Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76.697
Filter
1.
Pak J Pharm Sci ; 37(2(Special)): 435-442, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822547

ABSTRACT

Depression is a common non-motor symptom of Parkinson's disease. Previous studies demonstrated that hydroxysafflor yellow A had properties of improving motor symptoms of Parkinson's disease. The effect of hydroxysafflor yellow A on depression in Parkinson's disease mice is investigated in this study. To induce Parkinson's disease model, male Swiss mice were exposed to rotenone (30 mg/kg) for 6 weeks. The chronic unpredictable mild stress was employed to induce depression from week 3 to week 6. Sucrose preference, tail suspension, and forced swimming tests were conducted. Golgi and Nissl staining of hippocampus were carried out. The levels of dopamine, 5-hydroxytryptamine and the expression of postsynaptic density protein 95, brain-derived neurotrophic factor in hippocampus were assayed. It showed that HSYA improved the depression-like behaviors of Parkinson's disease mice. Hydroxysafflor yellow A attenuated the injury of nerve and elevated contents of dopamine, 5-hydroxytryptamine in hippocampus. Treatment with hydroxysafflor yellow A also augmented the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor. These findings suggest that hydroxysafflor yellow A ameliorates depression-like behavior in Parkinson's disease mice through regulating the contents of postsynaptic density protein 95 and brain-derived neurotrophic factor, therefore protecting neurons and neuronal dendrites of the hippocampus.


Subject(s)
Behavior, Animal , Brain-Derived Neurotrophic Factor , Chalcone , Depression , Hippocampus , Quinones , Serotonin , Animals , Quinones/pharmacology , Quinones/therapeutic use , Chalcone/analogs & derivatives , Chalcone/pharmacology , Chalcone/therapeutic use , Male , Mice , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Behavior, Animal/drug effects , Serotonin/metabolism , Dopamine/metabolism , Rotenone/pharmacology , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/psychology
2.
Int Heart J ; 65(3): 427-432, 2024.
Article in English | MEDLINE | ID: mdl-38825491

ABSTRACT

The impact of tolvaptan and low-dose dopamine on heart failure (HF) patients with acute kidney injury (AKI) remains uncertain from a clinical standpoint.HF patients with AKI were selected and divided in a 1:1 fashion into the dopamine combined with the tolvaptan group (DTG), the tolvaptan group (TG), and the control group (CG). According to the standard of care, TG received tolvaptan 15 mg orally daily for a week. DTG received combination treatment, including 7 consecutive days of dopamine infusion (2 µg/kg・minutes) and oral tolvaptan 15 mg. Venous blood and urine samples were taken before and after therapy. The primary endpoint was the cardiorenal serological index after 7 days of treatment.Sixty-five patients were chosen randomly for the DTG (22 patients), TG (20 patients), and CG (23 patients), which were similar before the treatment. The serum indexes related to cardiac function (N-terminal probrain natriuretic peptide and cardiac troponin I) in DTG were decreased, compared with TG and CG (P < 0.05). Furthermore, the serological markers of renal function (serum cystatin C, serum creatinine, and neutrophil gelatinase-associated lipocalin) in DTG were lower than those in TG and CG (P < 0.05). There was no significant difference in the incidence of adverse reactions among groups.Low-dose dopamine combined with tolvaptan can markedly improve patients' cardiac and renal function. This may be considered a new therapeutic method for HF patients with AKI.


Subject(s)
Acute Kidney Injury , Antidiuretic Hormone Receptor Antagonists , Dopamine , Drug Therapy, Combination , Heart Failure , Tolvaptan , Humans , Tolvaptan/administration & dosage , Tolvaptan/therapeutic use , Heart Failure/drug therapy , Heart Failure/complications , Male , Female , Dopamine/administration & dosage , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Aged , Middle Aged , Antidiuretic Hormone Receptor Antagonists/administration & dosage , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Natriuretic Peptide, Brain/blood , Treatment Outcome , Benzazepines/administration & dosage , Peptide Fragments/blood
3.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38831060

