Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 344
Filter
1.
Reprod Domest Anim ; 59(6): e14635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837470

ABSTRACT

A 1-year-old European shorthair male cat with a normally developed penis was subjected to genetic, endocrinological and histological studies due to unilateral cryptorchidism. The blood testosterone level was typical for males, while the level of anti-Mullerian hormone (AMH) was very low. Surgical removal of internal reproductive organs was followed by a histological study, which revealed inactive testicles with neoplastic changes and derivatives of Mullerian ducts. Cytogenetic analysis showed a normal XY sex chromosome complement and molecular analysis confirmed the presence of Y-linked genes (SRY and ZFY). Although the level of AMH was low, two normal copies of the AMH gene were found using droplet digital PCR (ddPCR). Analysis of the coding sequences of two candidate genes (AMH and AMHR2) for persistent Mullerian duct syndrome (PMDS) in the affected cat and in control male cats (n = 24) was performed using the Sanger sequencing method. In the affected cat, homozygosity was found for three novel missense variants in Exon 1 (one SNP) and Exon 5 (two SNPs) of AMH, but the same homozygous genotypes were also observed in one and two control cats, respectively, whose sex development was not examined. Three known synonymous variants with homozygous status were found in AMHR2. We conclude that the DNA variants identified in AMH and AMHR2 are not responsible for PMDS in the affected cat.


Subject(s)
Anti-Mullerian Hormone , Cat Diseases , Receptors, Peptide , Receptors, Transforming Growth Factor beta , Animals , Cats , Male , Anti-Mullerian Hormone/genetics , Cat Diseases/genetics , Receptors, Peptide/genetics , Receptors, Transforming Growth Factor beta/genetics , Cryptorchidism/genetics , Cryptorchidism/veterinary , Disorder of Sex Development, 46,XY/genetics , Disorder of Sex Development, 46,XY/veterinary , Mutation , Mutation, Missense
2.
Mol Genet Genomic Med ; 12(5): e2453, 2024 May.
Article in English | MEDLINE | ID: mdl-38769888

ABSTRACT

BACKGROUND: 46,XY sex reversal 11 (SRXY11) [OMIM#273250] is characterized by genital ambiguity that may range from mild male genital defects to gonadal sex reversal in severe cases. DHX37 is an RNA helicase that has recently been reported as a cause of SRXY11. So far, a total of 21 variants in DHX37 have been reported in 58 cases with 46,XY disorders of sex development (DSD). METHODS: Whole exome sequencing (WES) was conducted to screen for variations in patients with 46,XY DSD. The subcellular localization of mutant DHX37 proteins was detected by immunofluorescence. And the levels of mutant DHX37 proteins were detected via Western blotting. RESULTS: A novel pathogenic variant of DHX37 was identified in a patient with 46,XY DSD c.2012G > C (p.Arg671Thr). Bioinformatics analysis showed that the protein function of the variant was impaired. Compared with the structure of the wild-type DHX37 protein, the number of hydrogen bonds and interacting amino acids of the variant protein were changed to varying degrees. In vitro assays revealed that the variant had no significant effect on the intracellular localization of the protein but significantly reduced the expression level of the protein. CONCLUSIONS: Our finding further expands the spectrum of the DHX37 variant and could assist in the molecular diagnosis of 46,XY DSD patients.


Subject(s)
DEAD-box RNA Helicases , Disorder of Sex Development, 46,XY , Humans , Disorder of Sex Development, 46,XY/genetics , Disorder of Sex Development, 46,XY/pathology , Male , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Female , HEK293 Cells
3.
J Pediatr Endocrinol Metab ; 37(6): 575-579, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38650427

ABSTRACT

OBJECTIVES: Nuclear receptor subfamily 5 group A member 1 (NR5A1) is a transcription factor critical for the development of various organs. Pathogenic variants in NR5A1 are associated with a spectrum of disorders of sex development (DSD). CASE PRESENTATION: A 15-month-old baby, raised as a girl, was referred for genital swelling and ambiguous genitalia. Born to healthy consanguineous parents, the baby had a phallus, perineal hypospadias, labial fusion, and a hypoplastic scrotum. Hormonal evaluation showed normal levels, and ultrasonography revealed small gonads and absence of Müllerian derivatives. Post-human chorionic gonadotropin (hCG) testing indicated an adequate testosterone response. The karyotype was 46,XY, and in it was found a homozygous NR5A1 variant (c.307 C>T, p.Arg103Trp) in a custom 46 XY DSD gene panel. Notably, the patient exhibited complete sex reversal, hyposplenia, and no adrenal insufficiency. CONCLUSIONS: Previously, NR5A1 pathogenic variants were considered to be dominantly inherited, and homozygous cases were thought to be associated with adrenal insufficiency. Despite the homozygous pathogenic variant, our patient showed hyposplenism with normal adrenal function; this highlights the complexity of NR5A1 genotype-phenotype correlations. These patients should be monitored for adrenal insufficiency and DSD as well as splenic function.


