Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 486
Filter
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38850218

ABSTRACT

Closed head injury is a prevalent form of traumatic brain injury with poorly understood effects on cortical neural circuits. Given the emotional and behavioral impairments linked to closed head injury, it is vital to uncover brain functional deficits and their driving mechanisms. In this study, we employed a robust viral tracing technique to identify the alteration of the neural pathway connecting the medial prefrontal cortex to the basolateral amygdala, and we observed the disruptions in neuronal projections between the medial prefrontal cortex and the basolateral amygdala following closed head injury. Remarkably, our results highlight that ZL006, an inhibitor targeting PSD-95/nNOS interaction, stands out for its ability to selectively reverse these aberrations. Specifically, ZL006 effectively mitigates the disruptions in neuronal projections from the medial prefrontal cortex to basolateral amygdala induced by closed head injury. Furthermore, using chemogenetic approaches, we elucidate that activating the medial prefrontal cortex projections to the basolateral amygdala circuit produces anxiolytic effects, aligning with the therapeutic potential of ZL006. Additionally, ZL006 administration effectively mitigates astrocyte activation, leading to the restoration of medial prefrontal cortex glutamatergic neuron activity. Moreover, in the context of attenuating anxiety-like behaviors through ZL006 treatment, we observe a reduction in closed head injury-induced astrocyte engulfment, which may correlate with the observed decrease in dendritic spine density of medial prefrontal cortex glutamatergic neurons.


Subject(s)
Amygdala , Anxiety , Head Injuries, Closed , Prefrontal Cortex , Animals , Prefrontal Cortex/drug effects , Male , Head Injuries, Closed/complications , Anxiety/drug therapy , Amygdala/drug effects , Mice , Neural Pathways/drug effects , Mice, Inbred C57BL , Disks Large Homolog 4 Protein/metabolism
2.
Pak J Pharm Sci ; 37(2(Special)): 435-442, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822547

ABSTRACT

Depression is a common non-motor symptom of Parkinson's disease. Previous studies demonstrated that hydroxysafflor yellow A had properties of improving motor symptoms of Parkinson's disease. The effect of hydroxysafflor yellow A on depression in Parkinson's disease mice is investigated in this study. To induce Parkinson's disease model, male Swiss mice were exposed to rotenone (30 mg/kg) for 6 weeks. The chronic unpredictable mild stress was employed to induce depression from week 3 to week 6. Sucrose preference, tail suspension, and forced swimming tests were conducted. Golgi and Nissl staining of hippocampus were carried out. The levels of dopamine, 5-hydroxytryptamine and the expression of postsynaptic density protein 95, brain-derived neurotrophic factor in hippocampus were assayed. It showed that HSYA improved the depression-like behaviors of Parkinson's disease mice. Hydroxysafflor yellow A attenuated the injury of nerve and elevated contents of dopamine, 5-hydroxytryptamine in hippocampus. Treatment with hydroxysafflor yellow A also augmented the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor. These findings suggest that hydroxysafflor yellow A ameliorates depression-like behavior in Parkinson's disease mice through regulating the contents of postsynaptic density protein 95 and brain-derived neurotrophic factor, therefore protecting neurons and neuronal dendrites of the hippocampus.


Subject(s)
Behavior, Animal , Brain-Derived Neurotrophic Factor , Chalcone , Depression , Hippocampus , Quinones , Serotonin , Animals , Quinones/pharmacology , Quinones/therapeutic use , Chalcone/analogs & derivatives , Chalcone/pharmacology , Chalcone/therapeutic use , Male , Mice , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Behavior, Animal/drug effects , Serotonin/metabolism , Dopamine/metabolism , Rotenone/pharmacology , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/psychology
3.
Neuromolecular Med ; 26(1): 24, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864941

ABSTRACT

Depression frequently occurs following traumatic brain injury (TBI). However, the role of Fibromodulin (FMOD) in TBI-related depression is not yet clear. Previous studies have suggested FMOD as a potential key factor in TBI, yet its association with depression post-TBI and underlying mechanisms are not well understood. Serum levels of FMOD were measured in patients with traumatic brain injury using qPCR. The severity of depression was assessed using the self-depression scale (SDS). Neurological function, depressive state, and cognitive function in mice were assessed using the modified Neurological Severity Score (mNSS), forced swimming test (FST), tail suspension test (TST), Sucrose Preference Test (SPT), and morris water maze (MWM). The morphological features of mouse hippocampal synapses and neuronal dendritic spines were revealed through immunofluorescence, transmission electron microscopy, and Golgi-Cox staining. The protein expression levels of FMOD, MAP2, SYP, and PSD95, as well as the phosphorylation levels of the PI3K/AKT/mTOR signaling pathway, were detected through Western blotting. FMOD levels were decreased in TBI patients' serum. Overexpression of FMOD preserved neuronal function and alleviated depression-like behaviour, increased synaptic protein expression, and induced ultrastructural changes in hippocampal neurons. The increased phosphorylation of PI3K, AKT, and mTOR suggested the involvement of the PI3K/AKT/mTOR signaling pathway in FMOD's protective effects. FMOD exhibits potential as a therapeutic target for depression related to TBI, with its protective effects potentially mediated through the PI3K/AKT/mTOR signaling pathway.