ABSTRACT

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Subject(s)
Antioxidants , Carbon , Colorimetry , Copper , Nitrogen , Nitrogen/chemistry , Colorimetry/methods , Carbon/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Copper/chemistry , Cobalt/chemistry , Hydrogen Peroxide/chemistry , Humans , Catalysis , Limit of Detection , Glutathione/chemistry , Glutathione/blood , Dopamine/blood , Dopamine/analysis , Dopamine/chemistry , Benzidines/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Ascorbic Acid/chemistry , Ascorbic Acid/blood , Ascorbic Acid/analysis , Oxidation-Reduction , Uric Acid/blood , Uric Acid/chemistry , Uric Acid/analysis , Cysteine/chemistry , Cysteine/blood
4.
Mikrochim Acta ; 191(6): 362, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38822867

ABSTRACT

Rapid and accurate in situ determination of dopamine is of great significance in the study of neurological diseases. In this work, poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) (PEDOT: PSS)/graphene oxide (GO) fibers were fabricated by an effective method based on microfluidic wet spinning technology. The composite microfibers with stratified and dense arrangement were continuously prepared by injecting PEDOT: PSS and GO dispersion solutions into a microfluidic chip. PEDOT: PSS/GO fiber microelectrodes with high electrochemical activity and enhanced electrochemical oxidation activity of dopamine were constructed by controlling the structure composition of the microfibers with varying flow rate. The fabricated fiber microelectrode had a low detection limit (4.56 nM) and wide detection range (0.01-8.0 µM) for dopamine detection with excellent stability, repeatability, and reproducibility. In addition, the PEDOT: PSS/GO fiber microelectrode prepared was successfully used for the detection of dopamine in human serum and PC12 cells. The strategy for the fabrication of multi-component fiber microelectrodes is a new and effective approach for monitoring the intercellular neurotransmitter dopamine and has high potential as an implantable neural microelectrode.


Subject(s)
Dopamine , Graphite , Microelectrodes , Polystyrenes , PC12 Cells , Dopamine/blood , Humans , Rats , Animals , Polystyrenes/chemistry , Graphite/chemistry , Limit of Detection , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Thiophenes/chemistry , Lab-On-A-Chip Devices , Polymers
5.
Nat Commun ; 15(1): 4601, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834558

ABSTRACT

Precise neurostimulation can revolutionize therapies for neurological disorders. Electrode-based stimulation devices face challenges in achieving precise and consistent targeting due to the immune response and the limited penetration of electrical fields. Ultrasound can aid in energy propagation, but transcranial ultrasound stimulation in the deep brain has limited spatial resolution caused by bone and tissue scattering. Here, we report an implantable piezoelectric ultrasound stimulator (ImPULS) that generates an ultrasonic focal pressure of 100 kPa to modulate the activity of neurons. ImPULS is a fully-encapsulated, flexible piezoelectric micromachined ultrasound transducer that incorporates a biocompatible piezoceramic, potassium sodium niobate [(K,Na)NbO3]. The absence of electrochemically active elements poses a new strategy for achieving long-term stability. We demonstrated that ImPULS can i) excite neurons in a mouse hippocampal slice ex vivo, ii) activate cells in the hippocampus of an anesthetized mouse to induce expression of activity-dependent gene c-Fos, and iii) stimulate dopaminergic neurons in the substantia nigra pars compacta to elicit time-locked modulation of nigrostriatal dopamine release. This work introduces a non-genetic ultrasound platform for spatially-localized neural stimulation and exploration of basic functions in the deep brain.


Subject(s)
Deep Brain Stimulation , Hippocampus , Ultrasonic Waves , Animals , Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/methods , Mice , Mice, Inbred C57BL , Dopaminergic Neurons , Male , Dopamine/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Substantia Nigra , Neurons/physiology , Transducers
6.
Cell Host Microbe ; 32(5): 623-624, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723597

ABSTRACT

Common nutrients in our diet often affect our health through unexpected mechanisms. In a recent issue of Nature, Scott et al. show gut microbes convert dietary tryptophan into metabolites activating intestinal dopamine receptors, which can block attachment of bacterial pathogens to host cells.


