Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G591-G606, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38469632

ABSTRACT

Ulcerative colitis (UC) is an idiopathic inflammatory disease of the large intestine, which impacts millions worldwide. Current interventions aimed at treating UC symptoms can have off-target effects, invoking the need for alternatives that may provide similar benefits with less unintended consequences. This study builds on our initial data, which showed that panaxynol-a novel, potent, bioavailable compound found in American ginseng-can suppress disease severity in murine colitis. Here we explore the underlying mechanisms by which panaxynol improves both chronic and acute murine colitis. Fourteen-week-old C57BL/6 female mice were either given three rounds of dextran sulfate sodium (DSS) in drinking water to induce chronic colitis or one round to induce acute colitis. Vehicle or panaxynol (2.5 mg/kg) was administered via oral gavage three times per week for the study duration. Consistent with our previous findings, panaxynol significantly (P < 0.05) improved the disease activity index and endoscopic scores in both models. Using the acute model to examine potential mechanisms, we show that panaxynol significantly (P < 0.05) reduced DSS-induced crypt distortion, goblet cell loss, and mucus loss in the colon. 16S Sequencing revealed panaxynol altered microbial composition to suppress colitis-enriched genera (i.e., Enterococcus, Eubacterium, and Ruminococcus). In addition, panaxynol significantly (P < 0.05) suppressed macrophages and induced regulatory T-cells in the colonic lamina propria. The beneficial effects of panaxynol on mucosal and crypt architecture, combined with its microbial and immune-mediated effects, provide insight into the mechanisms by which panaxynol suppresses murine colitis. Overall, this data is promising for the use of panaxynol to improve colitis in the clinic.NEW & NOTEWORTHY In the current study, we report that panaxynol ameliorates chemically induced murine colitis by improving colonic crypt and mucosal architecture, suppressing colitis-enriched microbes, reducing macrophages, and promoting the differentiation of regulatory T-cells in the colonic lamina propria. This study suggests that this novel natural compound may serve as a safe and effective treatment option for colitis patients.


Subject(s)
Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Intestinal Mucosa , Mice, Inbred C57BL , Animals , Female , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Gastrointestinal Microbiome/drug effects , Colitis/drug therapy , Colitis/chemically induced , Colitis/pathology , Colitis/immunology , Colitis/microbiology , Fatty Alcohols/pharmacology , Diynes/pharmacology , Disease Models, Animal , Colon/drug effects , Colon/pathology , Colon/immunology , Colon/microbiology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/microbiology
2.
ChemMedChem ; 18(9): e202300013, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36852543

ABSTRACT

Eugenol and isoeugenol, secondary metabolites isolated from the plant Myristica fragrans have displayed antifungal activities against Aspergillus fumigatus (IC50 1900 µM). Compounds having conjugated unsaturation have been of great use as antifungals i. e. amphotericin B, nystatin and terbinafine etc. Hence, in the present study, we have designed and synthesised 1,3-diynes by utilizing Glaser-Hay and Cadiot-Chodkiewicz coupling reactions to furnish possible antifungal agents. Synthesis of 1,6-diphenoxyhexa-2,4-diyne derivatives was achieved by Cu(I) catalysed coupling of propargylated eugenol, isoeugenol, guaiacol, vanillin and dihydrogenated eugenol or eugenol in good to excellent yields. All the synthesized compounds were evaluated against pathogenic fungus A. fumigatus. Among all the synthesized compounds, one of the compounds was found to be exhibiting promising antifungal activity with IC50 value of 7.75 µM thereby suggesting that this type of scaffold could pave the way for developing new antifungal agents. The most active compound was found to be low cytotoxic when assayed against L-132 cancer cell line. Effect of the most active compound on ergosterol biosynthesis has also been studied. Also, the most active compound exhibited significant anti-biofilm activity although the concentration was found to be higher than its anti-fungal activity. Morphological changes in the biofilm were remarkable under confocal laser scanning microscopy.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Eugenol/pharmacology , Eugenol/metabolism , Diynes/pharmacology , Microbial Sensitivity Tests
3.
Sci Total Environ ; 852: 158502, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36058332