Subject(s)
Brain Injuries, Traumatic , Depression , Hippocampus , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , Brain Injuries, Traumatic/complications , Mice , Male , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Hippocampus/metabolism , Depression/etiology , Depression/drug therapy , Humans , Adult , Female , Middle Aged , Mice, Inbred C57BL , Synapses , Disease Models, Animal , Dendritic Spines/drug effects , Disks Large Homolog 4 Protein/metabolism
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 960-966, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862454

ABSTRACT

OBJECTIVE: To assess the effects of repeated mild traumatic brain injury (rmTBI) in the parietal cortex on neuronal morphology and synaptic plasticity in the medulla oblongata of mice. METHODS: Thirty-two male ICR mice were randomly divided into sham operation group (n=8) and rmTBI group (n=24). The mice in the latter group were subjected to repeated mild impact injury of the parietal cortex by a free-falling object. The mice surviving the injuries were evaluated for neurological deficits using neurological severity scores (NSS), righting reflex test and forced swimming test, and pathological changes of the neuronal cells in the medulla oblongata were observed with HE and Nissl staining. Western blotting and immunofluorescence staining were used to detect the expressions of neuroligin 1(NLG-1) and postsynaptic density protein 95(PSD-95) in the medulla oblongata of the mice that either survived rmTBI or not. RESULTS: None of the mice in the sham-operated group died, while the mortality rate was 41.67% in rmTBI group. The mice surviving rmTBI showed significantly reduced NSS, delayed recovery of righting reflex, increased immobility time in forced swimming test (P < 0.05), and loss of Nissl bodies; swelling and necrosis were observed in a large number of neurons in the medulla oblongata, where the expression levels of NLG-1 and PSD-95 were significantly downregulated (P < 0.05). The mice that did not survive rmTBI showed distorted and swelling nerve fibers and decreased density of neurons in the medulla oblongina with lowered expression levels of NLG-1 and PSD-95 compared with the mice surviving the injuries (P < 0.01). CONCLUSION: The structural and functional anomalies of the synapses in the medulla oblongata may contribute to death and neurological impairment following rmTBI in mice.


Subject(s)
Cell Adhesion Molecules, Neuronal , Disks Large Homolog 4 Protein , Medulla Oblongata , Mice, Inbred ICR , Parietal Lobe , Animals , Mice , Medulla Oblongata/metabolism , Disks Large Homolog 4 Protein/metabolism , Male , Parietal Lobe/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Neurons/metabolism , Brain Injuries, Traumatic/metabolism , Neuronal Plasticity
5.
Sci Rep ; 14(1): 11557, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773352

ABSTRACT

Juvenile loneliness is a risk factor for psychopathology in later life. Deprivation of early social experience due to peer rejection has a detrimental impact on emotional and cognitive brain function in adulthood. Accumulating evidence indicates that soy peptides have many positive effects on higher brain function in rodents and humans. However, the effects of soy peptide use on juvenile social isolation are unknown. Here, we demonstrated that soy peptides reduced the deterioration of behavioral and cellular functions resulting from juvenile socially-isolated rearing. We found that prolonged social isolation post-weaning in male C57BL/6J mice resulted in higher aggression and impulsivity and fear memory deficits at 7 weeks of age, and that these behavioral abnormalities, except impulsivity, were mitigated by ingestion of soy peptides. Furthermore, we found that daily intake of soy peptides caused upregulation of postsynaptic density 95 in the medial prefrontal cortex and phosphorylation of the cyclic adenosine monophosphate response element binding protein in the hippocampus of socially isolated mice, increased phosphorylation of the adenosine monophosphate-activated protein kinase in the hippocampus, and altered the microbiota composition. These results suggest that soy peptides have protective effects against juvenile social isolation-induced behavioral deficits via synaptic maturation and cellular functionalization.