Subject(s)
Dopamine , Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Dopamine/metabolism , Humans , Receptors, Dopamine/metabolism , Animals , Tryptophan/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Bacteria/metabolism , Host-Pathogen Interactions , Bacterial Adhesion
7.
Cell Mol Life Sci ; 81(1): 202, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691171

ABSTRACT

Glial cells constitute nearly half of the mammalian nervous system's cellular composition. The glia in C. elegans perform majority of tasks comparable to those conducted by their mammalian equivalents. The cephalic sheath (CEPsh) glia, which are known to be the counterparts of mammalian astrocytes, are enriched with two nuclear hormone receptors (NHRs)-NHR-210 and NHR-231. This unique enrichment makes the CEPsh glia and these NHRs intriguing subjects of study concerning neuronal health. We endeavored to assess the role of these NHRs in neurodegenerative diseases and related functional processes, using transgenic C. elegans expressing human alpha-synuclein. We employed RNAi-mediated silencing, followed by behavioural, functional, and metabolic profiling in relation to suppression of NHR-210 and 231. Our findings revealed that depleting nhr-210 changes dopamine-associated behaviour and mitochondrial function in human alpha synuclein-expressing strains NL5901 and UA44, through a putative target, pgp-9, a transmembrane transporter. Considering the alteration in mitochondrial function and the involvement of a transmembrane transporter, we performed metabolomics study via HR-MAS NMR spectroscopy. Remarkably, substantial modifications in ATP, betaine, lactate, and glycine levels were seen upon the absence of nhr-210. We also detected considerable changes in metabolic pathways such as phenylalanine, tyrosine, and tryptophan biosynthesis metabolism; glycine, serine, and threonine metabolism; as well as glyoxalate and dicarboxylate metabolism. In conclusion, the deficiency of the nuclear hormone receptor nhr-210 in alpha-synuclein expressing strain of C. elegans, results in altered mitochondrial function, coupled with alterations in vital metabolite levels. These findings underline the functional and physiological importance of nhr-210 enrichment in CEPsh glia.


Subject(s)
Caenorhabditis elegans , Disease Models, Animal , Mitochondria , Neuroglia , Parkinson Disease , alpha-Synuclein , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Mitochondria/metabolism , Neuroglia/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Animals, Genetically Modified , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Dopamine/metabolism , Metabolomics , RNA Interference
8.
J Psychiatry Neurosci ; 49(3): E157-E171, 2024.
Article in English | MEDLINE | ID: mdl-38692693

ABSTRACT

BACKGROUND: Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced DCC on neuroanatomy in the adolescent and adult mouse brain. METHODS: We examined neuronal connectivity, structural covariance, and molecular processes in a DCC-haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute. RESULTS: We included 11 DCC-haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of DCC haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that DCC haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of DCC, UNC5C (encoding DCC's co-receptor), and NTN1 (encoding its ligand, netrin-1) as underlying our structural findings. LIMITATIONS: Our study involved a single sex (males) at only 2 ages. CONCLUSION: The neuroanatomical phenotype of DCC haploinsufficiency described in mice parallels that observed in DCC-haploinsufficient humans. It is critical to understand the DCC-haploinsufficient mouse as a clinically relevant model system.


Subject(s)
Brain , DCC Receptor , Dopamine , Haploinsufficiency , Animals , DCC Receptor/genetics , Brain/metabolism , Brain/growth & development , Brain/anatomy & histology , Dopamine/metabolism , Mice , Male , Gene Expression , Neural Pathways , Age Factors , Female , Mice, Inbred C57BL , Aging/genetics , Aging/physiology
9.
Mikrochim Acta ; 191(6): 332, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38748375

ABSTRACT

Nifedipine (NIF), as one of the dihydropyridine calcium channel blockers, is widely used in the treatment of hypertension. However, misuse or ingestion of NIF can result in serious health issues such as myocardial infarction, arrhythmia, stroke, and even death. It is essential to design a reliable and sensitive detection method to monitor NIF. In this work, an innovative molecularly imprinted polymer dual-emission fluorescent sensor (CDs@PDA-MIPs) strategy was successfully designed for sensitive detection of NIF. The fluorescent intensity of the probe decreased with increasing NIF concentration, showing a satisfactory linear relationship within the range 1.0 × 10-6 M ~ 5.0 × 10-3 M. The LOD of NIF was 9.38 × 10-7 M (S/N = 3) in fluorescence detection. The application of the CDs@PDA-MIPs in actual samples such as urine and Qiangli Dingxuan tablets has been verified, with recovery ranging from 97.8 to 102.8% for NIF. Therefore, the fluorescent probe demonstrates great potential as a sensing system for detecting NIF.