Subject(s)
Disorder of Sex Development, 46,XY , Homozygote , Steroidogenic Factor 1 , Humans , Steroidogenic Factor 1/genetics , Disorder of Sex Development, 46,XY/genetics , Female , Male , Infant , Mutation , Prognosis
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 239-243, 2024 Feb 10.
Article in Chinese | MEDLINE | ID: mdl-38311567

ABSTRACT

OBJECTIVE: To analyze the clinical features and genetic basis of a child with Disorder of sex development (DSD). METHODS: A child who was admitted to the Linyi People's Hospital for primary amenorrhoea on July 29, 2019 was selected as the study subject. Clinical data of the child was collected. Chromosomal karyotyping and quantitative real-time PCR were used to detect Y chromosome microdeletions and other chromosomal aberrations. Next-generation sequencing was carried out for the child and her parents. Candidate variant was verified by Sanger sequencing and bioinformatic analysis. RESULTS: The child, a 13-year-old girl, has featured primary amenorrhoea and onset of secondary sex characteristics of males. Ultrasound exam had detected no uterus and definite ovarian structure, but narrow band vaginal hypoecho and curved cavernoid structure. The child was found to have a 46,XY karyotype without an AZF deletion. DNA sequencing revealed that she has harbored a maternally derived c.323delA (p.Q108Rfs*188) variant in the nuclear receptor subfamily 5 group A member 1 (NR5A1) gene, which may result in a truncated protein. The variant was classified as pathogenic (PVS1+PM2_Supporting+PP4) based on the guidelines from the American College of Medical Genetics and Genomics. CONCLUSION: The NR5A1: c.323delA variant probably underlay the pathogenesis of 46,XY DSD in this child. The discovery of the novel variant has enriched the mutational spectrum of the NR5A1 gene and provided a basis for clinical diagnosis, treatment and prenatal diagnosis.


Subject(s)
Amenorrhea , Disorder of Sex Development, 46,XY , Adolescent , Child , Female , Humans , Amenorrhea/genetics , Base Sequence , Chromosome Deletion , Mutation , Steroidogenic Factor 1/genetics , Disorder of Sex Development, 46,XY/genetics
5.
Andrology ; 12(1): 98-108, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37147882

ABSTRACT

PURPOSE: The etiology of 46, XY disorders of sex development (46, XY DSD) is complex, and studies have shown that different series of patients with 46, XY DSD has different genetic spectrum. In this study, we aimed to investigate the underlying genetic etiology in a Chinese series of patients with 46, XY DSD by whole exome sequencing (WES). METHODS: Seventy patients with 46, XY DSD were enrolled from the Peking Union Medical College Hospital (Beijing, China). The detailed clinical characteristics were evaluated, and peripheral blood was collected for WES to find the patients' rare variants (RVs) of genes related to 46, XY DSD. The clinical significance of the RVs was annotated according to American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS: A total of 57 RVs from nine genes were identified in 56 patients with 46, XY DSD, which include 21 novel RVs and 36 recurrent RVs. Based on the American ACMG guidelines, 43 variants were classified as pathogenic(P) or likely pathogenic (LP) variants and 14 variants were defined as variants of uncertain significance (VUS). P or LP variants were identified in 64.3% (45/70) patients of the series. Thirty-nine, 14, and 4 RVs were involved in the process of androgen synthesis and action, testicular determination and developmental process, and syndromic 46, XY DSD, respectively. The top three genes most frequently affected to cause 46, XY DSD were AR, SRD5A2, and NR5A1. Seven patients were found harboring RVs of the 46, XY DSD pathogenic genes identified in recent years, namely DHX37 in four patients, MYRF in two patients, and PPP2R3C in one patient. CONCLUSION: We identified 21 novel RVs of nine genes, which extended the genetic spectrum of 46, XY DSD pathogenic variants. Our study showed that 60% of the patients were caused by AR, SRD5A2 or NR5A1 P/LP variants. Therefore, polymerase chain reaction (PCR) amplification and Sanger sequencing of these three genes could be performed first to identify the pathogeny of the patients. For those patients whose pathogenic variants had not been found, whole-exome sequencing could be helpful in determining the etiology.