Subject(s)
Aggression , Dietary Supplements , Fear , Hippocampus , Mice, Inbred C57BL , Social Isolation , Animals , Social Isolation/psychology , Male , Fear/drug effects , Aggression/drug effects , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Soybean Proteins/pharmacology , Memory/drug effects , Behavior, Animal/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Disks Large Homolog 4 Protein/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism
6.
Biochem Biophys Res Commun ; 720: 150076, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38772224

ABSTRACT

Chronic morphine withdrawal memory formation is a complex process influenced by various molecular mechanisms. In this study, we aimed to investigate the contributions of the basolateral amygdala (BLA) and complement component 1, q subcomponent-like 3 (C1QL3), a secreted and presynaptically targeted protein, to the formation of chronic morphine (repeat dosing of morphine) withdrawal memory using conditioned place aversion (CPA) and chemogenetic methods. We conducted experiments involving the inhibition of the BLA during naloxone-induced withdrawal to assess its impact on CPA scores, providing insights into the significance of the BLA in the chronic morphine memory formation process. We also examined changes in C1ql3/C1QL3 expression within the BLA following conditioning. Immunofluorescence analysis revealed the colocalization of C1QL3 and the G protein-coupled receptor, brain-specific angiogenesis inhibitor 3 (BAI3) in the BLA, supporting their involvement in synaptic development. Moreover, we downregulated C1QL3 expression in the BLA to investigate its role in chronic morphine withdrawal memory formation. Our findings revealed that BLA inhibition during naloxone-induced withdrawal led to a significant reduction in CPA scores, confirming the critical role of the BLA in this memory process. Additionally, the upregulation of C1ql3 expression within the BLA postconditioning suggested its participation in withdrawal memory formation. The colocalization of C1QL3 and BAI3 in the BLA further supported their involvement in synaptic development. Furthermore, downregulation of C1QL3 in the BLA effectively hindered chronic morphine withdrawal memory formation, emphasizing its pivotal role in this process. Notably, we identified postsynaptic density protein 95 (PSD95) as a potential downstream effector of C1QL3 during chronic morphine withdrawal memory formation. Blocking PSD95 led to a significant reduction in the CPA score, and it appeared that C1QL3 modulated the ubiquitination-mediated degradation of PSD95, resulting in decreased PSD95 protein levels. This study underscores the importance of the BLA, C1QL3 and PSD95 in chronic morphine withdrawal memory formation. It provides valuable insights into the underlying molecular mechanisms, emphasizing their significance in this intricate process.


Subject(s)
Basolateral Nuclear Complex , Disks Large Homolog 4 Protein , Memory , Morphine , Substance Withdrawal Syndrome , Animals , Morphine/pharmacology , Substance Withdrawal Syndrome/metabolism , Male , Mice , Memory/drug effects , Disks Large Homolog 4 Protein/metabolism , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/drug effects , Complement C1q/metabolism , Mice, Inbred C57BL , Naloxone/pharmacology
7.
Science ; 384(6698): 920-928, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781377

ABSTRACT

Excitatory and inhibitory synapses do not overlap even when formed on one submicron-sized dendritic protrusion. How excitatory and inhibitory postsynaptic cytomatrices or densities (e/iPSDs) are segregated is not understood. Broadly, why membraneless organelles are naturally segregated in cellular subcompartments is unclear. Using biochemical reconstitutions in vitro and in cells, we demonstrate that ePSDs and iPSDs spontaneously segregate into distinct condensed molecular assemblies through phase separation. Tagging iPSD scaffold gephyrin with a PSD-95 intrabody (dissociation constant ~4 nM) leads to mistargeting of gephyrin to ePSD condensates. Unexpectedly, formation of iPSD condensates forces the intrabody-tagged gephyrin out of ePSD condensates. Thus, instead of diffusion-governed spontaneous mixing, demixing is a default process for biomolecules in condensates. Phase separation can generate biomolecular compartmentalization specificities that cannot occur in dilute solutions.


Subject(s)
Biomolecular Condensates , Phase Separation , Post-Synaptic Density , Humans , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , Disks Large Homolog 4 Protein/metabolism , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Post-Synaptic Density/metabolism , HeLa Cells
8.
Exp Brain Res ; 242(6): 1507-1515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719948

ABSTRACT

Alzheimer's disease is a progressive neurodegenerative disorder characterized by impairments in synaptic plasticity and cognitive performance. Current treatments are unable to achieve satisfactory therapeutic effects or reverse the progression of the disease. Calcineurin has been implicated as part of a critical signaling pathway for learning and memory, and neuronal calcineurin may be hyperactivated in AD. To investigate the effects and underlying mechanisms of FK506, a calcineurin inhibitor, on Alzheimer-like behavior and synaptic dysfunction in the 3 × Tg-AD transgenic mouse model of Alzheimer's disease, we investigated the effect of FK506 on cognitive function and synaptic plasticity in the 3 × Tg-AD transgenic mouse model of Alzheimer's disease. The results showed that FK506 treatment ameliorated cognitive deficits, as indicated by the decreased latency in the water maze, and attenuated tau hyperphosphorylation in 3 × Tg-AD mice. Treatment with FK506 also reduced the levels of certain markers of postsynaptic deficits, including PSD-95 and NR2B, and reversed the long-term potentiation deficiency and dendritic spine impairments in 3 × Tg-AD mice. These findings suggest that treatment with calcineurin inhibitors such as FK506 can be an effective therapeutic strategy to rescue synaptic deficit and cognitive impairment in familial Alzheimer's disease and related tauopathies.