Subject(s)
Carbon , Dopamine , Fluorescent Dyes , Limit of Detection , Molecularly Imprinted Polymers , Nifedipine , Quantum Dots , Spectrometry, Fluorescence , Quantum Dots/chemistry , Nifedipine/chemistry , Nifedipine/analysis , Fluorescent Dyes/chemistry , Molecularly Imprinted Polymers/chemistry , Dopamine/urine , Dopamine/analysis , Carbon/chemistry , Spectrometry, Fluorescence/methods , Humans , Polymerization , Molecular Imprinting , Tablets/analysis
10.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731862

ABSTRACT

There are currently no disease-modifying therapies for Parkinson's disease (PD), a progressive neurodegenerative disorder associated with dopaminergic neuronal loss. There is increasing evidence that endogenous dopamine (DA) can be a pathological factor in neurodegeneration in PD. Tyrosine hydroxylase (TH) is the key rate-limiting enzyme for DA generation. Drugs that inhibit TH, such as alpha-methyltyrosine (α-MT), have recently been shown to protect against neurodegeneration in various PD models. DA receptor agonists can activate post-synaptic DA receptors to alleviate DA-deficiency-induced PD symptoms. However, DA receptor agonists have no therapeutic effects against neurodegeneration. Thus, a combination therapy with DA receptor agonists plus TH inhibitors may be an attractive therapeutic approach. TH inhibitors can protect and promote the survival of remaining dopaminergic neurons in PD patients' brains, whereas DA receptor agonists activate post-synaptic DA receptors to alleviate PD symptoms. Additionally, other PD drugs, such as N-acetylcysteine (NAC) and anticholinergic drugs, may be used as adjunctive medications to improve therapeutic effects. This multi-drug cocktail may represent a novel strategy to protect against progressive dopaminergic neurodegeneration and alleviate PD disease progression.


Subject(s)
Dopamine Agonists , Parkinson Disease , Tyrosine 3-Monooxygenase , Animals , Humans , Dopamine/metabolism , Dopamine Agonists/therapeutic use , Dopamine Agonists/pharmacology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Drug Therapy, Combination , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Tyrosine 3-Monooxygenase/antagonists & inhibitors , Tyrosine 3-Monooxygenase/metabolism
11.
Neurology ; 102(11): e209453, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38759132