Subject(s)
Disorder of Sex Development, 46,XY , Humans , Male , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , China , Disorder of Sex Development, 46,XY/genetics , Disorder of Sex Development, 46,XY/pathology , Membrane Proteins/genetics , Mutation , Sexual Development , Testis/pathology , East Asian People/genetics , Steroidogenic Factor 1/genetics , Receptors, Antigen/genetics
6.
Am J Med Genet A ; 194(5): e63522, 2024 May.
Article in English | MEDLINE | ID: mdl-38131126

ABSTRACT

Despite significant advancements in rare genetic disease diagnostics, many patients with rare genetic disease remain without a molecular diagnosis. Novel tools and methods are needed to improve the detection of disease-associated variants and understand the genetic basis of many rare diseases. Long-read genome sequencing provides improved sequencing in highly repetitive, homologous, and low-complexity regions, and improved assessment of structural variation and complex genomic rearrangements compared to short-read genome sequencing. As such, it is a promising method to explore overlooked genetic variants in rare diseases with a high suspicion of a genetic basis. We therefore applied PacBio HiFi sequencing in a large multi-generational family presenting with autosomal dominant 46,XY differences of sexual development (DSD), for whom extensive molecular testing over multiple decades had failed to identify a molecular diagnosis. This revealed a rare SINE-VNTR-Alu retroelement insertion in intron 4 of NR5A1, a gene in which loss-of-function variants are an established cause of 46,XY DSD. The insertion segregated among affected family members and was associated with loss-of-expression of alleles in cis, demonstrating a functional impact on NR5A1. This case highlights the power of long-read genome sequencing to detect genomic variants that have previously been intractable to detection by standard short-read genomic testing.


Subject(s)
Disorder of Sex Development, 46,XY , Retroelements , Humans , Mutation , Introns/genetics , Retroelements/genetics , Disorder of Sex Development, 46,XY/genetics , Rare Diseases/genetics , Sexual Development , Steroidogenic Factor 1/genetics
7.
Elife ; 122023 10 17.
Article in English | MEDLINE | ID: mdl-37847154

ABSTRACT

DMRT1 is the testis-determining factor in several species of vertebrates, but its involvement in mammalian testes differentiation, where SRY is the testis-determining gene, remains ambiguous. So far, DMRT1 loss-of-function has been described in two mammalian species and induces different phenotypes: Disorders of Sex Development (46, XY DSD) in men and male infertility in mice. We thus abolished DMRT1 expression by CRISPR/Cas9 in a third species of mammal, the rabbit. First, we observed that gonads from XY DMRT1-/- rabbit fetuses differentiated like ovaries, highlighting that DMRT1 is involved in testis determination. In addition to SRY, DMRT1 is required in the supporting cells to increase the expression of the SOX9 gene, which heads the testicular genetic cascade. Second, we highlighted another function of DMRT1 in the germline since XX and XY DMRT1-/- ovaries did not undergo meiosis and folliculogenesis. XX DMRT1-/- adult females were sterile, showing that DMRT1 is also crucial for female fertility. To conclude, these phenotypes indicate an evolutionary continuum between non-mammalian vertebrates such as birds and non-rodent mammals. Furthermore, our data support the potential involvement of DMRT1 mutations in different human pathologies, such as 46, XY DSD as well as male and female infertility.


Animals that reproduce sexually have organs called gonads, the ovaries and testes, which produce eggs and sperm. These organs, which are different in males and females, originate from the same cells during the development of the embryo. As a general rule, the chromosomal sex of an embryo, which gets determined at fertilization, leads to the activation and repression of specific genes. This in turn, controls whether the cells that will form the gonads will differentiate to develop testes or ovaries. Disruption of the key genes involved in the differentiation of the gonads can lead to fertility problems, and in some cases, it can cause the gonads to develop in the 'opposite' direction, resulting in a sex reversal. Identifying these genes is therefore essential to know how to maintain or restore fertility. DMRT1 is a gene that drives the differentiation of gonadal cells into the testicular pathway in several species of animals with backbones, including species of fish, frogs and birds. However, its role in mammals ­ where testis differentiation is driven by a different gene called SRY ­ is not well understood. Indeed, when DMRT1 is disrupted in male humans it leads to disorders of sex development, while disrupting this gene in male mice causes infertility. To obtain more information about the roles of DMRT1 in mammalian species, Dujardin et al. disrupted the gene in a third species of mammal: the rabbit. Dujardin et al. observed that chromosomally-male rabbits lacking DMRT1 developed ovaries instead of testes, showing that in rabbits, both SRY and DMRT1 are both required to produce testes. Additionally, this effect is similar to what is seen in humans, suggesting that rabbits may be a better model for human gonadal differentiation than mice are. Additionally, Dujardin et al. were also able to show that in female rabbits, lack of DMRT1 led to infertility, an effect that had not been previously described in other species. The results of Dujardin et al. may lead to better models for gonadal development in humans, involving DMRT1 in the differentiation of testes. Interestingly, they also suggest the possibility that mutations in this gene may be responsible for some cases of infertility in women. Overall, these findings indicate that DMRT1 is a key fertility gene.