ABSTRACT

Mosquitoes' current insecticide resistance status in available public health insecticides is a serious threat to mosquito control initiatives. Microbe-based control agents provide an alternative to conventional pesticides and insecticides, as they can be more targeted than synthetic insecticides. The present study was focused on identifying and investigating the mosquitocidal potential of Cladophialophora bantiana, an endophytic fungus isolated from Opuntia ficus-indica. The Cladophialophora species was identified through phylogenetic analysis of the rDNA sequence. The isolated fungus was first evaluated for its potential to produce metabolites against Aedes aegpti and Culex quinquefasciatus larvae in the 1-4th instar. The secondary metabolites of mycelium extract were assessed at various test doses (100, 200, 300, 400, and 500 µg/mL) in independent bioassays for each instar of selected mosquito larvae. After 48 h of exposure, A. aegypti expressed LC50 values of 13.069, 18.085, 9.554, and 11.717 µg/mL and LC90 = 25.702, 30.860, 17.275, and 19.601 µg/mL; followed by C. quinquefasciatus LC50 = 14.467, 11.766, 5.934, and 7.589 µg/mL, and LC90 = 29.529, 20.767, 11.192, and 13.296 µg/mL. The mean % of ovicidal bioassay was recorded 120 h after exposure. The hatchability (%) was proportional to mycelia metabolite concentration. The enzymatic level of acetylcholinesterase in fungal mycelial metabolite treated 4th instar larvae indicated a dose-dependent pattern. The GC-MS profile of C. bantiana extracts identified five of the most abundant compounds, namely cyclobutane, trans-3-undecene-1,5-diyne, 1-bromo-2-chloro, propane, 1,2,3-trichloro-2-methyl-, 5,5,10,10-tetrachlorotricyclo, and phenol, which had the killing effect in mosquitoes. Furthermore, the C. bantiana fungus ethyl acetate extracts had a strong larvicidal action on A. aegypti and C. quinquefasciatus. Finally, the toxicity test on zebrafish embryos revealed the induction of malformations only at concentrations above 1 mg/mL. Therefore, our study pioneered evidence that C. bantiana fungal metabolites effectively control A. aegypti and C. qunquefasciastus and show less lethality in zebrafish embryos at concentrations up to 500 µg/mL.


Subject(s)
Aedes , Anopheles , Culex , Cyclobutanes , Insecticides , Animals , Zebrafish , Insecticides/toxicity , Acetylcholinesterase , Propane/pharmacology , Phylogeny , Cyclobutanes/pharmacology , Plant Extracts/pharmacology , Mosquito Control , Larva , Phenols , DNA, Ribosomal , Diynes/pharmacology , Plant Leaves
4.
J Biomol Struct Dyn ; 40(23): 13136-13153, 2022.
Article in English | MEDLINE | ID: mdl-34583618

ABSTRACT

We developed 1,3-diynyl derivatives of noscapine (an opium alkaloid) through in silico combinatorial approach and screened out a panel of promising derivatives that bind tubulin and display anticancer activity. The selected derivatives such as 9-4-tBu-Ph-Diyne (20p), 9-3,4-Di-Cl-Diyne (20k) and 9-3,4-Di-F-Diyne (22s) noscapinoids revealed improved predicted binding energy of -6.676 kcal/mol for 20p, -7.294 kcal/mol for 20k and -7.750 kcal/mol for 20s respectively in comparison to noscapine (-5.246 kcal/mol). These 1,3-diynyl derivatives (20p, 29k and 20s) were strategically synthesized in high yields by regioselective modification of noscapine scaffold and HPLC purified (purity is >96%). The decrease in intrinsic fluorescence of purified tubulin to 8.39%, 17.39% and 25.47% by 20p, 20k and 20s respectively, compared to control suggests their binding capability to tubulin. Their cytotoxicity activity was validated based on cellular studies using two human breast adenocarcinoma (MCF-7 and MDA-MB-231), a panel of primary breast tumor cells and one normal human embryonic kidney cell (293 T). The 1,3-diynyl noscapinoids, 20p, 20k and 20s inhibited cellular proliferation in all the cancer cells that ranged between 6.2 and 38.9 µM, without affecting the normal healthy cells (cytotoxicity is <5% at 100 µM). Further, these novel derivatives arrest cell cycle in the G2/M-phase, followed by induction of apoptosis to cancer cells. Thus, we conclude that 1,3-diynyl-noscapinoids have great potential to be a novel therapeutic agent for breast cancers.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Noscapine , Humans , Female , Breast Neoplasms/drug therapy , Tubulin/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Cell Proliferation , Diynes/pharmacology , Cell Line, Tumor
5.
Molecules ; 26(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34641440

ABSTRACT

Quorum sensing (QS) is employed by the opportunistic pathogen Pseudomonas aeruginosa to regulate physiological behaviors and virulence. QS inhibitors (QSIs) are potential anti-virulence agents for the therapy of P. aeruginosa infection. During the screening for QSIs from Chinese herbal medicines, falcarindiol (the major constituent of Notopterygium incisum) exhibited QS inhibitory activity. The subinhibitory concentration of falcarindiol exerted significant inhibitory effects on the formation of biofilm and the production of virulence factors such as elastase, pyocyanin, and rhamnolipid. The mRNA expression of QS-related genes (lasB, phzH, rhlA, lasI, rhlI, pqsA, and rhlR) was downregulated by falcarindiol while that of lasR was not affected by falcarindiol. The transcriptional activation of the lasI promoter was inhibited by falcarindiol in the P. aeruginosa QSIS-lasI selector. Further experiments confirmed that falcarindiol inhibited the las system using the reporter strain Escherichia coli MG4/pKDT17. Electrophoretic mobility shift assay (EMSA) showed that falcarindiol inhibited the binding of the transcription factor LasR and the lasI promoter region. Molecular docking showed that falcarindiol interacted with the Tyr47 residue, leading to LasR instability. The decrease of LasR-mediated transcriptional activation was responsible for the reduction of downstream gene expression, which further inhibited virulence production. The inhibition mechanism of falcarindiol to LasR provides a theoretical basis for its medicinal application.