ABSTRACT

BACKGROUND AND OBJECTIVES: Degeneration of the presynaptic nigrostriatal dopaminergic system is one of the main biological features of Parkinson disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), which can be measured using single-photon emission CT imaging for diagnostic purposes. Despite its widespread use in clinical practice and research, the diagnostic properties of presynaptic nigrostriatal dopaminergic (DAT) imaging in parkinsonism have never been evaluated against the diagnostic gold standard of neuropathology. The aim of this study was to evaluate the diagnostic parameters of DAT imaging compared with pathologic diagnosis in patients with parkinsonism. METHODS: Retrospective cohort study of patients with DAT imaging for the investigation of a clinically uncertain parkinsonism with brain donation between 2010 and 2021 to the Queen Square Brain Bank (London). Patients with DAT imaging for investigation of pure ataxia or dementia syndromes without parkinsonism were excluded. Those with a pathologic diagnosis of PD, MSA, PSP, or CBD were considered presynaptic dopaminergic parkinsonism, and other pathologies were considered postsynaptic for the analysis. DAT imaging was performed in routine clinical practice and visually classified by hospital nuclear medicine specialists as normal or abnormal. The results were correlated with neuropathologic diagnosis to calculate diagnostic accuracy parameters for the diagnosis of presynaptic dopaminergic parkinsonism. RESULTS: All of 47 patients with PD, 41 of 42 with MSA, 68 of 73 with PSP, and 6 of 10 with CBD (sensitivity 100%, 97.6%, 93.2%, and 60%, respectively) had abnormal presynaptic dopaminergic imaging. Eight of 17 patients with presumed postsynaptic parkinsonism had abnormal scans (specificity 52.9%). DISCUSSION: DAT imaging has very high sensitivity and negative predictive value for the diagnosis of presynaptic dopaminergic parkinsonism, particularly for PD. However, patients with CBD, and to a lesser extent PSP (of various phenotypes) and MSA (with predominant ataxia), can show normal DAT imaging. A range of other neurodegenerative disorders may have abnormal DAT scans with low specificity in the differential diagnosis of parkinsonism. DAT imaging is a useful diagnostic tool in the differential diagnosis of parkinsonism, although clinicians should be aware of its diagnostic properties and limitations. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that DAT imaging does not accurately distinguish between presynaptic dopaminergic parkinsonism and non-presynaptic dopaminergic parkinsonism.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Multiple System Atrophy , Parkinsonian Disorders , Tomography, Emission-Computed, Single-Photon , Humans , Female , Aged , Male , Retrospective Studies , Dopamine Plasma Membrane Transport Proteins/metabolism , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/pathology , Parkinsonian Disorders/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Middle Aged , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/pathology , Supranuclear Palsy, Progressive/metabolism , Aged, 80 and over , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/pathology , Cohort Studies , Corticobasal Degeneration/diagnostic imaging , Corticobasal Degeneration/metabolism , Dopamine/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/pathology , Sensitivity and Specificity , Dopaminergic Imaging
12.
Food Funct ; 15(10): 5579-5595, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38713055

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a developmental disorder and dopaminergic dysfunction in the prefrontal cortex (PFC) may play a role. Our previous research indicated that theobromine (TB), a methylxanthine, enhances cognitive function in rodents via the PFC. This study investigates TB's effects on hyperactivity and cognitive function in stroke-prone spontaneously hypertensive rats (SHR), an ADHD animal model. Male SHRs (6-week old) received a diet containing 0.05% TB for 40 days, while control rats received normal diets. Age-matched male Wistar-Kyoto rats (WKY) served as genetic controls. During the TB administration period, we conducted open-field tests and Y-maze tasks to evaluate hyperactivity and cognitive function, then assessed dopamine concentrations and tyrosine hydroxylase (TH), dopamine receptor D1-5 (DRD1-5), dopamine transporter (DAT), vesicular monoamine transporter-2 (VMAT-2), synaptosome-associated protein-25 (SNAP-25), and brain-derived neurotrophic factor (BDNF) expressions in the PFC. Additionally, the binding affinity of TB for the adenosine receptors (ARs) was evaluated. Compared to WKY, SHR exhibited hyperactivity, inattention and working memory deficits. However, chronic TB administration significantly improved these ADHD-like behaviors in SHR. TB administration also normalized dopamine concentrations and expression levels of TH, DRD2, DRD4, SNAP-25, and BDNF in the PFC of SHR. No changes were observed in DRD1, DRD3, DRD5, DAT, and VMAT-2 expression between SHR and WKY rats, and TB intake had minimal effects. TB was found to have affinity binding to ARs. These results indicate that long-term TB supplementation mitigates hyperactivity, inattention and cognitive deficits in SHR by modulating dopaminergic nervous function and BDNF levels in the PFC, representing a potential adjunctive treatment for ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Dopamine , Memory, Short-Term , Rats, Inbred SHR , Rats, Inbred WKY , Theobromine , Animals , Male , Rats , Theobromine/pharmacology , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/metabolism , Memory, Short-Term/drug effects , Dopamine/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Frontal Lobe/metabolism , Frontal Lobe/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/genetics , Disease Models, Animal , Synaptosomal-Associated Protein 25/metabolism
13.
Biosens Bioelectron ; 258: 116370, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38744115

