Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 337
Filter
1.
Drug Deliv ; 31(1): 2354687, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38823413

ABSTRACT

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-associated death worldwide. Beside early detection, early diagnosis, and early surgery, it is urgent to try new strategies for the treatment of HCC. Triptolide (TPL) has been employed to treat HCC. However, its clinical applications were restricted by the narrow therapeutic window, severe toxicity, and poor water-solubility. In this study, we developed cancer cell membrane-camouflaged biomimetic PLGA nanoparticles loading TPL (TPL@mPLGA) with the homologous targeting property for the treatment of HCC. The TPL@mPLGA was successfully prepared with particle size of 195.5 ± 7.5 nm and zeta potential at -21.5 ± 0.2 mV with good stability. The drug loading (DL) of TPL@mPLGA was 2.94%. After Huh-7 cell membrane coating, the natural Huh-7 cell membrane proteins were found to be retained on TPL@mPLGA, thus endowing the TPL@mPLGA with enhanced accumulation at tumor site, and better anti-tumor activity in vitro and in vivo when compared with TPL or TPL@PLGA. The TPL@mPLGA showed enhanced anti-tumor effects and reduced toxicity of TPL, which could be adopted for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Diterpenes , Epoxy Compounds , Liver Neoplasms , Nanoparticles , Phenanthrenes , Polylactic Acid-Polyglycolic Acid Copolymer , Diterpenes/administration & dosage , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Epoxy Compounds/chemistry , Epoxy Compounds/administration & dosage , Epoxy Compounds/pharmacology , Phenanthrenes/administration & dosage , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/pharmacokinetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanoparticles/chemistry , Animals , Cell Line, Tumor , Mice , Cell Membrane/drug effects , Particle Size , Drug Carriers/chemistry , Mice, Nude , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice, Inbred BALB C
2.
Int J Nanomedicine ; 19: 3737-3751, 2024.
Article in English | MEDLINE | ID: mdl-38699684

ABSTRACT

Background: Chemo-photodynamic combination therapy has demonstrated significant potential in the treatment of cancer. Triptolide (TPL), a naturally derived anticancer agent, when combined with the photosensitizer Chlorin e6 (Ce6), has shown to provide enhanced anti-tumor benefits. However, the development of stimuli-responsive nanovehicles for the co-delivery of TPL and Ce6 could further enhance the efficacy of this combination therapy. Methods: In this study, we synthesized a pH/ROS dual-responsive mPEG-TK-PBAE copolymer, which contains a pH-sensitive PBAE moiety and a ROS-sensitive thioketal (TK) linkage. Through a self-assembly process, TPL and Ce6 were successfully co-loaded into mPEG-TK-PBAE nanoparticles, hereafter referred to as TPL/Ce6 NPs. We evaluated the pH- and ROS-sensitive drug release and particle size changes. Furthermore, we investigated both the in vitro suppression of cellular proliferation and induction of apoptosis in HepG2 cells, as well as the in vivo anti-tumor efficacy of TPL/Ce6 NPs in H22 xenograft nude mice. Results: The mPEG-TK-PBAE copolymer was synthesized through a one-pot Michael-addition reaction and successfully co-encapsulated both TPL and Ce6 by self-assembly. Upon exposure to acid pH values and high ROS levels, the payloads in TPL/Ce6 NPs were rapidly released. Notably, the abundant ROS generated by the released Ce6 under laser irradiation further accelerated the degradation of the nanosystem, thereby amplifying the tumor microenvironment-responsive drug release and enhancing anticancer efficacy. Consequently, TPL/Ce6 NPs significantly increased PDT-induced oxidative stress and augmented TPL-induced apoptosis in HepG2 cells, leading to synergistic anticancer effects in vitro. Moreover, administering TPL/Ce6 NPs (containing 0.3 mg/kg of TPL and 4 mg/kg of Ce6) seven times, accompanied by 650 nm laser irradiation, efficiently inhibited tumor growth in H22 tumor-bearing mice, while exhibiting lower systemic toxicity. Conclusion: Overall, we have developed a tumor microenvironment-responsive nanosystem for the co-delivery of TPL and Ce6, demonstrating amplified synergistic effects of chemo-photodynamic therapy (chemo-PDT) for hepatocellular carcinoma (HCC) treatment.


Subject(s)
Apoptosis , Chlorophyllides , Diterpenes , Liver Neoplasms , Mice, Nude , Phenanthrenes , Photochemotherapy , Photosensitizing Agents , Porphyrins , Reactive Oxygen Species , Animals , Humans , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Hep G2 Cells , Liver Neoplasms/drug therapy , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/administration & dosage , Porphyrins/pharmacokinetics , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/pharmacokinetics , Diterpenes/administration & dosage , Hydrogen-Ion Concentration , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/administration & dosage , Apoptosis/drug effects , Mice , Carcinoma, Hepatocellular/drug therapy , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacology , Epoxy Compounds/administration & dosage , Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Drug Liberation , Cell Proliferation/drug effects , Polyethylene Glycols/chemistry , Combined Modality Therapy
3.
Eur J Pharm Sci ; 198: 106784, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38705422