Subject(s)
Alzheimer Disease , Calcineurin Inhibitors , Disease Models, Animal , Mice, Transgenic , Tacrolimus , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Tacrolimus/pharmacology , Calcineurin Inhibitors/pharmacology , Mice , Maze Learning/drug effects , Maze Learning/physiology , Calcineurin/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , tau Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Male , Synapses/drug effects , Synapses/metabolism , Disks Large Homolog 4 Protein/metabolism
9.
J Integr Neurosci ; 23(4): 82, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38682225

ABSTRACT

BACKGROUND: Comorbid chronic neuropathic pain (NPP) and anxio-depressive disorders (ADD) have become a serious global public-health problem. The SLIT and NTRK-like 1 (SLITRK1) protein is important for synaptic remodeling and is highly expressed in the amygdala, an important brain region involved in various emotional behaviors. We examined whether SLITRK1 protein in the amygdala participates in NPP and comorbid ADD. METHODS: A chronic NPP mouse model was constructed by L5 spinal nerve ligation; changes in chronic pain and ADD-like behaviors were measured in behavioral tests. Changes in SLITRK1 protein and excitatory synaptic functional proteins in the amygdala were measured by immunofluorescence and Western blot. Adeno-associated virus was transfected into excitatory synaptic neurons in the amygdala to up-regulate the expression of SLITRK1. RESULTS: Chronic NPP-related ADD-like behavior was successfully produced in mice by L5 ligation. We found that chronic NPP and related ADD decreased amygdalar expression of SLITRK1 and proteins important for excitatory synaptic function, including Homer1, postsynaptic density protein 95 (PSD95), and synaptophysin. Virally-mediated SLITRK1 overexpression in the amygdala produced a significant easing of chronic NPP and ADD, and restored the expression levels of Homer1, PSD95, and synaptophysin. CONCLUSION: Our findings indicated that SLITRK1 in the amygdala plays an important role in chronic pain and related ADD, and may prove to be a potential therapeutic target for chronic NPP-ADD comorbidity.


Subject(s)
Amygdala , Behavior, Animal , Chronic Pain , Disks Large Homolog 4 Protein , Nerve Tissue Proteins , Neuralgia , Animals , Male , Mice , Amygdala/metabolism , Anxiety/metabolism , Anxiety/physiopathology , Anxiety Disorders/metabolism , Anxiety Disorders/physiopathology , Behavior, Animal/physiology , Chronic Pain/metabolism , Chronic Pain/physiopathology , Depression/metabolism , Depression/etiology , Depression/physiopathology , Depressive Disorder/metabolism , Depressive Disorder/physiopathology , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Homer Scaffolding Proteins/metabolism , Membrane Proteins/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Neuralgia/metabolism , Synaptophysin/metabolism
10.
Neurochem Res ; 49(7): 1794-1805, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38656691

ABSTRACT

N-methyl-D-aspartate receptor-dependent excitotoxicity is one of the most important mechanisms underlying stroke injury and the resulting neuronal death. In the present study, in order to reduce post-stroke brain injury and improve behavioral performance, a new molecule named IC87201, which acts as an inhibitor of PSD95/nNOS interaction in the intracellular signaling pathway of NMDA receptors, was administered. Using the middle cerebral artery occlusion (MCAO) technique, 24 adult male rats were subjected to one hour of cerebral ischemia. Animals were randomly divided into sham, MCAO, MCAO + DXM, and MCAO + IC87201 groups, and in the last two groups, intraperitoneal injection of dextromethorphan hydrobromide monohydrate (DXM), as an NMDA antagonist, and IC87201 was performed after ischemia. Neurobehavioral scores were evaluated for seven days, and on the last two days, the rats' memory performance was appraised using the passive avoidance test. On seventh day, the brain tissue was properly prepared for stereological analysis. Stereological studies of the hippocampus CA1 and CA3 regions revealed that changes in the total and infarcted volumes, total number of neurons, non-neurons, and dead neurons are the consequences of cerebral ischemia. Also, following cerebral ischemia, neurobehavioral and memory function impairments which were assessed by modified neurological severity scores (mNSS) and passive avoidance test, were observed. The aforementioned impairments were recovered after administration of IC87201 significantly and more potently than DXM. Based on our findings, IC87201 successfully attenuated post-ischemia damages. Therefore, this molecule can be considered as a new therapeutic approach in future research.