Subject(s)
Apiaceae/chemistry , Diynes/pharmacology , Fatty Alcohols/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Quorum Sensing , Diynes/isolation & purification , Fatty Alcohols/isolation & purification , Phytochemicals/isolation & purification
6.
Immunopharmacol Immunotoxicol ; 43(6): 778-789, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34618611

ABSTRACT

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is an extreme form of non-alcoholic fatty liver disease. The present study concentrated on the role of Capillin, a polyacetylene compound isolated from Artemisia capillaris Thunb., in NASH development. MATERIALS AND METHODS: Palmitic acid (PA) was treated with FL83B hepatocytes, and high-fat diet was given to mouse to construct the NASH model in vivo. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, flow cytometry, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were carried out to measure the viability and apoptosis of FL83B hepatocytes. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to measure the mRNA expressions of infiltration markers (Cd11c, Ccr2, and Ly6c), fibrosis genes (Tgfß1, Col1a1, and Timp1), and alpha-smooth muscle actin (α-SMA). Western blot, immunofluorescence, and Enzyme-linked immunosorbent assay (ELISA) were implemented to examine the proteins of Caspase-3, Bcl2, Nrf2, HO-1, NLRP3, ASC, and Caspase-1, the ROS level, and oxidative stress markers (MDA, GSH-ST, SOD, and GSH-Px), and the lipid peroxidation level, respectively. Moreover, HE staining was manipulated to observe the histopathological changes in liver tissue. RESULTS: Capillin hampered PA-mediated hepatocytes apoptosis and enhanced cell viability. Furthermore, Capillin suppressed PA-mediated oxidative stress in hepatocytes, promoted Nrf2/HO-1 expression, and repressed NLRP3-ASC-Caspase1 inflammasome. The in vivo studies indicated that Capillin vigorously improves liver fat accumulation, oxidative stress, and liver injury in NASH mice. Mechanistically, Capillin repressed NLRP3-ASC-Caspase1 inflammasome and up-regulated the Nrf2-HO-1 pathway in the liver. CONCLUSION: Capillin ameliorates hepatocyte injury by dampening oxidative stress and repressing NLRP3 inflammasome in NASH mice.


Subject(s)
Diynes/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Non-alcoholic Fatty Liver Disease/prevention & control , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Animals , Diet, High-Fat/adverse effects , Diynes/pharmacology , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Hepatocytes/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress/physiology , Plant Extracts/pharmacology
7.
ChemMedChem ; 16(23): 3569-3575, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34414677

ABSTRACT

Forty samples of optically active falcarindiol analogues are synthesized by using the easily available C2 symmetric (R)- and (S)-1,1'-binaphth-2-ol (BINOL) in combination with Ti(Oi Pr)4 , Zn powder and EtI. Their anticancer activities on Hccc-9810, HepG2, MDA-MB-231, Hela, MG-63 and H460 cells are assayed to elucidate their structure-activity relationships. These results showed that the falcarindiol analogue (3R,8S)-2 i with the terminal double bond has the most potent anti-proliferation effect on Hccc-9810 cells with IC50 value of 0.46 µM. The falcarindiol analogue (3R,8S)-2 i can induce obvious Hccc-9810 cell apoptosis in a concentration-dependent manner by Hoechst staining and flow cytometry analysis. The proposed mechanism suggests that the falcarindiol analogue (3R,8S)-2 i increases LDH release and MDA content, and reduces the levels of SOD activity, which lead to the accumulation of oxidative stress and induce apoptosis in Hccc-9810 cells.


Subject(s)
Antineoplastic Agents/pharmacology , Diynes/pharmacology , Fatty Alcohols/pharmacology , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Diynes/chemical synthesis , Drug Screening Assays, Antitumor , Fatty Alcohols/chemical synthesis , Humans , L-Lactate Dehydrogenase/metabolism , Malondialdehyde/metabolism , Molecular Structure , Oxidative Stress/drug effects , Structure-Activity Relationship , Superoxide Dismutase/metabolism
8.
J Nat Prod ; 84(8): 2138-2148, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34319736