ABSTRACT

To investigate the effect of retinoids, such as retinol (ROL), retinal (RAL), and retinyl palmitate (RP), on epidermal integrity, skin deposition, and bioconversion to retinoic acid (RA). 3-D human skin equivalent model (EpiDermFT™) was used. Epidermal cellular integrity measured by TEER values was significantly higher for a topical treatment of ROL and RAL than RP (p < 0.05). The skin deposition (µM) of ROL and RAL was approximately 269.54 ± 73.94 and 211.35 ± 20.96, respectively, greater than that of RP (63.70 ± 37.97) over 2 h incubation. Spectral changes were revealed that the CO maximum absorbance occurred between 1600∼1800 cm-1 and was greater from ROL than that from RAL and RP, indicating conjugation of R-OH to R-CHO or R-COOH could strongly occur after ROL treatment. Subsequently, a metabolite from the bioconversion of ROL and RAL was identified as RA, which has a product ion of m/z 283.06, by using liquid a chromatography-mass spectrometry (LC-MS) - total ion chromatogram (TIC). The amount of bioconversion from ROL and RAL to RA in artificial skin was 0.68 ± 0.13 and 0.70 ± 0.10 µM at 2 h and 0.60 ± 0.04 and 0.57 ± 0.06 µM at 24 h, respectively. RA was not detected in the skin and the receiver compartment after RP treatment. ROL could be a useful dermatological ingredient to maintain epidermal integrity more effectively, more stably deposit on the skin, and more steadily metabolize to RA than other retinoids such as RAL and RP.


Subject(s)
Retinaldehyde , Retinoids , Skin , Tretinoin , Humans , Tretinoin/metabolism , Skin/metabolism , Retinoids/metabolism , Retinaldehyde/metabolism , Kinetics , Retinyl Esters/metabolism , Vitamin A/analogs & derivatives , Vitamin A/metabolism , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Mass Spectrometry , Models, Biological , Epidermis/metabolism , Skin Absorption
4.
Biomed Pharmacother ; 174: 116456, 2024 May.
Article in English | MEDLINE | ID: mdl-38552441

ABSTRACT

Acute lung injury (ALI) is a common and critical respiratory disorder caused by various factors, with viral infection being the leading contributor. Dehydroandrographolide (DAP), a constituent of the Chinese herbal plant Andrographis paniculata, exhibits a range of activities including anti-inflammatory, in vitro antiviral and immune-enhancing effects. This study evaluated the anti-inflammatory effects and pharmacokinetics (PK) profile of DAP in ALI mice induced by intratracheal instillation of Poly(I:C) (PIC). The results showed that oral administration of DAP (10-40 mg/kg) effectively suppressed the increase in lung wet-dry weight ratio, total cells, total protein content, accumulation of immune cells, inflammatory cytokines and neutrophil elastase levels in bronchoalveolar lavage fluid of PIC-treated mice. DAP concentrations, determined by an LC-MS/MS method, in plasma after receiving DAP (20 mg/kg) were unchanged compared to those in normal mice. However, DAP concentrations and relative PK parameters in the lungs were significantly altered in PIC-treated mice, exhibiting a relatively higher maximum concentration, larger AUC, and longer elimination half-life than those in the lungs of normal mice. These results demonstrated that DAP could improve lung edema and inflammation in ALI mice, and suggested that lung injury might influence the PK properties of DAP, leading to increased lung distribution and residence. Our study provides evidence that DAP displays significant anti-inflammatory activity against viral lung injury and is more likely to distribute to damaged lung tissue.


Subject(s)
Acute Lung Injury , Anti-Inflammatory Agents , Bronchoalveolar Lavage Fluid , Diterpenes , Poly I-C , Animals , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Diterpenes/pharmacokinetics , Diterpenes/pharmacology , Male , Mice , Andrographis/chemistry , Cytokines/metabolism , Lung/drug effects , Lung/metabolism , Lung/pathology , Leukocyte Elastase/metabolism
5.
Biomed Chromatogr ; 37(2): e5540, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36316300

ABSTRACT

Yuanhuacine is a Daphne-type diterpene ortho-ester and is one of the main active ingredients of genkwa flos. Anticancer activity of yuanhuacine has been well investigated in various tumor cells and animal models, but information on metabolism and pharmacokinetics is limited. The aims of the present study were to investigate the metabolic and pharmacokinetic profiles of yuanhuacine in rat. The metabolic profile of yuanhuacine was obtained from rat plasma, urine, and feces using ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. A total of seven metabolites were detected, and the proposed metabolic pathways involved oxidation and glucuronidation. A simple and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the determination of yuanhuacine in rat plasma. The linear range of yuanhuacine was 1-1000 ng/ml (R2  = 0.998). The intra- and inter-precision (coefficient of variation %) of the assay was 3.86-6.18% and 2.65-5.75%, respectively, and the intra- and inter-accuracy (relative error %) was -3.83-4.77% and -3.03-5.11%, respectively. The extraction recovery, matrix effect, stability, and incurred sample reanalysis of yuanhuacine were within acceptable levels. The established method was validated and successfully applied to the preclinical pharmacokinetic study of yuanhuacine. The absolute oral bioavailability of yuanhuacine was calculated as 1.14%, and it reached the maximum plasma concentration of 28.21 ± 2.79 ng/ml in rat plasma at 2 h in the oral dosing group. The apparent volume of distribution of intravenous and intragastric administrations was 26.07 ± 6.45 and 21.83 ± 3.54 L/kg, respectively. The half-life of elimination of yuanhuacine was 9.64 ± 1.53 h in the intravenous dosing group.