Subject(s)
Disorder of Sex Development, 46,XY , Testis , Animals , Female , Male , Rabbits , Disorder of Sex Development, 46,XY/genetics , Disorder of Sex Development, 46,XY/metabolism , Fertility/genetics , Gene Expression Regulation, Developmental , Gonads/metabolism , Mammals/genetics , Sex Determination Processes/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Testis/metabolism
8.
Stem Cell Res ; 71: 103154, 2023 09.
Article in English | MEDLINE | ID: mdl-37413951

ABSTRACT

The nuclear receptor subfamily 5, Group A, Member 1 (NR5A1) gene encodes steroidogenic factor 1 (SF1), which is necessary for development of steroid hormone-producing tissues including the gonad and adrenal gland. An induced pluripotent stem cell line (iPSC) LCHi002-B was generated from a participant with differences (disorders) of sex development (DSD) and multiple genetic variants including a large deletion in NR5A1, and three single nucleotide changes in DYNC2H1, PDE4D, and ZFPM2. The line presented typical morphology, expressed stem cell markers, differentiated into three germ layers, had normal karyotype, was mycoplasma-free, and carried mutations in NR5A1, DYNC2H1, PDE4D, and ZFPM2.


Subject(s)
Disorder of Sex Development, 46,XY , Induced Pluripotent Stem Cells , Humans , Steroidogenic Factor 1/genetics , Disorder of Sex Development, 46,XY/genetics , Mutation , Sexual Development/genetics
9.
Biomolecules ; 13(4)2023 04 19.
Article in English | MEDLINE | ID: mdl-37189438

ABSTRACT

Gonadal development is the first step in human reproduction. Aberrant gonadal development during the fetal period is a major cause of disorders/differences of sex development (DSD). To date, pathogenic variants of three nuclear receptor genes (NR5A1, NR0B1, and NR2F2) have been reported to cause DSD via atypical testicular development. In this review article, we describe the clinical significance of the NR5A1 variants as the cause of DSD and introduce novel findings from recent studies. NR5A1 variants are associated with 46,XY DSD and 46,XX testicular/ovotesticular DSD. Notably, both 46,XX DSD and 46,XY DSD caused by the NR5A1 variants show remarkable phenotypic variability, to which digenic/oligogenic inheritances potentially contribute. Additionally, we discuss the roles of NR0B1 and NR2F2 in the etiology of DSD. NR0B1 acts as an anti-testicular gene. Duplications containing NR0B1 result in 46,XY DSD, whereas deletions encompassing NR0B1 can underlie 46,XX testicular/ovotesticular DSD. NR2F2 has recently been reported as a causative gene for 46,XX testicular/ovotesticular DSD and possibly for 46,XY DSD, although the role of NR2F2 in gonadal development is unclear. The knowledge about these three nuclear receptors provides novel insights into the molecular networks involved in the gonadal development in human fetuses.


Subject(s)
Disorder of Sex Development, 46,XY , Ovotesticular Disorders of Sex Development , Receptors, Cytoplasmic and Nuclear , Humans , Male , Disorder of Sex Development, 46,XY/genetics , Mutation , Ovotesticular Disorders of Sex Development/genetics , Phenotype , Sexual Development , Testis , Receptors, Cytoplasmic and Nuclear/genetics
10.
Front Endocrinol (Lausanne) ; 14: 1059159, 2023.
Article in English | MEDLINE | ID: mdl-37065748