ABSTRACT

A series of enantiomers of falcarinol analogues (2) were synthesized using a chiral 1,1'-binaphth-2-ol (BINOL)-based catalytic system. The neuroprotective effects of falcarinol (1a) and its analogues (2) on PC12 cells injured by sodium azide (NaN3) were investigated. The structure-function relationships and possible mechanism were studied. Pretreatment of PC12 cells with falcarinol analogues (R)-2d and (R)-2i for 1 h following addition of NaN3 and culture in a CO2 incubator for 24 h resulted in significant elevation of cell viability, as determined by a CCK-8 assay and Hoechst staining, with reduction of LDH release and MDA content, increase of SOD activity, and decrease of ROS stress, when compared with the activity of natural falcarinol (1a). These observations indicated that the falcarinol analogues (R)-2d and (R)-2i can protect PC12 cells against NaN3-induced apoptosis via increasing resistance to oxidative stress. For the first time, falcarinol (1a) and its analogue (R)-2i were found to have potential L-type calcium channel-blocking activity, as recorded using a manual patch clamp technique on HEK-293 cells stably expressing hCav1.2 (α1C/ß2a/α2δ1). These findings suggest that the mechanism of the L-type calcium channel-blocking activity of falcarinol (1a) and its analogue (R)-2i might be involved in neuroprotection by falcarinol-type analogues by inhibiting calcium overload in the upstream of the signaling pathway.


Subject(s)
Calcium Channel Blockers/pharmacology , Diynes/pharmacology , Fatty Alcohols/pharmacology , Neuroprotective Agents/pharmacology , Animals , Calcium Channel Blockers/chemical synthesis , Cell Survival/drug effects , Diynes/chemical synthesis , Fatty Alcohols/chemical synthesis , HEK293 Cells , Humans , Molecular Structure , Neuroprotective Agents/chemical synthesis , Oxidative Stress/drug effects , PC12 Cells , Rats , Signal Transduction/drug effects
9.
Biomed Pharmacother ; 138: 111387, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33721753

ABSTRACT

Panaxynol (PAL) mainly comes from Umbelliferae plants, which has anti-inflammatory and neuroprotective activities. Lipopolysaccharide (LPS)-induced depression in mice was a classic model for studying the effects of drugs on depression in mice. The purpose of this study was to investigate the mechanism and effect of PAL on depression by LPS induced in mice. In the tail suspension test (TST) and forced swimming test (FST) results, PAL significantly reduced the immobility time of mice. In the result of the open field test (OFT) and the elevated plus maze test (EPM), improved their exploration ability. According to the results of ELISA, PAL could significantly reduce the tumor necrosis factor-α (TNF-α) and interleukin- 6 (IL-6) levels in serum. Increase the superoxide dismutase (SDO) level and decrease the malondialdehyde (MDA) level in hippocampus. According to Western blotting analysis results, PAL increased the protein expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB), decreased the nuclear transport of nuclear factor kappa-Bp65 (NF-κBp65) and phosphorylation of inhibitor of NF-κB (IκB-α). Meanwhile, PAL also inhibited the production of nitric oxide in BV-2 microglia and decreased the level of inflammatory factors. PAL also reduced levels of oxidative stress and inhibited protein expression in the NF-κB/IκB-α inflammatory pathway and increased the protein expression of BDNF/TrkB, thereby inhibiting the over-activation of BV-2 microglia. In conclusion, according to the results of the behavioral text, it is proved that PAL could effectively alleviate LPS induced depression behavior in mice. The mechanism may be that the anti-inflammatory and anti-oxidative stress effects of PAL reduce the release of inflammatory factors in the mouse brain. Meanwhile, PAL could improve brain neurotrophic factors, inhibit the excessive activation of BV-2 microglia, and further inhibit the depressive state of the mice.


Subject(s)
Antidepressive Agents/pharmacology , Diynes/pharmacology , Fatty Alcohols/pharmacology , Microglia/drug effects , NF-KappaB Inhibitor alpha/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Plant Extracts/pharmacology , Animals , Antidepressive Agents/therapeutic use , Cell Line , Depression/drug therapy , Depression/metabolism , Depression/psychology , Diynes/therapeutic use , Dose-Response Relationship, Drug , Fatty Alcohols/therapeutic use , Immobilization/methods , Immobilization/physiology , Immobilization/psychology , Male , Mice , Mice, Inbred ICR , Microglia/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Plant Extracts/therapeutic use , Signal Transduction/drug effects , Signal Transduction/physiology , Treatment Outcome
10.
J Transl Med ; 19(1): 96, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33653364

ABSTRACT

BACKGROUND: Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. METHODS: In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. RESULTS: Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. CONCLUSION: PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI.