Subject(s)
Diterpenes , Tandem Mass Spectrometry , Rats , Animals , Chromatography, Liquid , Biological Availability , Tandem Mass Spectrometry/methods , Rats, Sprague-Dawley , Chromatography, High Pressure Liquid/methods , Diterpenes/pharmacokinetics , Administration, Oral , Reproducibility of Results
6.
Eur J Med Chem ; 243: 114694, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36115206

ABSTRACT

In this work, a series of water-soluble triptolide prodrugs were synthesized, and their triptolide release rate, pharmacokinetic characteristics and anti-tumor effect were measured. We found that inserting glycolic acid as a linker between triptolide and the cyclic amino acid accelerated the release of triptolide from prodrugs into the plasma while preserving its safety. Among them, prodrug TP-P1 was significantly better than Minnelide (the only water-soluble triptolide prodrug in clinical trials) in terms of release rate in plasma and synthetic yield. In mouse models of human acute myeloid leukemia (AML), TP-P1 was effective in reducing xenograft tumors at dose levels as low as 25 µg/kg, and eliminating tumors at dose 100 µg/kg. Furthermore, TP-P1 could significantly enhance the efficacy of FLT3 inhibitors in the treatment of AML. These experimental results showed the potential of TP-P1 as water-soluble prodrugs of triptolide.


Subject(s)
Diterpenes , Leukemia, Myeloid, Acute , Phenanthrenes , Prodrugs , Mice , Animals , Humans , Prodrugs/therapeutic use , Water , Phenanthrenes/therapeutic use , Phenanthrenes/pharmacokinetics , Diterpenes/therapeutic use , Diterpenes/pharmacokinetics , Epoxy Compounds/therapeutic use , Epoxy Compounds/pharmacokinetics , Leukemia, Myeloid, Acute/drug therapy
7.
Pharm Dev Technol ; 27(8): 881-891, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36154850

ABSTRACT

Triptolide (TP), a diterpenoid triepoxide, exhibits strong anti-cancer activities, especially against pancreatic cancer, but its clinical application is limited by organ toxicity. TP was combined with diammonium glycyrrhizinate (DG), as a cytoprotective agent, in a novel oral complex lipid emulsion (TP/DG-CLE) to increase the therapeutic index of TP against pancreatic cancer. The emulsion was produced by subjecting phospholipid and active components to high shear conditions using high-pressure homogenisation resulting in droplets of essentially neutral or small positive charge and consistent size below 200 nm. Pharmacokinetic studies in Sprague Dawley rats revealed an AUC(0-8 h) of TP following oral dosing of TP/DG-CLE that was fourfold higher than that achieved for TP/DG suspension, demonstrating significantly higher TP bioavailability and longer residence time in the bloodstream. Tissue distribution data obtained in mice demonstrated that TP/DG-CLE having a TP/DG weight ratio of 1:22.5 preferentially accumulated in the pancreas. Moreover, toxicology assays in rats provided indications of minor liver damage following daily administration of the emulsion for two weeks. Together these studies establish complex lipid emulsions containing TP and DG as a promising oral formulation for treatment of pancreatic cancer and establish a platform for developing new chemotherapeutic treatments.


Subject(s)
Diterpenes , Pancreatic Neoplasms , Rats , Mice , Animals , Emulsions , Rats, Sprague-Dawley , Diterpenes/pharmacokinetics , Pancreatic Neoplasms/drug therapy , Glycyrrhizic Acid , Lipids , Pancreatic Neoplasms
8.
Eur J Drug Metab Pharmacokinet ; 47(1): 19-30, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34816382

ABSTRACT

Diterpene lactones have been identified as active compounds in several medicinal plants, including Andrographis paniculata (Burm. f.) Nees, which is a medicinal plant that has been used for centuries across the world. Andrographolide is the major diterpene from A. paniculata and the main bioactive constituent of this species. The effectiveness of diterpenes can be affected by factors that limit their oral bioavailability, such as their poor water solubility, slow dissolution rates, low gastrointestinal absorption, high chemical and metabolic instability, and rapid excretion. In this context, the purpose of the present review is to compile and compare literature data on the bioavailability of diterpene lactones from A. paniculata after oral administration in medicinal plant extracts or in their free forms and to highlight strategies that have been used to improve their oral bioavailability. Considering that medicinal plant extracts are commonly used as dried powder that is reconstituted in water before oral administration, novel pharmaceutical formulation strategies that are used to overcome difficulties with diterpene solubility are also compiled in this review. The use of self-microemulsifying drug delivery systems is a good strategy to enhance the dissolution and consequently the bioavailability of andrographolide after oral administration of A. paniculata extract formulations. On the other hand, herbosome technology, pH-sensitive nanoparticles, nanosuspensions, nanoemulsions, nanocrystal suspensions, nanocrystal-based solid dispersions, and solid dispersion systems are useful to formulate andrographolide in its free form and increase its oral bioavailability. The use of a suitable andrographolide delivery system is essential to achieve its therapeutic potential.