ABSTRACT

Objective: To determine the genetic etiology of a family pedigree with two patients affected by differences of sex development (DSD). Methods: Assess the clinical characteristics of the patients and achieve exome sequencing results and in vitro functional studies. Results: The 15-year-old proband, raised as female, presented with delayed puberty and short stature associated with atypical genitalia. Hormonal profile showed hypergonadotrophic hypogonadism. Imaging studies revealed the absence of a uterus and ovaries. The karyotype confirmed a 46, XY pattern. Her younger brother presented with a micropenis and hypoplastic scrotum with non-palpable testis and hypospadias. Laparoscopic exploration was performed on the younger brother. Streak gonads were found and removed due to the risk of neoplastic transformation. Post-operative histopathology showed the co-existence of Wolffian and Müllerian derivatives. Whole-exome sequencing identified a novel mutation (c.1223C>T, p. Ser408Leu) in the Asp-Glu-Ala-His-box helicase 37 gene, which was found to be deleterious by in silico analysis. Segregation analysis of the variant displayed a sex-limited, autosomal dominant, maternal inheritance pattern. In vitro experiments revealed that the substitution of 408Ser by Leu caused decreased DHX37 expression both at the mRNA and protein levels. Moreover, the ß-catenin protein was upregulated, and the p53 protein was unaltered by mutant DHX37. Conclusions: We described a novel mutation (c.1223C>T, p. Ser408Leu) of the DHX37 gene associated with a Chinese pedigree consisting of two 46, XY DSD patients. We speculated that the underlying molecular mechanism might involve upregulation of the ß-catenin protein.


Subject(s)
Disorder of Sex Development, 46,XY , Gonadal Dysgenesis , Humans , Male , Female , Adolescent , Disorder of Sex Development, 46,XY/genetics , Testis/pathology , Sexual Development , Gonadal Dysgenesis/pathology , Mutation
11.
Nat Rev Urol ; 20(7): 434-451, 2023 07.
Article in English | MEDLINE | ID: mdl-37020056

ABSTRACT

Sex development relies on the sex-specific action of gene networks to differentiate the bipotential gonads of the growing fetus into testis or ovaries, followed by the differentiation of internal and external genitalia depending on the presence or absence of hormones. Differences in sex development (DSD) arise from congenital alterations during any of these processes, and are classified depending on sex chromosomal constitution as sex chromosome DSD, 46,XY DSD or 46,XX DSD. Understanding the genetics and embryology of typical and atypical sex development is essential for diagnosing, treating and managing DSD. Advances have been made in understanding the genetic causes of DSD over the past 10 years, especially for 46,XY DSD. Additional information is required to better understand ovarian and female development and to identify further genetic causes of 46,XX DSD, besides congenital adrenal hyperplasia. Ongoing research is focused on the discovery of further genes related to typical and atypical sex development and, therefore, on improving diagnosis of DSD.


Subject(s)
46, XX Disorders of Sex Development , Disorder of Sex Development, 46,XY , Disorders of Sex Development , Male , Humans , Female , Disorders of Sex Development/diagnosis , Disorders of Sex Development/genetics , Testis , Sexual Development , Disorder of Sex Development, 46,XY/complications , Disorder of Sex Development, 46,XY/genetics , Disorder of Sex Development, 46,XY/therapy , 46, XX Disorders of Sex Development/complications , 46, XX Disorders of Sex Development/genetics
12.
BMC Pediatr ; 23(1): 182, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37072715

ABSTRACT

BACKGROUND: Adolescents with 46,XY disorders of sex development (DSD) face additional medical and psychological challenges. To optimize management and minimize hazards, correct and early clinical and molecular diagnosis is necessary. CASE PRESENTATION: We report a 13-year-old Chinese adolescent with absent Müllerian derivatives and suspected testis in the inguinal area. History, examinations, and assistant examinations were available for clinical diagnosis of 46,XY DSD. The subsequent targeting specific disease-causing genes, comprising 360 endocrine disease-causing genes, was employed for molecular diagnosis. A novel variation in nuclear receptor subfamily 5 group A member 1 (NR5A1) [c.64G > T (p.G22C)] was identified in the patient. In vitro functional analyses of the novel variant suggested no impairment to NR5A1 mRNA or protein expression relative to wild-type, and immunofluorescence confirmed similar localization of NR5A1 mutant to the cell nucleus. However, we observed decreased DNA-binding affinity by the NR5A1 variant, while dual-luciferase reporter assays showed that the mutant effectively downregulated the transactivation capacity of anti-Müllerian hormone. We described a novel NR5A1 variant and demonstrated its adverse effects on the functional integrity of the NR5A1 protein resulting in serious impairment of its modulation of gonadal development. CONCLUSIONS: This study adds one novel NR5A1 variant to the pool of pathogenic variants and enriches the adolescents of information available about the mutation spectrum of this gene in Chinese population.