ABSTRACT

Protein phosphorylation is a significant post-translational modification that plays a decisive role in the occurrence and development of diseases. However, the rapid and accurate identification of phosphoproteins remains challenging. Herein, a high-throughput sensor array has been constructed based on a magnetic bimetallic nanozyme (Fe3O4@ZNP@UiO-66) for the identification and discrimination of phosphoproteins. Attributing to the formation of Fe-Zr bimetallic dual active centers, the as-prepared Fe3O4@ZNP@UiO-66 exhibits enhanced peroxidase-mimicking catalytic activity, which promotes the electron transfer from Zr center to Fe(II)/Fe(III). The catalytic activity of Fe3O4@ZNP@UiO-66 can be selectively inhibited by phosphoproteins due to the strong interaction between phosphate groups and Zr centers, as well as the ultra-robust antifouling capability of zwitterionic dopamine nanoparticle (ZNP). Considering the diverse binding affinities between various proteins with the nanozyme, the catalytic activity of Fe3O4@ZNP@UiO-66 can be changed to various degree, leading to the different absorption responses at 420 nm in the hydrogen peroxide (H2O2) - 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) system. By simply extracting different absorbance intensities at various time points, a sensor array based on reaction kinetics for the discrimination of phosphoproteins from other proteins is constructed through linear discriminant analysis (LDA). Besides, the quantitative determination of phosphoproteins and identification of protein mixtures have been realized. Further, based on the differential level of phosphoproteins in cells, the differentiation of cancer cells from normal cells can also be implemented by utilizing the proposed sensor array, showing great potential in disease diagnosis.


Subject(s)
Biosensing Techniques , Hydrogen Peroxide , Neoplasms , Phosphoproteins , Zirconium , Biosensing Techniques/methods , Humans , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Hydrogen Peroxide/chemistry , Zirconium/chemistry , Peroxidase/chemistry , Dopamine/chemistry , Limit of Detection , Biomimetic Materials/chemistry , Catalysis
14.
Proc Natl Acad Sci U S A ; 121(20): e2316658121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38717856

ABSTRACT

Individual survival and evolutionary selection require biological organisms to maximize reward. Economic choice theories define the necessary and sufficient conditions, and neuronal signals of decision variables provide mechanistic explanations. Reinforcement learning (RL) formalisms use predictions, actions, and policies to maximize reward. Midbrain dopamine neurons code reward prediction errors (RPE) of subjective reward value suitable for RL. Electrical and optogenetic self-stimulation experiments demonstrate that monkeys and rodents repeat behaviors that result in dopamine excitation. Dopamine excitations reflect positive RPEs that increase reward predictions via RL; against increasing predictions, obtaining similar dopamine RPE signals again requires better rewards than before. The positive RPEs drive predictions higher again and thus advance a recursive reward-RPE-prediction iteration toward better and better rewards. Agents also avoid dopamine inhibitions that lower reward prediction via RL, which allows smaller rewards than before to elicit positive dopamine RPE signals and resume the iteration toward better rewards. In this way, dopamine RPE signals serve a causal mechanism that attracts agents via RL to the best rewards. The mechanism improves daily life and benefits evolutionary selection but may also induce restlessness and greed.


Subject(s)
Dopamine , Dopaminergic Neurons , Reward , Animals , Dopamine/metabolism , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Humans , Reinforcement, Psychology
15.
ACS Nano ; 18(20): 13277-13285, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728175

ABSTRACT

Synapses in the brain utilize two distinct communication mechanisms: chemical and electrical. For a comprehensive investigation of neural circuitry, neural interfaces should be capable of both monitoring and stimulating these types of physiological interactions. However, previously developed interfaces for neurotransmitter monitoring have been limited in interaction modality due to constraints in device size, fabrication techniques, and the usage of flexible materials. To address this obstacle, we propose a multifunctional and flexible fiber probe fabricated through the microwire codrawing thermal drawing process, which enables the high-density integration of functional components with various materials such as polymers, metals, and carbon fibers. The fiber enables real-time monitoring of transient dopamine release in vivo, real-time stimulation of cell-specific neuronal populations via optogenetic stimulation, single-unit electrophysiology of individual neurons localized to the tip of the neural probe, and chemical stimulation via drug delivery. This fiber will improve the accessibility and functionality of bidirectional interrogation of neurochemical mechanisms in implantable neural probes.