Subject(s)
Andrographis paniculata , Diterpenes/pharmacokinetics , Lactones/pharmacokinetics , Plant Extracts/pharmacokinetics , Administration, Oral , Biological Availability , Diterpenes/administration & dosage , Drug Compounding , Humans , Lactones/administration & dosage , Phytotherapy , Plant Extracts/administration & dosage , Plants, Medicinal
9.
Biomed Pharmacother ; 146: 112583, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34954644

ABSTRACT

Andrographis paniculata (A. paniculata) is a traditional herbal medicine that has been widely used in Asian countries for hundreds of years. Andrographolide (AG) is a diterpene lactone extracted from A. paniculata. Owing to the in-depth study of pharmacological mechanisms, the therapeutic potential of AG, including its anti-inflammatory, anti-tumor, and immunoregulatory attributes, has attracted the attention of many researchers. Studies testing the therapeutic effects of AG have demonstrated desirable results in the treatment of a variety of clinical diseases. With high safety and various biological functions, AG might be a promising candidate for the treatment of musculoskeletal disorders. Here, we review all available literatures to summarize the pharmacological effects of AG and facilitate further researches on musculoskeletal diseases.


Subject(s)
Diterpenes/pharmacology , Musculoskeletal Diseases/pathology , Andrographis paniculata , Animals , Arthritis/pathology , Cell Line , Diterpenes/adverse effects , Diterpenes/pharmacokinetics , Drug Interactions , Humans , Intervertebral Disc Degeneration/pathology , Medicine, Traditional , Osteoporosis/pathology
10.
J Nanobiotechnology ; 19(1): 409, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34876139

ABSTRACT

BACKGROUND: Attenuating inflammatory response and relieving pain are two therapeutic therapeutical goals for rheumatoid arthritis (RA). Anti-inflammatory and analgesic drugs are often associated with many adverse effects due to nonspecific distribution. New drug delivery systems with practical targeting ability and other complementary strategies urgently need to be explored. To achieve this goal, an acupoint drug delivery system that can target deliver anti-inflammatory drugs and simulate acupuncture in relieving pain was constructed, which can co-deliver triptolide (TP) and 2-chloro-N (6)-cyclopentyl adenosine (CCPA). RESULTS: We have successfully demonstrated that acupoint nanocomposite hydrogel composed of TP-Human serum album nanoparticles (TP@HSA NPs) and CCPA could effectively treat RA. The result shows that CCPA-Gel can enhance analgesic effects specifically at the acupoint, while the mechanical and thermal pain threshold was 4.9 and 1.6 times compared with non-acupoint, respectively, and the nanocomposite gel further enhanced. Otherwise, the combination of acupoint and nanocomposite hydrogel exerted synergetic improvement of inflammation, bone erosion, and reduction of systemic toxicity. Furthermore, it could regulate inflammatory factors and restore the balance of Th17/Treg cells, which provided a novel and effective treatment strategy for RA. Interestingly, acupoint administration could improve the accumulation of the designed nanomedicine in arthritic paws (13.5% higher than those in non-acupoint at 48 h), which may explain the better therapeutic efficiency and low toxicity. CONCLUSION: This novel therapeutic approach-acupoint nanocomposite hydrogel, builds a bridge between acupuncture and drugs which sheds light on the combination of traditional and modern medicine.


Subject(s)
Acupuncture Points , Anti-Inflammatory Agents , Arthritis, Rheumatoid/metabolism , Diterpenes , Nanogels , Phenanthrenes , Acupuncture Therapy , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Behavior, Animal/drug effects , Delayed-Action Preparations , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Diterpenes/pharmacology , Drug Delivery Systems , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacokinetics , Epoxy Compounds/pharmacology , Humans , Male , Nanomedicine , Phenanthrenes/chemistry , Phenanthrenes/pharmacokinetics , Phenanthrenes/pharmacology , Rats , Rats, Sprague-Dawley
11.
J Nanobiotechnology ; 19(1): 360, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34749742