Subject(s)
Disorder of Sex Development, 46,XY , Steroidogenic Factor 1 , Adolescent , Humans , Male , Disorder of Sex Development, 46,XY/diagnosis , Disorder of Sex Development, 46,XY/genetics , Disorder of Sex Development, 46,XY/pathology , East Asian People/genetics , Mutation , Steroidogenic Factor 1/genetics
13.
Mol Genet Genomics ; 298(3): 693-708, 2023 May.
Article in English | MEDLINE | ID: mdl-37004560

ABSTRACT

Disorders of sexual development (DSD) are an abnormal congenital conditions associated with atypical development of the urogenital tract and external genital structures. The steroidogenic acute regulatory (STAR) gene, associated with congenital lipoid adrenal hyperplasia (CLAH), is included in the targeted gene panel for the DSD diagnosis. Therefore, the genetic alterations of the STAR gene and their molecular effect were examined in the CLAH patients affected with DSD. Ten different Iranian families including twelve male pseudo-hermaphroditism patients with CLAH phenotype were studied using genetic linkage screening and STAR gene sequencing in the linked families to the STAR locus. Furthermore, the structural, dynamical, and functional impacts of the variants on the STAR in silico were analyzed. Sanger sequencing showed the pathogenic variant p.A218V in STAR gene, as the first report in Iranian population. Moreover, modeling and simulation analysis were performed using tools such as radius of gyration, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and molecular docking showed that p.A218V variant affects the residues interaction in cholesterol-binding site and the proper folding of STAR through increasing H-bound and the amount of α-Helix, deceasing total flexibility and changing fluctuations in some residues, resulting in reduced steroidogenic activity of the STAR protein. The study characterized the structural and functional changes of STAR caused by pathogenic variant p.A218V. It leads to limited cholesterol-binding activity of STAR, ultimately leading to the CLAH disease. Molecular dynamics simulation of STAR variants could help explain different clinical manifestations of CLAH disease.


Subject(s)
Adrenal Hyperplasia, Congenital , Phosphoproteins , Humans , Male , Adrenal Hyperplasia, Congenital/genetics , Adrenal Hyperplasia, Congenital/diagnosis , Iran , Molecular Docking Simulation , Mutation , Phosphoproteins/genetics , Sex Chromosome Disorders/genetics , Disorder of Sex Development, 46,XY/genetics
14.
J Endocrinol Invest ; 46(8): 1613-1622, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36745277

ABSTRACT

PURPOSE: 46,XY disorders of sex development (DSD) is the most complicated and common type of DSD. To date, more than 30 genes have been identified associated with 46,XY DSD. However, the mutation spectrum of 46,XY DSD is incomplete owing to the high genetic and clinical heterogeneity. This study aims to provide clinical and mutational characteristics of 18 Chinese patients with 46,XY DSD. METHODS: A total of 20 unrelated individuals with 46,XY DSD were recruited. Whole-exome sequencing (WES) or custom-panel sequencing combined Sanger sequencing were performed to detect the pathogenic mutations. The pathogenicity of the variant was assessed according to the American College of Medical Genetics and Genomics (ACMG) guidance and technical standards recommended by the ACMG and the Clinical Genome Resource (ClinGen). RESULTS: Six patients harbored NR5A1 mutations; two patients harbored NR0B1 mutations; six patients harbored SRD5A2 mutations; six patients harbored AR mutations. Six novel genetic variants were identified involved in three genes (NR5A1, NR0B1, and AR). CONCLUSION: We determined the genetic etiology for all enrolled patients. Our study expanded the mutation spectrum of 46,XY DSD and provided diagnostic evidence for patients with the same mutation in the future.