Subject(s)
Acute Lung Injury , Diynes/pharmacology , Fatty Alcohols/pharmacology , Ferroptosis , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Animals , Cell Line , Heme Oxygenase-1 , Humans , Kelch-Like ECH-Associated Protein 1 , Lipopolysaccharides , Lung/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism
11.
J Biochem Mol Toxicol ; 35(1): e22619, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32894623

ABSTRACT

Panaxydol (PX), a polyacetylenic compound isolated from the roots of Panax notoginseng, is found to possess various biological functions. However, its protective effects against aristolochic acid (AA)-induced renal injury have not been elucidated yet. The present study was undertaken to elucidate the renoprotective effect of PX on Wistar male rats via activating Keap1-Nrf2/ARE pathway. Experimental animals were randomized into four groups, such as control group, I/R group, AA (5 mg/kg/d; ip for 10 days), and AA-induced rats treated with PX (10 and 20 mg/kg/d; po for 20 days). At the end of the experimental period, the rats were killed, and the biochemical parameters denoting renal functions were evaluated; histological analysis displaying the renal tissue architecture, real-time quantitative reverse-transcription polymerase chain reaction, and immunohistochemistry (IHC) analysis of Keap1-Nrf2/ARE genes were elucidated. The results demonstrated that the rats administered with AA displayed a significant increase in the blood urea nitrogen level with an increased urine creatinine and protein excretion. Also, the serum levels of urea, uric acid, and albumin levels were increased. Furthermore, the histological evaluation denoted the cellular degeneration with increased tissue lipid peroxidation levels. In contrast, rats administered with PX significantly prevented the tissue degeneration with improved antioxidant levels. Conversely, PX treatment increased the messenger RNA expression of Nrf2, NQO1, HO-1 with an attenuated expression of 4HNE and NOX-4 levels in IHC analysis. Thus, the results of the present study suggest that PX could suppress AA-induced renal failure by suppressing oxidative stress through the activation of Keap1-Nrf2 signaling pathway.


Subject(s)
Acute Kidney Injury/prevention & control , Aristolochic Acids/adverse effects , Diynes/pharmacology , Fatty Alcohols/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney/metabolism , Lipid Peroxidation/drug effects , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Aristolochic Acids/pharmacology , Kidney/pathology , Male , Rats , Rats, Wistar
12.
Nutrients ; 12(6)2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32575883

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease that affects millions of people worldwide and increases the risk of colorectal cancer (CRC) development. We have previously shown that American ginseng (AG) can treat colitis and prevent colon cancer in mice. We further fractionated AG and identified the most potent fraction, hexane fraction (HAG), and the most potent compound in this fraction, panaxynol (PA). Because (1) oxidative stress plays a significant role in the pathogenesis of colitis and associated CRC and (2) nuclear factor erythroid-2-related factor 2 (Nrf2) is the master regulator of antioxidant responses, we examined the role of Nrf2 as a mechanism by which AG suppresses colitis. Through a series of in vitro and in vivo Nrf2 knockout mouse experiments, we found that AG and its components activate the Nrf2 pathway and decrease the oxidative stress in macrophages (mΦ) and colon epithelial cells in vitro. Consistent with these in vitro results, the Nrf2 pathway is activated by AG and its components in vivo, and Nrf2-/- mice are resistant to the suppressive effects of AG, HAG and PA on colitis. Results from this study establish Nrf2 as a mediator of AG and its components in the treatment of colitis.


Subject(s)
Antioxidants/pharmacology , Colitis, Ulcerative/metabolism , Diynes/pharmacology , Fatty Alcohols/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Panax/chemistry , Plant Extracts/pharmacology , Animals , Antioxidants/therapeutic use , Colitis , Colitis, Ulcerative/drug therapy , Diynes/therapeutic use , Fatty Alcohols/therapeutic use , HCT116 Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , Phytotherapy , Plant Extracts/therapeutic use
13.
Biotech Histochem ; 95(8): 575-583, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32295432

ABSTRACT

We investigated the mechanism of action of panaxynol (PAL) extract from the root of Saposhnikovia diviaricata (Turcz.) Schischk for treating acute liver injury caused by lipopolysaccharide (LPS) and D-galactosamine (D-Gal N) in mice. A mouse model of acute liver failure induced by LPS/D-Gal N was established. Mice were divided randomly into three equal groups: control group, LPS/D-Gal N group and PAL group. After seven days of continuous PAL administration, all animals except controls were injected with 50 µg/kg LPS and 800 mg/kg D-Gal N; blood and liver samples were collected after 8 h. Compared to the LPS/D-Gal N group, the levels of catalase, glutathione and superoxide dismutase were increased in the liver of the PAL group. The inflammatory response index indicated that PAL attenuated LPS/D Gal N-induced liver pathological injury and decreased levels of hepatic malondialdehyde, serum alanine aminotransferase, aspartate transaminase, tumor necrosis factor-α, and interleukins 1ß and 6. PAL also inhibited LPS/D-Gal N induced nuclear factor-kappa B (Nf-κB), inhibitor kappa B-α (IκB-α) activation, and up-regulated Nrf2 and heme oxygenase-1 (HO-1) expression. PAL can prevent LPS/D-Gal N induced acute liver injury by activating Nrf2/HO-1 to stimulate antioxidant defense and inhibit the IkB-α/NF-κB signaling pathway.