ABSTRACT

In addition to early detection, early diagnosis, and early surgery, it is of great significance to use new strategies for the treatment of hepatocellular carcinoma (HCC). Studies showed that the combination of sorafenib (SFN) and triptolide (TPL) could reduce the clinical dose of SFN and maintain good anti-HCC effect. But the solubility of SFN and TPL in water is low and both drugs have certain toxicity. Therefore, we constructed a biomimetic nanosystem based on cancer cell-platelet (PLT) hybrid membrane camouflage to co-deliver SFN and TPL taking advantage of PLT membrane with long circulation functions and tumor cell membrane with homologous targeting. The biomimetic nanosystem, SFN and TPL loaded cancer cell-PLT hybrid membrane-camouflaged liquid crystalline lipid nanoparticles ((SFN + TPL)@CPLCNPs), could simultaneously load SFN and TPL at the molar ratio of SFN to TPL close to 10:1. (SFN + TPL)@CPLCNPs achieved long circulation function and tumor targeting at the same time, promoting tumor cell apoptosis, inhibiting tumor growth, and achieving a better "synergy and attenuation effect", which provided new ideas for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Diterpenes , Liposomes , Liver Neoplasms/metabolism , Nanoparticles , Phenanthrenes , Sorafenib , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biomimetic Materials/chemistry , Blood Platelets/chemistry , Cell Line, Tumor , Cell Membrane/chemistry , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Diterpenes/pharmacology , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacokinetics , Epoxy Compounds/pharmacology , Humans , Liposomes/chemistry , Liposomes/pharmacokinetics , Liposomes/toxicity , Male , Mice , Mice, Inbred BALB C , Nanomedicine , Nanoparticles/chemistry , Nanoparticles/toxicity , Phenanthrenes/chemistry , Phenanthrenes/pharmacokinetics , Phenanthrenes/pharmacology , RAW 264.7 Cells , Sorafenib/chemistry , Sorafenib/pharmacokinetics , Sorafenib/pharmacology
12.
Molecules ; 26(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34833913

ABSTRACT

Dengue fever is a dangerous infectious endemic disease that affects over 100 nations worldwide, from Africa to the Western Pacific, and is caused by the dengue virus, which is transmitted to humans by an insect bite of Aedes aegypti. Millions of citizens have died as a result of dengue fever and dengue hemorrhagic fever across the globe. Envelope (E), serine protease (NS3), RNA-directed RNA polymerase (NS5), and non-structural protein 1 (NS1) are mostly required for cell proliferation and survival. Some of the diterpenoids and their derivatives produced by nature possess anti-dengue viral properties. The goal of the computational study was to scrutinize the effectiveness of diterpenoids and their derivatives against dengue viral proteins through in silico study. Methods: molecular docking was performed to analyze the binding affinity of compounds against four viral proteins: the envelope (E) protein, the NS1 protein, the NS3 protein, and the NS5 protein. Results: among the selected drug candidates, triptolide, stevioside, alepterolic acid, sphaeropsidin A, methyl dodovisate A, andrographolide, caesalacetal, and pyrimethamine have demonstrated moderate to good binding affinities (-8.0 to -9.4 kcal/mol) toward the selected proteins: E protein, NS3, NS5, and NS1 whereas pyrimethamine exerts -7.5, -6.3, -7.8, and -6.6 kcal/mol with viral proteins, respectively. Interestingly, the binding affinities of these lead compounds were better than those of an FDA-approved anti-viral medication (pyrimethamine), which is underused in dengue fever. Conclusion: we can conclude that diterpenoids can be considered as a possible anti-dengue medication option. However, in vivo investigation is recommended to back up the conclusions of this study.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Diterpenes/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Binding Sites , Computer Simulation , Dengue/drug therapy , Dengue/virology , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Drug Design , Humans , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/pharmacokinetics , Phytochemicals/pharmacology , Protein Binding , RNA Helicases/chemistry , RNA Helicases/drug effects , RNA Helicases/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/drug effects , Serine Endopeptidases/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/drug effects , Viral Envelope Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/drug effects , Viral Nonstructural Proteins/metabolism
13.
J Nanobiotechnology ; 19(1): 381, 2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34802453

ABSTRACT

BACKGROUND: The prognosis of patients with advanced gastric cancer (GC) remains unsatisfactory owing to distant metastasis and resistance to concurrent systemic therapy. Cancer-associated fibroblasts (CAFs), as essential participators in the tumor microenvironment (TME), play a vital role in tumor progression. Thus, CAFs-targeting therapy is appealing for remodeling TME and sensitizing GC to conventional systemic therapy. METHODS: Amphiphilic SN38 prodrug polymeric micelles (PSN38) and encapsulated the hydrophobic esterase-responsive prodrug of Triptolide (TPL), triptolide-naphthalene sulfonamide (TPL-nsa), were synthesized to form PSN38@TPL-nsa nanoparticles. Then, CAFs were isolated from fresh GC tissues and immortalized. TPL at low dose concentration was used to investigate its effect on CAFs and CAFs-induced GC cells proliferation and migration. The synergistic mechanism and antitumor efficiency of SN38 and TPL co-delivery nanoparticle were investigated both in vitro and in vivo. RESULTS: Fibroblast activation protein (FAP), a marker of CAFs, was highly expressed in GC tissues and indicated poorer prognosis. TPL significantly reduced CAFs activity and inhibited CAFs-induced proliferation, migration and chemotherapy resistance of GC cells. In addition, TPL sensitized GC cells to SN38 treatment through attenuated NF-κB activation in both CAFs and GC cells. PSN38@TPL-nsa treatment reduced the expression of collagen, FAP, and α-smooth muscle actin (α-SMA) in tumors. Potent inhibition of primary tumor growth and vigorous anti-metastasis effect were observed after systemic administration of PSN38@TPL-nsa to CAFs-rich peritoneal disseminated tumor and patient-derived xenograft (PDX) model of GC. CONCLUSION: TPL suppressed CAFs activity and CAFs-induced cell proliferation, migration and chemotherapy resistance to SN38 of GC. CAFs-targeted TPL and SN38 co-delivery nanoparticles exhibited potent efficacy of antitumor and reshaping TME, which was a promising strategy to treat advanced GC.