Subject(s)
Disks Large Homolog 4 Protein , Animals , Male , Disks Large Homolog 4 Protein/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Rats , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Rats, Wistar , Stroke/drug therapy , Rats, Sprague-Dawley
11.
Behav Brain Res ; 467: 115018, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678971

ABSTRACT

Poststroke cognitive impairment (PSCI) is a common complication of stroke, but effective treatments are currently lacking. Repetitive transcranial magnetic stimulation (rTMS) is gradually being applied to treat PSCI, but there is limited evidence of its efficacy. To determine rTMS effects on PSCI, we constructed a transient middle cerebral artery occlusion (tMCAO) rat model. Rats were then grouped by random digital table method: the sham group (n = 10), tMCAO group (n = 10) and rTMS group (n = 10). The shuttle box and Morris water maze (MWM) tests were conducted to detect the cognitive functions of the rats. In addition, synaptic density and synaptic ultrastructural parameters, including the active zone length, synaptic cleft width, and postsynaptic density (PSD) thickness, were quantified and analyzed using an electron microscope. What's more, synaptic associated proteins, including PSD95, SYN, and BDNF were detected by western blot. According to the shuttle box and MWM tests, rTMS improved tMCAO rats' cognitive functions, including spatial learning and memory and decision-making abilities. Electron microscopy revealed that rTMS significantly increased the synaptic density, synaptic active zone length and PSD thickness and decreased the synaptic cleft width. The western blot results showed that the expression of PSD95, SYN, and BDNF was markedly increased after rTMS stimulation. Based on these results, we propose that 20 Hz rTMS can significantly alleviate cognitive impairment after stroke. The underlying mechanism might be modulating the synaptic plasticity and up-regulating the expression PSD95, SYN, and BDNF in the hippocampus.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Disease Models, Animal , Hippocampus , Neuronal Plasticity , Rats, Sprague-Dawley , Transcranial Magnetic Stimulation , Animals , Neuronal Plasticity/physiology , Cognitive Dysfunction/therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Male , Rats , Hippocampus/metabolism , Brain Ischemia/therapy , Brain Ischemia/physiopathology , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/complications , Disks Large Homolog 4 Protein/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Maze Learning/physiology
12.
Proc Natl Acad Sci U S A ; 121(17): e2315379121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625946

ABSTRACT

A key feature of excitatory synapses is the existence of subsynaptic protein nanoclusters (NCs) whose precise alignment across the cleft in a transsynaptic nanocolumn influences the strength of synaptic transmission. However, whether nanocolumn properties vary between excitatory synapses functioning in different cellular contexts is unknown. We used a combination of confocal and DNA-PAINT super-resolution microscopy to directly compare the organization of shared scaffold proteins at two important excitatory synapses-those forming onto excitatory principal neurons (Ex→Ex synapses) and those forming onto parvalbumin-expressing interneurons (Ex→PV synapses). As in Ex→Ex synapses, we find that in Ex→PV synapses, presynaptic Munc13-1 and postsynaptic PSD-95 both form NCs that demonstrate alignment, underscoring synaptic nanostructure and the transsynaptic nanocolumn as conserved organizational principles of excitatory synapses. Despite the general conservation of these features, we observed specific differences in the characteristics of pre- and postsynaptic Ex→PV nanostructure. Ex→PV synapses contained larger PSDs with fewer PSD-95 NCs when accounting for size than Ex→Ex synapses. Furthermore, the PSD-95 NCs were larger and denser. The identity of the postsynaptic cell was also represented in Munc13-1 organization, as Ex→PV synapses hosted larger Munc13-1 puncta that contained less dense but larger and more numerous Munc13-1 NCs. Moreover, we measured the spatial variability of transsynaptic alignment in these synapse types, revealing protein alignment in Ex→PV synapses over a distinct range of distances compared to Ex→Ex synapses. We conclude that while general principles of nanostructure and alignment are shared, cell-specific elements of nanodomain organization likely contribute to functional diversity of excitatory synapses.