Subject(s)
Apiaceae/chemistry , Chemical and Drug Induced Liver Injury/prevention & control , Diynes/pharmacology , Fatty Alcohols/pharmacology , Galactosamine/toxicity , Lipopolysaccharides/toxicity , NF-kappa B/metabolism , Animals , Diynes/administration & dosage , Diynes/chemistry , Dose-Response Relationship, Drug , Fatty Alcohols/administration & dosage , Fatty Alcohols/chemistry , Galactosamine/administration & dosage , Gene Expression Regulation/drug effects , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Inflammation/chemically induced , Inflammation/prevention & control , Lipopolysaccharides/administration & dosage , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Molecular Structure , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-KappaB Inhibitor alpha/genetics , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/genetics , Signal Transduction/drug effects , Specific Pathogen-Free Organisms
14.
Food Funct ; 11(2): 1235-1244, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32048672

ABSTRACT

Panaxynol (PAL, also called falcarinol) is widely found in plants of the Umbelliferae family, among which carrots are rich in PAL, so it is proved to be edible. PAL has neuroprotective effects and other pharmacological activities. This study aimed to explore the effects and mechanisms of action of PAL on chronic unpredictable mild stress (CUMS)-induced anxiety and depression in mice. The effects of PAL on behavioral activities in mice were first assessed by a CUMS-induced depression model. The secretion levels of monoamine neurotransmitters and hypothalamic-pituitary-adrenal (HPA) axis-related hormones were measured by ELISA. Western blotting was used to analyze the expression of glucocorticoid receptor (GR), glutamate receptor 1 (GluR1) and synapse-associated protein in the hippocampus. The behavioral experiment results showed that PAL can improve exploratory behavior and activities in mice. Meanwhile, PAL can significantly activate the release of 5-HT/5-HIAA and DA/HVA in the hippocampus. It inhibits the expression of adrenocorticotropic hormone (ACTH), corticosterone (CORT) and corticotrophin-releasing hormone (CRH) in serum and the hypothalamus. The contents of GR, glutamate receptor 1 (GluR1), postsynaptic density-95 (PSD95) and synapsin I protein in the hippocampus significantly increased. Studies have found that PAL can inhibit the hyperfunction of the HPA axis, which may be achieved by regulating HPA axis hormones and GR. Meanwhile, PAL promotes the release of 5-HT and DA in the hippocampus and improves synaptic plasticity in the hippocampus, allowing neurotransmitters to function more effectively. Therefore, PAL may improve anxiety and depression-like effects in mice through the abovementioned effects.


Subject(s)
Anxiety/physiopathology , Behavior, Animal/drug effects , Depression/physiopathology , Diynes/pharmacology , Fatty Alcohols/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Animals , Chronic Disease , Disease Models, Animal , Hippocampus/chemistry , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Mice, Inbred ICR , Neurotransmitter Agents/metabolism , Stress, Psychological/physiopathology , Synapses/drug effects , Synapses/metabolism
15.
Biomolecules ; 9(12)2019 12 17.
Article in English | MEDLINE | ID: mdl-31861234

ABSTRACT

Polyacetylenic compounds isolated from Panax species are comprised of non-polar C17 compounds, exhibiting anti-inflammatory, antitumor, and antifungal activities. Panaxynol represents the major component of the essential oils of ginseng. We investigated whether panaxynol isolated from Panax vietnamensis (Vietnamese ginseng, VG) could prevent cisplatin-induced renal damage induced in vitro and in vivo. Cisplatin-induced apoptotic cell death was observed by staining with annexin V conjugated with Alexa Fluor 488, and western blotting evaluated the molecular mechanism. Panaxynol at concentrations above 0.25 µM prevented cisplatin-induced LLC-PK1 porcine renal proximal tubular cell death. LLC-PK1 cells treated with cisplatin demonstrated an increase in apoptotic cell death, whereas pretreatment with 2 and 4 µM panaxynol decreased this effect. Cisplatin demonstrated a marked increase in the phosphorylation of c-Jun N-terminal kinase (JNK), P38, and cleaved caspase-3. However, pretreatment with 2 and 4 µM panaxynol reversed the upregulated phosphorylation of JNK, P38, and the expression of cleaved caspase-3. We confirmed that the protective effect of panaxynol isolated from P. vietnamensis in LLC-PK1 cells was at least partially mediated by reducing the cisplatin-induced apoptotic damage. In the animal study, panaxynol treatment ameliorated body weight loss and blood renal function markers and downregulated the mRNA expression of inflammatory mediators.