Subject(s)
Disorder of Sex Development, 46,XY , Disorders of Sex Development , Humans , Disorder of Sex Development, 46,XY/genetics , East Asian People , Mutation , Sexual Development , Phenotype , Disorders of Sex Development/diagnosis , Disorders of Sex Development/genetics , Steroidogenic Factor 1/genetics , Membrane Proteins/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics
15.
Sex Dev ; 17(1): 8-15, 2023.
Article in English | MEDLINE | ID: mdl-36724755

ABSTRACT

INTRODUCTION: Steroid 5-alpha reductase deficiency (5α-R2D) is a rare condition caused by genetic variants that reduce the activity of the enzyme that converts testosterone into dihydrotestosterone. The clinical spectrum of 5α-R2D is known to overlap with other 46,XY differences of sex development (DSD) such as androgen insensitivity or gonadal dysgenesis. However, the clinical trajectories of the aetiologies can differ, with 5α-R2D presenting its own challenges. METHODS: In this study, we have collated clinical information for five individuals with variants in SRD5A2 identified using research genetic testing in an Australian paediatric setting. RESULTS: We describe how a genetic finding resolved or confirmed a diagnosis for these individuals and how it guided clinical management and family counselling. CONCLUSION: This work highlights the importance of early genetic testing in children born with 46,XY DSD where it complements traditional first-line testing.


Subject(s)
Disorder of Sex Development, 46,XY , Genetic Testing , Male , Humans , Child , Mutation , Australia , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Disorder of Sex Development, 46,XY/genetics , Disorder of Sex Development, 46,XY/pathology , Testosterone , Membrane Proteins/genetics
16.
Mol Hum Reprod ; 29(2)2023 01 31.
Article in English | MEDLINE | ID: mdl-36617173

ABSTRACT

Disorders of sex development (DSD) are a group of clinical conditions with variable presentation and genetic background. Females with or without development of secondary sexual characters and presenting with primary amenorrhea (PA) and a 46,XY karyotype are one of the classified groups in DSD. In this study, we aimed to determine the genetic mutations in 25 females with PA and a 46,XY karyotype to show correlations with their phenotypes. Routine Sanger sequencing with candidate genes like SRY, AR, SRD5A2, and SF1, which are mainly responsible for 46,XY DSD in adolescent females, was performed. In a cohort of 25 patients of PA with 46,XY DSD, where routine Sanger sequencing failed to detect the mutations, next-generation sequencing of a targeted gene panel with 81 genes was used for the molecular diagnosis. The targeted sequencing identified a total of 21 mutations including 8 novel variants in 20 out of 25 patients with DSD. The most frequently identified mutations in our series were in AR (36%), followed by SRD5A2 (20%), SF1 (12%), DHX37 (4%), HSD17B3 (4%), and DMRT2 (4%). We could not find any mutation in the DSD-related genes in five (20%) patients due to complex molecular mechanisms in 46,XY DSD, highlighting the possibility of new DSD genes which are yet to be discovered in these disorders. In conclusion, genetic testing, including cytogenetics and molecular genetics, is important for the diagnosis and management of 46,XY DSD cases.


Subject(s)
Disorder of Sex Development, 46,XY , Gonadal Dysgenesis, 46,XY , Female , Humans , Disorder of Sex Development, 46,XY/genetics , Gonadal Dysgenesis, 46,XY/genetics , Mutation , Genetic Testing , Membrane Proteins/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics
17.
Sex Dev ; 17(1): 1-7, 2023.
Article in English | MEDLINE | ID: mdl-36626890

ABSTRACT

BACKGROUND: Persistent müllerian duct syndrome (PMDS) is characterized by the persistence of müllerian duct derivatives in otherwise normally virilized 46,XY males. Biallelic mutations of the anti-müllerian hormone (AMH) and AMH receptor type 2 (AMHR2) genes lead to PMDS type 1 and 2, respectively. AIM: The aims of the study were to report the clinical, hormonal, and genetic findings in a patient with PMDS and discuss surgical strategies to achieve successful orchidopexy. RESULTS: A 4-year-old boy was evaluated after the incidental finding of müllerian derivates during laparoscopy for nonpalpable gonads. Karyotype was 46,XY and laboratory tests revealed normal serum gonadotropin and androgen levels but undetectable serum AMH levels. PMDS was suspected. Molecular analysis revealed a novel variant c.902_929del in exon 5 and a previously reported mutation (c.367C>T) in exon 1 of the AMH gene. Successful orchidopexy was performed in two sequential surgeries in which the müllerian duct structure was preserved and divided to protect the vascular supply to the gonads. Histological evaluation of the testicular biopsy showed mild signs of dysgenesis. Doppler ultrasound showed blood flow in both testes positioned in the scrotum 1.5 years after surgery. CONCLUSION: PMDS is a rare entity that requires a high index of suspicion (from surgeons) when evaluating a patient with bilateral cryptorchidism. Surgical treatment is challenging and long-term follow-up is essential. Histological evaluation of the testis deserves further investigation.