Subject(s)
Neurons , Synapses , Neurons/metabolism , Synapses/metabolism , Interneurons/physiology , Synaptic Transmission , Disks Large Homolog 4 Protein/metabolism
13.
Article in English | MEDLINE | ID: mdl-38642731

ABSTRACT

Current treatments for schizophrenia (SCZ) remain largely ineffective in one-third of patients. Recent studies using stem cell therapy show a close relationship between stem cell immunomodulatory function and neuroinflammation in SCZ. To better investigate the efficacy of stem cell therapy for SCZ, human umbilical cord blood mesenchymal stem cells (hUC-MSC) with powerful immunomodulatory effects were administered to rats via the tail vein (once a week for 5 consecutive weeks starting from the weaning period) using a maternal immune activation (MIA) rodent model. Open field, PPI, Western blotting, Q-PCR, and immunofluorescence were used to assess the biological effects of repeated tail vein injections of hUC-MSC in offspring rats following the MIA model of SCZ. The results indicated that offspring of MIA rats exhibited schizophrenia-like (SCZ-like) anxiety behavior, with observed microglial activation triggering neuroinflammation. Furthermore, levels of IBA1, HMGB1, and PSD95 were significantly up-regulated, while SYP was significantly down-regulated. It is suggested that hUCB-MSCs may act through HMGB1, Iba1, PSD95, and related pathway molecules to alleviate neuroinflammation and repair synaptic damage by regulating the activity state of microglia. Consequently, this could improve the abnormal behavior observed in MIA offspring rats.


Subject(s)
Anxiety , Disease Models, Animal , HMGB1 Protein , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Microglia , Rats, Sprague-Dawley , Schizophrenia , Animals , Rats , Schizophrenia/therapy , Schizophrenia/chemically induced , Mesenchymal Stem Cell Transplantation/methods , Humans , Female , Anxiety/therapy , HMGB1 Protein/metabolism , Pregnancy , Disks Large Homolog 4 Protein/metabolism , Calcium-Binding Proteins/metabolism , Microfilament Proteins/metabolism , Male , Fetal Blood/cytology , Neuroinflammatory Diseases , Synaptophysin/metabolism , Cord Blood Stem Cell Transplantation/methods , Prenatal Exposure Delayed Effects
14.
Cells ; 13(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38607009

ABSTRACT

Cold exposure exerts negative effects on hippocampal nerve development in adolescent mice, but the underlying mechanisms are not fully understood. Given that ubiquitination is essential for neurodevelopmental processes, we attempted to investigate the effects of cold exposure on the hippocampus from the perspective of ubiquitination. By conducting a ubiquitinome analysis, we found that cold exposure caused changes in the ubiquitination levels of a variety of synaptic-associated proteins. We validated changes in postsynaptic density-95 (PSD-95) ubiquitination levels by immunoprecipitation, revealing reductions in both the K48 and K63 polyubiquitination levels of PSD-95. Golgi staining further demonstrated that cold exposure decreased the dendritic-spine density in the CA1 and CA3 regions of the hippocampus. Additionally, bioinformatics analysis revealed that differentially ubiquitinated proteins were enriched in the glycolytic, hypoxia-inducible factor-1 (HIF-1), and 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathways. Protein expression analysis confirmed that cold exposure activated the mammalian target of rapamycin (mTOR)/HIF-1α pathway. We also observed suppression of pyruvate kinase M2 (PKM2) protein levels and the pyruvate kinase (PK) activity induced by cold exposure. Regarding oxidative phosphorylation, a dramatic decrease in mitochondrial respiratory-complex I activity was observed, along with reduced gene expression of the key subunits NADH: ubiquinone oxidoreductase core subunit V1 (Ndufv1) and Ndufv2. In summary, cold exposure negatively affects hippocampal neurodevelopment and causes abnormalities in energy homeostasis within the hippocampus.


Subject(s)
Hippocampus , Pyruvate Kinase , Mice , Animals , Pyruvate Kinase/metabolism , Hippocampus/metabolism , Disks Large Homolog 4 Protein/metabolism , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Mammals/metabolism
15.
J Neurosci Res ; 102(4): e25331, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651314

ABSTRACT

Circadian rhythms synchronize to light through the retinohypothalamic tract (RHT), which is a bundle of axons coming from melanopsin retinal ganglion cells, whose synaptic terminals release glutamate to the ventral suprachiasmatic nucleus (SCN). Activation of AMPA-kainate and NMDA postsynaptic receptors elicits the increase in intracellular calcium required for triggering the signaling cascade that ends in phase shifts. During aging, there is a decline in the synchronization of circadian rhythms to light. With electrophysiological (whole-cell patch-clamp) and immunohistochemical assays, in this work, we studied pre- and postsynaptic properties between the RHT and ventral SCN neurons in young adult (P90-120) and old (P540-650) C57BL/6J mice. Incremental stimulation intensities (applied on the optic chiasm) induced much lesser AMPA-kainate postsynaptic responses in old animals, implying a lower recruitment of RHT fibers. Conversely, a higher proportion of old SCN neurons exhibited synaptic facilitation, and variance-mean analysis indicated an increase in the probability of release in RHT terminals. Moreover, both spontaneous and miniature postsynaptic events displayed larger amplitudes in neurons from aged mice, whereas analysis of the NMDA and AMPA-kainate components (evoked by RHT electrical stimulation) disclosed no difference between the two ages studied. Immunohistochemistry revealed a bigger size in the puncta of vGluT2, GluN2B, and GluN2A of elderly animals, and the number of immunopositive particles was increased, but that of PSD-95 was reduced. All these synaptic adaptations could be part of compensatory mechanisms in the glutamatergic signaling to ameliorate the loss of RHT terminals in old animals.