Subject(s)
Antineoplastic Agents , Micelles , Prodrugs , Stomach Neoplasms/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cancer-Associated Fibroblasts/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Diterpenes/pharmacology , Drug Synergism , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacokinetics , Epoxy Compounds/pharmacology , Female , Humans , Mice , Mice, Inbred BALB C , Phenanthrenes/chemistry , Phenanthrenes/pharmacokinetics , Phenanthrenes/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Tumor Microenvironment/drug effects
14.
Drug Deliv ; 28(1): 2127-2136, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34617835

ABSTRACT

The aim of this study was to develop and evaluate a triptolide phospholipid complex (TPCX) for the treatment of rheumatoid arthritis (RA) by transdermal delivery. TPCX was prepared and characterized by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR) analysis, transmission electron microscope (TEM), and scanning electron microscope (SEM). The solubility of TPCX was determined. Then, a TPCX cream was prepared to evaluate its percutaneous permeability and the antiarthritis effect. The transdermal permeability was determined using the Franz method, and a microdialysis system was used for skin pharmacokinetic study. A rat model of RA was prepared to evaluate the pharmacological effects. TPCX increased the solubility of triptolide in water, and the percutaneous permeability of TPCX cream was greatly enhanced compared with triptolide cream. The skin pharmacokinetic study indicated that TPCX cream has a longer biological half-life (t1/2) and mean residence time (MRT), but it has a shorter Tmax than that of triptolide cream in vivo. The area under the curve (AUC0-t)/AUC0-∞) and the peak concentration (Cmax) of TPCX cream were obviously higher than those of triptolide cream. The TPCX-loaded cream alleviated paw swelling and slowed down the progression of arthritis by inhibiting the inflammatory response by down regulating the TNF-α, IL-1ß, and IL-6 levels, thus exhibiting excellent antiarthritic effects. In summary, the prepared TPCX effectively increases the hydrophilicity of triptolide, which is good for its percutaneous absorption and enhances its effect on RA rats. TPCX can be a good candidate for the transdermal delivery to treat RA.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Diterpenes/pharmacology , Immunosuppressive Agents/pharmacology , Phenanthrenes/pharmacology , Phospholipids/chemistry , Administration, Cutaneous , Animals , Area Under Curve , Chemistry, Pharmaceutical , Diterpenes/administration & dosage , Diterpenes/pharmacokinetics , Dose-Response Relationship, Drug , Drug Liberation , Drug Stability , Epoxy Compounds/administration & dosage , Epoxy Compounds/pharmacokinetics , Epoxy Compounds/pharmacology , Half-Life , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/pharmacokinetics , Inflammation Mediators/metabolism , Male , Phenanthrenes/administration & dosage , Phenanthrenes/pharmacokinetics , Rats , Rats, Wistar
15.
Molecules ; 26(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34361662

ABSTRACT

Erinacine A, derived from the mycelia of Hericium erinaceus, has attracted much attention due to its neuroprotective properties. However, very few studies have been conducted on the bioavailability, tissue distribution, and protein binding of erinacine A. This study aimed to investigate the bioavailability, tissue distribution, and protein binding of erinacine A in Sprague-Dawley rats. After oral administration (po) and intravenous administration (iv) of 2.381 g/kg BW of the H. erinaceus mycelia extract (equivalent to 50 mg/kg BW of erinacine A) and 5 mg/kg BW of erinacine A, respectively, the absolute bioavailability of erinacine A was estimated as 24.39%. Erinacine A was detected in brain at 1 h after oral dosing and reached the peak at 8 h. Protein binding assay showed unbound erinacine A fractions in brain to blood ratio is close to unity, supporting passive diffusion as the dominating transport. Feces was the major route for the elimination of erinacine A. This study is the first to show that erinacine A can penetrate the blood-brain barrier of rats by the means of passive diffusion and thus support the development of H. erinaceus mycelia for the improvement of neurohealth.