Subject(s)
Disorder of Sex Development, 46,XY , Laparoscopy , Male , Humans , Child, Preschool , Anti-Mullerian Hormone/genetics , Disorder of Sex Development, 46,XY/genetics , Disorder of Sex Development, 46,XY/surgery , Disorder of Sex Development, 46,XY/diagnosis , Mutation/genetics
19.
Sex Dev ; 17(1): 26-31, 2023.
Article in English | MEDLINE | ID: mdl-36689917

ABSTRACT

INTRODUCTION: Disorders of sex development (DSDs) are congenital abnormalities in which chromosomal, gonadal, and anatomical sex development are atypical. One of these disorders, 46,XY DSD, is particularly difficult to diagnose and manage because its etiology and clinical phenotypes are highly heterogeneous. METHODS: We used a gene panel containing 141 genes implicated in DSDs to perform targeted next-generation sequencing (NGS) in 50 patients with 46,XY DSD. RESULTS: Gene variants were detected in 23 patients (46%). Among them, 13 patients had previously reported pathogenic or likely pathogenic variants, 9 patients had novel variants, and 1 patient had a previously reported variant of uncertain significance. Three of the novel variants were pathogenic, and the remaining were variants of uncertain significance; therefore, 16 patients had pathogenic or likely pathogenic variants according to ACMG guidelines, and the overall diagnostic rate of 46,XY DSD was 32%. The most common gene variants were SRD5A2 variants, followed by the AR variant. In addition, we analyzed the association between gene variants and clinical phenotypes. Most patients presented with multiple DSD phenotypes (i.e., two or more DSD phenotypes were observed, such as micropenis, hypospadias, and cryptorchidism), but the phenotype with the highest diagnostic rate was micropenis. CONCLUSION: Our results indicate that targeted NGS can effectively detect pathogenic gene variants in patients with 46,XY DSD.


Subject(s)
Disorder of Sex Development, 46,XY , Humans , Male , Phenotype , Disorder of Sex Development, 46,XY/diagnosis , Disorder of Sex Development, 46,XY/genetics , High-Throughput Nucleotide Sequencing , Sexual Development , Mutation/genetics , Membrane Proteins , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics
20.
Horm Res Paediatr ; 96(2): 169-179, 2023.
Article in English | MEDLINE | ID: mdl-34537773

ABSTRACT

BACKGROUND: Deviations of intrauterine sex determination and differentiation and postnatal sex development can result in a very heterogeneous group of differences of sex development (DSD) with a broad spectrum of phenotypes. Variants in genes involved in sexual development cause different types of DSD, but predicting the phenotype from an individual's genotype and vice versa remains challenging. SUMMARY: Next Generation Sequencing (NGS) studies suggested that oligogenic inheritance contributes to the broad manifestation of DSD phenotypes. This review will focus on possible oligogenic inheritance in DSD identified by NGS studies with a special emphasis on NR5A1variants as an example of oligogenic origin associated with a broad range of DSD phenotypes. We thoroughly searched the literature for evidence regarding oligogenic inheritance in DSD diagnosis with NGS technology and describe the challenges to interpret contribution of these genes to DSD phenotypic variability and pathogenicity. KEY MESSAGES: Variants in common DSD genes like androgen receptor (AR), mitogen-activated protein kinase kinase kinase 1 (MAP3K1), Hydroxy-Delta-5-Steroid Dehydrogenase 3 Beta- And Steroid Delta-Isomerase 2 (HSD3B2), GATA Binding Protein 4 (GATA4), zinc finger protein friend of GATA family member 2 (ZFPM2), 17b-hydroxysteroid dehydrogenase type 3 (HSD17B3), mastermind-like domain-containing protein 1 (MAMLD1), and nuclear receptor subfamily 5 group A member 1 (NR5A1) have been detected in combination with additional variants in related genes in DSD patients with a broad range of phenotypes, implying a role of oligogenic inheritance in DSD, while still awaiting proof. Use of NGS approach for genetic diagnosis of DSD patients can reveal more complex genetic traits supporting the concept of oligogenic cause of DSD. However, assessing the pathomechanistic contribution of multiple gene variants on a DSD phenotype remains an unsolved conundrum.


Subject(s)
Disorder of Sex Development, 46,XY , Humans , Mutation , Disorder of Sex Development, 46,XY/genetics , Genotype , Phenotype , Family
SELECTION OF CITATIONS
SEARCH DETAIL
...