Subject(s)
Aging , Glutamic Acid , Mice, Inbred C57BL , Suprachiasmatic Nucleus , Synaptic Transmission , Animals , Mice , Suprachiasmatic Nucleus/physiology , Suprachiasmatic Nucleus/metabolism , Synaptic Transmission/physiology , Aging/physiology , Glutamic Acid/metabolism , Male , Excitatory Postsynaptic Potentials/physiology , Visual Pathways/physiology , Vesicular Glutamate Transport Protein 2/metabolism , Patch-Clamp Techniques , Receptors, N-Methyl-D-Aspartate/metabolism , Disks Large Homolog 4 Protein/metabolism
16.
Sci Signal ; 17(834): eadn4556, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687826

ABSTRACT

Signaling mediated by brain-derived neurotrophic factor (BDNF), which is supported by the postsynaptic scaffolding protein PSD-95, has antidepressant effects. Conversely, clinical depression is associated with reduced BDNF signaling. We found that peptidomimetic compounds that bind to PSD-95 promoted signaling by the BDNF receptor TrkB in the hippocampus and reduced depression-like behaviors in mice. The compounds CN2097 and Syn3 both bind to the PDZ3 domain of PSD-95, and Syn3 also binds to an α-helical region of the protein. Syn3 reduced depression-like behaviors in two mouse models of stress-induced depression; CN2097 had similar but less potent effects. In hippocampal neurons, application of Syn3 enhanced the formation of TrkB-Gαi1/3-PSD-95 complexes and potentiated downstream PI3K-Akt-mTOR signaling. In mice subjected to chronic mild stress (CMS), systemic administration of Syn3 reversed the CMS-induced, depression-associated changes in PI3K-Akt-mTOR signaling, dendrite complexity, spine density, and autophagy in the hippocampus and reduced depression-like behaviors. Knocking out Gαi1/3 in hippocampal neurons prevented the therapeutic effects of Syn3, indicating dependence of these effects on the TrkB pathway. The findings suggest that compounds that induce the formation of PSD-95-TrkB complexes have therapeutic potential to alleviate depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Disks Large Homolog 4 Protein , Hippocampus , Signal Transduction , Animals , Disks Large Homolog 4 Protein/metabolism , Disks Large Homolog 4 Protein/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Depression/metabolism , Depression/drug therapy , Signal Transduction/drug effects , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Male , Mice, Knockout , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mice, Inbred C57BL , Behavior, Animal/drug effects , Neurons/metabolism , Neurons/drug effects
17.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673871

ABSTRACT

Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.


Subject(s)
Ketamine , Microglia , Rats, Sprague-Dawley , Synapses , Animals , Ketamine/administration & dosage , Ketamine/pharmacology , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Rats , Male , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Head Injuries, Closed/pathology , Axons/drug effects , Axons/metabolism , Axons/pathology , Disease Models, Animal , Geniculate Bodies/pathology , Geniculate Bodies/drug effects , Brain Concussion/pathology , Brain Concussion/metabolism , Disks Large Homolog 4 Protein/metabolism , Synapsins/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage
18.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38653560

ABSTRACT

Forebrain neurons deprived of activity become hyperactive when activity is restored. Rebound activity has been linked to spontaneous seizures in vivo following prolonged activity blockade. Here, we measured the time course of rebound activity and the contributing circuit mechanisms using calcium imaging, synaptic staining, and whole-cell patch clamp in organotypic slice cultures of mouse neocortex. Calcium imaging revealed hypersynchronous activity increasing in intensity with longer periods of deprivation. While activity partially recovered 3 d after slices were released from 5 d of deprivation, they were less able to recover after 10 d of deprivation. However, even after the longer period of deprivation, activity patterns eventually returned to baseline levels. The degree of deprivation-induced rebound was age-dependent, with the greatest effects occurring when silencing began in the second week. Pharmacological blockade of NMDA receptors indicated that hypersynchronous rebound activity did not require activation of Hebbian plasticity. In single-neuron recordings, input resistance roughly doubled with a concomitant increase in intrinsic excitability. Synaptic imaging of pre- and postsynaptic proteins revealed dramatic reductions in the number of presumptive synapses with a larger effect on inhibitory than excitatory synapses. Putative excitatory synapses colocalizing PSD-95 and Bassoon declined by 39 and 56% following 5 and 10 d of deprivation, but presumptive inhibitory synapses colocalizing gephyrin and VGAT declined by 55 and 73%, respectively. The results suggest that with prolonged deprivation, a progressive reduction in synapse number is accompanied by a shift in the balance between excitation and inhibition and increased cellular excitability.