Subject(s)
Diterpenes/metabolism , Diterpenes/pharmacokinetics , Hericium/chemistry , Mycelium/chemistry , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacokinetics , Tandem Mass Spectrometry/methods , Administration, Intravenous , Administration, Oral , Animals , Biological Availability , Blood-Brain Barrier/metabolism , Chromatography, Liquid/methods , Diterpenes/administration & dosage , Feces/chemistry , Male , Protein Binding , Rats , Rats, Sprague-Dawley , Tissue Distribution
16.
Int J Nanomedicine ; 16: 4251-4276, 2021.
Article in English | MEDLINE | ID: mdl-34211271

ABSTRACT

AIM: Retinyl palmitate (RP), the most stable vitamin A derivative, is used to treat photoaging and other skin disorders. The need to minimize the adverse effects of topical drug administration has led to an enhanced interest in loading RP on ethosomes for topical drug delivery. The aim of the current study was to prepare and compare the performance of RP decorated ethosomal hydrogel with tretinoin cream in the treatment of acne vulgaris as an approach to improve drug efficacy and decrease its side effects. METHODS: RP-loaded ethosomes were prepared using the injection sonication technique. A Box-Behnken design using Design Expert® software was used for the optimization of formulation variables. Particle size, zeta potential (ZP), entrapment efficiency percent (EE%), % drug release, and permeation over 24 h of different formulations were determined. The optimal formulation was incorporated into a hydrogel. Finally, the efficacy and tolerability of the optimized RP ethosomal hydrogel were clinically evaluated for acne treatment using a split-face comparative clinical study. RESULTS: The optimized ethosomal RP showed particle size of 195.8±5.45 nm, ZP of -62.1±2.85 mV, EE% of 92.63±4.33%, drug release % of 96.63±6.81%, and drug permeation % of 85.98 ±4.79%. Both the optimized RP ethosomal hydrogel and tretinoin effectively reduced all types of acne lesions (inflammatory, non-inflammatory, and total lesions). However, RP resulted in significantly lower non-inflammatory and total acne lesion count than the marketed tretinoin formulation. Besides, RP-loaded ethosomes showed significantly improved tolerability compared to marketed tretinoin with no or minimal skin irritation symptoms. CONCLUSION: RP ethosomal hydrogel is considerably effective in controlling acne vulgaris with excellent skin tolerability. Therefore, it represents an interesting alternative to conventional marketed tretinoin formulation for topical acne treatment.


Subject(s)
Acne Vulgaris/drug therapy , Diterpenes/administration & dosage , Hydrogels/chemistry , Hydrogels/pharmacology , Retinyl Esters/administration & dosage , Administration, Cutaneous , Adult , Animals , Diterpenes/adverse effects , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Drug Delivery Systems/methods , Drug Liberation , Female , Humans , Hydrogels/adverse effects , Male , Particle Size , Prospective Studies , Rats, Wistar , Retinyl Esters/adverse effects , Retinyl Esters/chemistry , Retinyl Esters/pharmacokinetics , Skin Absorption/drug effects , Skin Irritancy Tests , Tretinoin/administration & dosage , Tretinoin/pharmacology
17.
Pharm Res ; 38(7): 1157-1168, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34145531

ABSTRACT

PURPOSE: Cyclodextrin (CD) is commonly used to enhance the solubility of oral drugs. However, with the increase of CD concentrations, the fraction of free drug molecules decreases, which may potentially impede drug absorption. This study aims to predict the optimal ratio between drug and CD to achieve the best absorption efficiency by computational simulation. METHODS: First, a physiologically based pharmacokinetic (PBPK) model was developed. This model can continuously adjust absorption according to free drug fraction and was validated against two model drugs, progesterone (PG) and andrographolide (AG). The further analysis involves 3-D surface graphs to investigate the relationship between free drug amount, theoretically absorbable concentration, and contents of drug and CD in the formulation. RESULTS: The PBPK model predicted the PK behavior of two drugs well. The concentration ratio of drug to CD, leading to maximal free drug amount and the best absorption efficiency, is nearly the same as the slope determined in the phase solubility test. The new modified PBPK model and 3-D surface graph can easily predict the absorption difference of formulations with various drug/CD ratios. CONCLUSION: This PBPK model and 3-D surface graph can predict the absorption and determine the optimal concentration ratio of CD formulation, which could accelerate the R&D of CD formulation.


Subject(s)
Cyclodextrins/chemistry , Excipients/chemistry , Intestinal Absorption , Models, Biological , Administration, Oral , Chemistry, Pharmaceutical , Computer Simulation , Diterpenes/administration & dosage , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Drug Compounding/methods , Humans , Progesterone/administration & dosage , Progesterone/chemistry , Progesterone/pharmacokinetics , Solubility , Surface Properties
18.
Food Funct ; 12(9): 3883-3897, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33978004

ABSTRACT

We systematically investigated the impact of oil droplet diameter (≈0.15, 1.6, and 11 µm) on the bioaccessibility of three oil-soluble vitamins (vitamin A palmitate, vitamin D, and vitamin E acetate) encapsulated within soybean oil-in-water emulsions stabilized by quillaja saponin. Lipid digestion kinetics decreased with increasing droplet size due to the reduction in oil-water interfacial area. Vitamin bioaccessibility decreased with increasing droplet size from 0.15 to 11 µm: 87 to 39% for vitamin A; 76 to 44% for vitamin D; 77 to 21% for vitamin E. Vitamin bioaccessibility also decreased as their hydrophobicity and molecular weight increased, probably because their tendency to remain inside the oil droplets and/or be poorly solubilized by the mixed micelles increased. Hydrolysis of the esterified vitamins also occurred under gastrointestinal conditions: vitamin A palmitate (∼90%) and vitamin E acetate (∼3%). Consequently, the composition and structure of emulsion-based delivery systems should be carefully designed when creating vitamin-fortified functional food products.