Subject(s)
Acute Kidney Injury/drug therapy , Cisplatin/pharmacology , Diynes/pharmacology , Fatty Alcohols/pharmacology , Kidney Tubules, Proximal/drug effects , Panax/chemistry , Protective Agents/pharmacology , Acute Kidney Injury/chemically induced , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Blood Urea Nitrogen , Cell Survival/drug effects , Cells, Cultured , Creatinine/blood , Diynes/chemistry , Diynes/isolation & purification , Fatty Alcohols/chemistry , Fatty Alcohols/isolation & purification , Kidney Tubules, Proximal/pathology , Male , Mice , Mice, Inbred C57BL , Protective Agents/chemistry , Protective Agents/isolation & purification , Swine
16.
Nutrients ; 11(9)2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31540047

ABSTRACT

Falcarinol (FaOH) and falcarindiol (FaDOH) are cytotoxic and anti-inflammatory polyacetylenic oxylipins, which are commonly found in the carrot family (Apiaceae). FaOH and FaDOH have previously demonstrated a chemopreventive effect on precursor lesions of colorectal cancer (CRC) in azoxymethane (AOM)-induced rats. The purpose of the present study was to elucidate possible mechanisms of action for the preventive effect of FaOH and FaDOH on colorectal precancerous lesions and to determine how this effect was dependent on dose. Gene expression studies performed by RT-qPCR of selected cancer biomarkers in tissue from biopsies of neoplastic tissue revealed that FaOH and FaDOH downregulated NF-κß and its downstream inflammatory markers TNFα, IL-6, and COX-2. The dose-dependent anti-neoplastic effect of FaOH and FaDOH in AOM-induced rats was investigated in groups of 20 rats receiving a standard rat diet (SRD) supplemented with 0.16, 0.48, 1.4, 7 or 35 µg FaOH and FaDOH g-1 feed in the ratio 1:1 and 20 rats were controls receiving only SRD. Analysis of aberrant crypt foci (ACF) showed that the average number of small ACF (<7 crypts) and large ACF (>7 crypts) decreased with increasing dose of FaOH and FaDOH and that this inhibitory effect on early neoplastic formation of ACF was dose-dependent, which was also the case for the total number of macroscopic neoplasms. The CRC protective effects of apiaceous vegetables are mainly due to the inhibitory effect of FaOH and FaDOH on NF-κB and its downstream inflammatory markers, especially COX-2.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Diynes , Fatty Alcohols , Aberrant Crypt Foci/metabolism , Aberrant Crypt Foci/pathology , Aberrant Crypt Foci/prevention & control , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Colon/drug effects , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/prevention & control , Cytokines/metabolism , Diynes/administration & dosage , Diynes/pharmacology , Fatty Alcohols/administration & dosage , Fatty Alcohols/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Inflammation/metabolism , Inflammation/prevention & control , Male , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neoplasms, Experimental/prevention & control , Rats , Rats, Inbred F344 , Signal Transduction/drug effects
17.
Fitoterapia ; 138: 104355, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31520650

ABSTRACT

The secondary metabolite pattern of Eryngium tricuspidatum has been found to be dominated by C17 acetylene oxylipins, according to the chemistry reported in the literature for the genus Eryngium. Two new oxylipins, 11-acetoxy-falcarindiol (4) and 1,2-dihydro-11-acetoxy-falcarindiol (5) have been isolated, along with main related polyacetylenes 1-3 and the already known monoterpene aldehydes 6-10, from the petroleum ether extract of roots. The structure and the absolute configuration of compounds 4 and 5 have been determined by spectroscopic methods as well as by comparison with related known compounds. Polyacetylenes 1-4 inhibited significantly the in vitro growth of a series of cancer cell lines, ranging from 0.3 to 29 µM, whereas 5 was inactive.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Eryngium/chemistry , Plant Roots/chemistry , Polyacetylene Polymer/pharmacology , Algeria , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Diynes/isolation & purification , Diynes/pharmacology , Fatty Alcohols/isolation & purification , Fatty Alcohols/pharmacology , Humans , Molecular Structure , Oxygen , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Polyacetylene Polymer/isolation & purification , Secondary Metabolism
18.
Am J Chin Med ; 47(6): 1381-1404, 2019.
Article in English | MEDLINE | ID: mdl-31488036

ABSTRACT

Oplopanax elatus (Nakai) Nakai is an oriental herb, the polyyne-enriched fraction of which (PEFO) showed anticolorectal cancer (anti-CRC) effects. Other concomitant components, which are inevitably bio-transformed by gut microbiota after oral administration, might be interfere with the pharmacodynamics of polyynes. However, the influence of human gut microbiota on molecules from O. elatus possessing anticancer activity are yet unknown. In this study, the compounds in PEFO and PEFO incubated with human gut microbiota were analyzed and tentatively identified by HPLC-DAD-QTOF-MS. Two main polyynes ((3S,8S)-falcarindiol and oplopandiol) were not significantly decomposed, but some new unknown molecules were discovered during incubation. However, the antiproliferative effects of PEFO incubated with human gut microbiota for 72 h (PEFO I) were much lower than that of PEFO on HCT-116, SW-480, and HT-29 cells. Furthermore, PEFO possessed better anti-CRC activity in vivo, and significantly induced apoptosis of the CRC cells, which was associated with activation of caspase-3 according to the Western-blot results (P<0.05). These results suggest anticolorectal cancer activity of polyynes might be antagonized by some bio-converted metabolites after incubation with human gut microbiota. Therefore, it might be better for CRC prevention if the polyynes could be orally administrated as purified compounds.