Subject(s)
Disks Large Homolog 4 Protein , Neocortex , Animals , Neocortex/physiology , Disks Large Homolog 4 Protein/metabolism , Neurons/physiology , Neurons/metabolism , Organ Culture Techniques , Synapses/physiology , Patch-Clamp Techniques , Mice , Mice, Inbred C57BL , Female , Calcium/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Time Factors , Nerve Tissue Proteins
19.
J Integr Neurosci ; 23(3): 61, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38538223

ABSTRACT

BACKGROUND: Tanshinone IIA (TSIIA) is an element of the effective ingredients of Salvia miltiorrhiza Bunge (Labiatae), exhibits a significant therapeutic effect in brain neuroprotection. The focus of this study was the examination of synaptic plasticity of in Mg2+-free-induced epileptic hippocampus neurons and how TSIIA protects against it. METHODS: The purity of the primary hippocampal neurons extracted from Sprague Dawley rats was assessed within 24 hours by microtubule-associated protein (MAP2) immunofluorescence staining. A hippocampal neuron model for Mg2+-free-induced spontaneous recurrent epileptiform discharge was developed, five experimental groups were then randomized: blank (Blank), model (Model), TSIIA (TSIIA, 20 µM), LY294002 (LY294002, 25 µM), and TSIIA+LY294002 (TSIIA+LY294002, 20 µM+25 µM). FIJI software was used to examine variations of neurite complexity, total length of hippocampal neurons, number of primary dendrites and density of dendritic spines. Developmental regulation brain protein (Drebrin) and brain-derived neurotrophic factor (BDNF) expression was evaluated using immunofluorescence staining and the relative expression of phospho-protein kinase B (p-Akt)/Akt, BDNF, synaptophysin (SYN) and postsynaptic density 95 (PSD-95) determined by Western blot. RESULTS: In contrast to the model group, TSIIA drastically reduced damage to synaptic plasticity of hippocampal neurons caused by epilepsy (p < 0.05). The TSIIA group showed a significant increase in the relative expression of PSD-95, SYN, BDNF, and p-Akt/Akt (p < 0.01). CONCLUSIONS: TSIIA was effective in reducing harm to the synaptic plasticity of hippocampal neurons induced by persistent status epilepticus, with the possible mechanism being regulation of the phosphatidylinositol 3-kinase 56 (PI3K)/Akt signaling pathway.


Subject(s)
Abietanes , Epilepsy , Proto-Oncogene Proteins c-akt , Animals , Rats , Abietanes/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Disks Large Homolog 4 Protein/metabolism , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/metabolism , Hippocampus/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction
20.
J Cell Mol Med ; 28(8): e18178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553964

ABSTRACT

Bergamot essential oil (BEO) is an extract of the bergamot fruit with significant neuroprotective effect. This study was to investigate the effects and the underlying mechanism of BEO in mitigating depression. GC-MS were used to identify its constituents. Antidepressive properties of BEO were evaluated by sucrose preference test (SPT), force swimming test (FST) and open field test (OFT). Nissl staining was used to determine the number of Nissl bodies in hippocampus (HIPP) of rats. Changes in HIPP dendritic length and dendritic spine density were detected by Golgi-Cox staining. Immunohistochemistry and Western blot were used to detect the postsynaptic density protein-95 (PSD-95) and synaptophysin (SYP) in the HIPP of rats. The enzyme-linked immunosorbent assay was used to determine the 5-hydroxytryptamine (5-HT), insulin-like growth factor 1 (IGF-1) and interleukin-1ß (IL-1ß) in the HIPP, serum and cerebrospinal fluid (CSF) of rats. Inhaled BEO significantly improved depressive behaviour in chronic unpredictable mild stress (CUMS) rats. BEO increased Nissl bodies, dendritic length and spine density, PSD-95 and SYP protein in the HIPP. Additionally, BEO upregulated serum 5-HT, serum and CSF IGF-1, while downregulating serum IL-1ß. Collectively, inhaled BEO mitigates depression by protecting the plasticity of hippocampal neurons, hence, providing novel insights into treatment of depression.


Subject(s)
Depression , Oils, Volatile , Rats , Animals , Depression/drug therapy , Depression/etiology , Depression/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Insulin-Like Growth Factor I/metabolism , Serotonin/metabolism , Hippocampus/metabolism , Disks Large Homolog 4 Protein/metabolism , Neurons/metabolism , Stress, Psychological/complications , Stress, Psychological/drug therapy , Disease Models, Animal , Behavior, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...