Subject(s)
Diterpenes/pharmacokinetics , Gastrointestinal Tract/physiology , Retinyl Esters/pharmacokinetics , Vitamin D/pharmacokinetics , Vitamin E/pharmacokinetics , Biological Availability , Capsules , Digestion , Diterpenes/chemistry , Drug Carriers/chemistry , Drug Liberation , Emulsions , Hydrophobic and Hydrophilic Interactions , In Vitro Techniques , Lipid Metabolism , Micelles , Particle Size , Retinyl Esters/chemistry , Solubility , Soybean Oil/chemistry , Vitamin D/chemistry , Vitamin E/chemistry
19.
Pharmacotherapy ; 41(5): 451-456, 2021 05.
Article in English | MEDLINE | ID: mdl-33797776

ABSTRACT

STUDY OBJECTIVE: Lefamulin is a novel IV and oral pleuromutilin recently approved for the treatment of community-acquired bacterial pneumonia (CABP). Given that renal comorbidities are common in patients admitted for CABP, understanding the pharmacokinetics of lefamulin in the face of severe renal impairment, including those requiring hemodialysis, is needed. DESIGN: Open-label, Phase-1 pharmacokinetic study. SETTING: Research Study Center. PATIENTS: Twenty-three matched subjects were included, seven with "Normal" renal function (creatinine clearance >90 ml/min), eight with "Severe" renal impairment (glomerular filtration rate <30 ml/min/1.73 m2 ), and eight subjects requiring hemodialysis. MEASUREMENTS AND MAIN RESULTS: Subjects were administered a single dose of lefamulin IV 150 mg as a 1-h infusion. Subjects in the hemodialysis group started hemodialysis within 1 h after lefamulin infusion (On dialysis), as well as, on a non-dialysis day (Off dialysis). Plasma, urine, and dialysate fluid were collected for 36 h and analyzed for lefamulin and its major metabolite, BC-8041. Lefamulin was primarily excreted non-renally across groups. Statistical analyses revealed lefamulin and BC-8041 pharmacokinetics were similar between Normal and Severe groups, except for renal clearance, which decreased in Severe subjects (mean 1.3 L/h Normal vs. 0.4 L/h Severe). Likewise, lefamulin pharmacokinetics during on and off dialysis were unchanged, with lefamulin not measurably filtered in dialysate fluid. Two, three, and three subjects reported drug-related treatment-emergent adverse events (TEAE) in Normal, Severe, and Hemodialysis groups, respectively. All TEAEs were mild, except one (infusion-site reaction) that was classified as moderate. CONCLUSION: No dosage adjustment is required for patients with renal impairment, and lefamulin can be administered without regard to hemodialysis timing.


Subject(s)
Diterpenes , Polycyclic Compounds , Renal Dialysis , Renal Insufficiency , Thioglycolates , Administration, Intravenous , Diterpenes/administration & dosage , Diterpenes/adverse effects , Diterpenes/pharmacokinetics , Humans , Polycyclic Compounds/administration & dosage , Polycyclic Compounds/adverse effects , Polycyclic Compounds/pharmacokinetics , Renal Insufficiency/drug therapy , Renal Insufficiency/therapy , Thioglycolates/administration & dosage , Thioglycolates/adverse effects , Thioglycolates/pharmacokinetics
20.
Future Med Chem ; 13(9): 805-816, 2021 05.
Article in English | MEDLINE | ID: mdl-33821685

ABSTRACT

Background: Fibroleukin-2 protein (FGL2) causes redevelopment of brain tumors. Inhibition of these proteins has shown to improve glioblastoma prognosis and treatment efficacy. Aim: The current study gathered recently exploited natural compounds that suppress glioblastoma proliferation in vitro, tested against FGL2 protein. Method: Twenty-five compounds were explored through a virtual screening platform. Results: Three natural compounds (betanine, hesperetin and ovatodiolide) hit the active site of FGL2. Furthermore, the influence of these compounds was also assessed using in silico gene expression, and ADMET tools showed downregulation of some genes, which caused rapid tumor development while possessing a moderate acute toxicity and pharmacokinetic profile. Conclusion: Our study presents three compounds that are good candidates for evaluation in FGL2 mutated glioblastoma animal models.


Subject(s)
Antineoplastic Agents/chemistry , Betacyanins/chemistry , Diterpenes/chemistry , Fibrinogen/metabolism , Glioblastoma/diagnosis , Glioblastoma/drug therapy , Hesperidin/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Betacyanins/pharmacokinetics , Cell Proliferation/drug effects , Computer Simulation , Diterpenes/pharmacokinetics , Drug Screening Assays, Antitumor , Fibrinogen/genetics , Gene Expression Regulation , Hesperidin/pharmacokinetics , Humans , Molecular Targeted Therapy , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...