk and exposure to chloroform, bromodichloromethane (BDCM), and HAA5, with RRs and 95 % CIs of 1.02 (1.01-1.03), 1.33 (1.18-1.50), and 1.07 (1.03-1.12), respectively. Positive dose-dependent effects were noted for brominated THMs above 35 µg/L and chloroform above 75 µg/L. While heterogeneity was observed in the studies for quantitative synthesis, no publication bias was detected. Exposure to TTHM, chloroform, BDCM, or HAA5 may contribute to carcinogenesis, and the risk of cancer appears to be dose-dependent on DBP exposure levels. A cumulative effect is suggested by the positive correlation between TTHM exposure and cancer risk. Bladder cancer and endocrine-related cancers show dose-dependent and positive associations with TTHM exposure. Males may be more susceptible to TTHM compared to females.


Subject(s)
Disinfectants , Urinary Bladder Neoplasms , Water Pollutants, Chemical , Male , Female , Humans , Disinfection , Chloroform/analysis , Trihalomethanes/toxicity , Trihalomethanes/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Disinfectants/toxicity
18.
Sci Total Environ ; 917: 170331, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38278255

ABSTRACT

Complex mixtures of disinfection by-products (DBPs) are present in disinfected waters, but their mixture toxicity has been rarely described. Apart from ingestion, DBP exposure can occur through inhalation, which may lead to respiratory effects in highly exposed individuals. However, the underlying biological mechanisms have yet to be elucidated. This study aimed to investigate the toxicity of a mixture of 10 DBPs, including haloacetic acids and haloaromatics, on human alveolar A549 cells by assessing their cytotoxicity, genotoxicity, and impact on the cell lipidome. A DBP mixture up to 50 µM slightly reduced cell viability, induced the generation of reactive oxygen species (ROS) up to 3.5-fold, and increased the frequency of micronuclei formation. Exposure to 50 µM DBP mixture led to a significant accumulation of triacylglycerides and a decrease of diacylglycerides and phosphatidylcholines in A549 cells. Lipidomic profiling of extracellular vesicles (EVs) released in the culture medium revealed a marked increase in cholesterol esters, sphingomyelins, and other membrane lipids. Overall, these alterations in the lipidome of cells and EVs may indicate a disruption of lipid homeostasis, and thus, potentially contribute to the respiratory effects associated with DBP exposure.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Humans , Disinfection , Water , Disinfectants/toxicity , Disinfectants/analysis , Lipidomics , Water Pollutants, Chemical/analysis , Halogenation
19.
Toxicol Sci ; 199(1): 12-28, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38291902

ABSTRACT

Intensified sanitation practices amid the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak might result in the increased release of chloramine disinfectants into surface water, significantly promoting the formation of nitrosamine disinfection by-products (DBPs) in drinking water. Unfortunately, these nitrosamine DBPs exhibit significant genotoxic, carcinogenic, and mutagenic properties, whereas chlorinating disinfectants remain in global practice. The current review provides valuable insights into the occurrence, identification, contamination status, exposure limits, and toxicity of the new unregulated disinfection by-products (nitrosamine DBPs) in drinking water. As a result, concentrations of nitrosamine DBPs far exceed allowable limits in drinking water, and prolonged exposure has the potential to cause metabolic disorders, a critical step in tumor initiation and progression. Importantly, based on recent research, we have concluded the role of nitrosamines DBPs in different metabolic pathways. Remarkably, nitrosamine DBPs can induce chronic inflammation and initiate tumors by activating sphingolipid and polyunsaturated fatty acid metabolism. Regarding amino acid and nucleotide metabolism, nitrosamine DBPs can inhibit tryptophan metabolism and de novo nucleotide synthesis. Moreover, inhibition of de novo nucleotide synthesis fails to repair DNA damage induced by nitrosamines. Additionally, the accumulation of lactate induced by nitrosamine DBPs may act as a pivotal signaling molecule in communication within the tumor microenvironment. However, with the advancement of tumor metabolomics, understanding the role of nitrosamine DBPs in causing cancer by inducing metabolic abnormalities significantly lags behind, and specific mechanisms of toxic effects are not clearly defined. Urgently, further studies exploring this promising area are needed.


Subject(s)
Disinfectants , Drinking Water , Neoplasms , Nitrosamines , Humans , Nitrosamines/toxicity , Disinfectants/toxicity , Neoplasms/chemically induced , Neoplasms/metabolism , Water Pollutants, Chemical/toxicity , Animals , Disinfection , Water Purification , COVID-19 , Carcinogens/toxicity
20.
J Hazard Mater ; 466: 133470, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38246053

ABSTRACT

Quaternary ammonium compounds (QACs) are commonly used as disinfectants for industrial, medical, and residential applications. However, adverse health outcomes have been reported. Therefore, biocompatible disinfectants must be developed to reduce these adverse effects. In this context, QACs with various alkyl chain lengths (C12-C18) were synthesized by reacting QACs with the counterion silane. The antimicrobial activities of the novel compounds against four strains of microorganisms were assessed. Several in vivo assays were conducted on Drosophila melanogaster to determine the toxicological outcomes of Si-QACs, followed by computational analyses (molecular docking, simulation, and prediction of skin sensitization). The in vivo results were combined using a cheminformatics approach to understand the descriptors responsible for the safety of Si-QAC. Si-QAC-2 was active against all tested bacteria, with minimal inhibitory concentrations ranging from 13.65 to 436.74 ppm. Drosophila exposed to Si-QAC-2 have moderate-to-low toxicological outcomes. The molecular weight, hydrophobicity/lipophilicity, and electron diffraction properties were identified as crucial descriptors for ensuring the safety of the Si-QACs. Furthermore, Si-QAC-2 exhibited good stability and notable antiviral potential with no signs of skin sensitization. Overall, Si-QAC-2 (C14) has the potential to be a novel disinfectant.


Subject(s)
Disinfectants , Organosilicon Compounds , Quaternary Ammonium Compounds , Animals , Quaternary Ammonium Compounds/toxicity , Silanes , Disinfectants/toxicity , Drosophila melanogaster , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...