Subject(s)
Colorectal Neoplasms/pathology , Colorectal Neoplasms/prevention & control , Diynes/metabolism , Fatty Alcohols/metabolism , Gastrointestinal Microbiome/physiology , Oplopanax/chemistry , Administration, Oral , Animals , Antineoplastic Agents, Phytogenic , Apoptosis/drug effects , Biotransformation , Caspase 3/metabolism , Chromatography, High Pressure Liquid , Diynes/administration & dosage , Diynes/isolation & purification , Diynes/pharmacology , Fatty Alcohols/administration & dosage , Fatty Alcohols/isolation & purification , Fatty Alcohols/pharmacology , HT29 Cells , Humans , Male , Mice, Inbred BALB C , Tandem Mass Spectrometry , Tumor Cells, Cultured
19.
ChemMedChem ; 14(16): 1560-1572, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31283109

ABSTRACT

UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a Zn2+ deacetylase that is essential for the survival of most pathogenic Gram-negative bacteria. ACHN-975 (N-((S)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl)-4-(((1R,2R)-2-(hydroxymethyl)cyclopropyl)buta-1,3-diyn-1-yl)benzamide) was the first LpxC inhibitor to reach human clinical testing and was discovered to have a dose-limiting cardiovascular toxicity of transient hypotension without compensatory tachycardia. Herein we report the effort beyond ACHN-975 to discover LpxC inhibitors optimized for enzyme potency, antibacterial activity, pharmacokinetics, and cardiovascular safety. Based on its overall profile, compound 26 (LPXC-516, (S)-N-(2-(hydroxyamino)-1-(3-methoxy-1,1-dioxidothietan-3-yl)-2-oxoethyl)-4-(6-hydroxyhexa-1,3-diyn-1-yl)benzamide) was chosen for further development. A phosphate prodrug of 26 was developed that provided a solubility of >30 mg mL-1 for parenteral administration and conversion into the active drug with a t1/2 of approximately two minutes. Unexpectedly, and despite our optimization efforts, the prodrug of 26 still possesses a therapeutic window insufficient to support further clinical development.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Diynes/pharmacology , Enzyme Inhibitors/pharmacology , Heart/drug effects , Hydroxamic Acids/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/toxicity , Bacterial Proteins/antagonists & inhibitors , Cardiotoxicity , Diynes/chemical synthesis , Diynes/pharmacokinetics , Diynes/toxicity , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/toxicity , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacokinetics , Hydroxamic Acids/toxicity , Male , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Prodrugs/toxicity , Pseudomonas aeruginosa/drug effects , Rats, Sprague-Dawley , Structure-Activity Relationship
20.
Z Naturforsch C J Biosci ; 74(5-6): 145-150, 2019 May 27.
Article in English | MEDLINE | ID: mdl-30721147

ABSTRACT

Phytochemical investigation of Polyscias guilfoylei leaves extract (PGE) led to the isolation of nine compounds, that is, ent-labda-8(17),13-diene-15,18-diol (1), stigmasterol (2), spinasterol (3), N-(1,3-dihydroxyoctadecan-2-yl) palmitamide (4), panaxydiol (5), 3-O-ß-d-glucopyranosylstigmasta-5,22-diene-3-ß-ol (6), (8Z)-2-(2 hydroxypentacosanoylamino) octadeca-8-ene-1,3,4-triol (7), 4-hydroxybenzoic acid (8), and tamarixetin 3,7-di-O-α-L-rhamnopyranoside (9). Compound 4 is reported in this study for the first time in nature whereas compound 9 is reported for the second time. Structural elucidation of the compounds was carried out using Nuclear Magnetic Resonance and Electrospray Ionization coupled with Mass Spectrometry spectroscopic analyses. PGE and compounds 4 and 9 exhibited weak cytotoxicity against both MCF-7 and HCT-116 cell lines using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay. The antimicrobial activity of PGE and compounds 4 and 9 was evaluated using the agar diffusion method. Escherichia coli was the most susceptible Gram-negative bacteria toward PGE with a minimum inhibitory concentration value of 9.76 µg/mL, whereas compounds 4 and 9 did not show any antimicrobial activity. Compound 4 exhibited promising inhibition of histamine release using U937 human monocytes with an IC50 value of 38.65 µg/mL.


Subject(s)
Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Araliaceae/chemistry , Histamine Antagonists/chemistry , Plant Extracts/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Disaccharides/chemistry , Disaccharides/pharmacology , Diynes/chemistry , Diynes/pharmacology , Gram-Negative Bacteria/drug effects , HCT116 Cells , Histamine Antagonists/pharmacology , Humans , MCF-7 Cells , Plant Extracts/pharmacology , Plant Leaves/chemistry , Quercetin/analogs & derivatives , Quercetin/chemistry , Quercetin/pharmacology , Stigmasterol/analogs & derivatives , Stigmasterol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...