Subject(s)
Brain , Neurons , Synapses , Animals , Brain/metabolism , Synapses/metabolism , Synapses/chemistry , Neurons/metabolism , Optogenetics , Dopamine/metabolism , Mice , Temperature
16.
Cells ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786023

ABSTRACT

Parkinson's disease (PD) is the second-most common neurodegenerative disorder worldwide and is diagnosed based on motor impairments. Non-motor symptoms are also well-recognised in this disorder, and peripheral neuropathy is a frequent but poorly appreciated non-motor sign. Studying how central and peripheral sensory systems are affected can contribute to the development of targeted therapies and deepen our understanding of the pathophysiology of PD. Although the cause of sporadic PD is unknown, chronic exposure to the pesticide rotenone in humans increases the risk of developing the disease. Here, we aimed to investigate whether peripheral neuropathy is present in a traditional model of PD. Mice receiving intrastriatal rotenone showed greatly reduced dopamine terminals in the striatum and a reduction in tyrosine hydroxylase-positive neurons in the Substantia nigra pars compacta and developed progressive motor impairments in hindlimb stepping and rotarod but no change in spontaneous activity. Interestingly, repeated testing using gold-standard protocols showed no change in gut motility, a well-known non-motor symptom of PD. Importantly, we did not observe any change in heat, cold, or touch sensitivity, again based upon repeated testing with well-validated protocols that were statistically well powered. Therefore, this traditional model fails to replicate PD, and our data again reiterate the importance of the periphery to the disorder.


Subject(s)
Disease Models, Animal , Parkinson Disease , Rotenone , Animals , Mice , Parkinson Disease/physiopathology , Parkinson Disease/pathology , Rotenone/pharmacology , Mice, Inbred C57BL , Male , Peripheral Nervous System Diseases/physiopathology , Peripheral Nervous System Diseases/pathology , Corpus Striatum/pathology , Corpus Striatum/metabolism , Dopamine/metabolism
17.
ACS Sens ; 9(5): 2662-2672, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38689483

ABSTRACT

Dopamine (DA) signaling is critically important in striatal function, and this metabolically demanding process is fueled largely by glucose. However, DA and glucose are typically studied independently and, as such, the precise relationship between DA release and glucose availability remains unclear. Fast-scan cyclic voltammetry (FSCV) is commonly coupled with carbon-fiber microelectrodes to study DA transients. These microelectrodes can be modified with glucose oxidase (GOx) to generate microbiosensors capable of simultaneously quantifying real-time and physiologically relevant fluctuations of glucose, a nonelectrochemically active substrate, and DA, which is readily oxidized and reduced at the electrode surface. A chitosan hydrogel can be electrodeposited to entrap the oxidase enzyme on the sensor surface for stable, sensitive, and selective codetection of glucose and DA using FSCV. This strategy can also be used to entrap lactate oxidase on the carbon-fiber surface for codetection of lactate and DA. However, these custom probes are individually fabricated by hand, and performance is variable. This study characterizes the physical nature of the hydrogel and its effects on the acquired electrochemical data in the detection of glucose (2.6 mM) and DA (1 µM). The results demonstrate that the electrodeposition of the hydrogel membrane is improved using a linear potential sweep rather than a direct step to the target potential. Electrochemical impedance spectroscopy data relate information on the physical nature of the electrode/solution interface to the electrochemical performance of bare and enzyme-modified carbon-fiber microelectrodes. The electrodeposition waveform and scan rate were characterized for optimal membrane formation and performance. Finally, codetection of both DA/glucose and DA/lactate was demonstrated in intact rat striatum using probes fabricated according to the optimized protocol. Overall, this work improves the reliable fabrication of carbon-fiber microbiosensors for codetection of DA and important energetic substrates that are locally delivered to the recording site to meet metabolic demand.


Subject(s)
Biosensing Techniques , Carbon Fiber , Dopamine , Glucose Oxidase , Glucose , Microelectrodes , Dopamine/analysis , Glucose/analysis , Carbon Fiber/chemistry , Biosensing Techniques/methods , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Animals , Carbon/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Hydrogels/chemistry , Rats , Rats, Sprague-Dawley , Brain/metabolism , Chitosan/chemistry , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism
18.
ACS Sens ; 9(5): 2684-2694, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38693685

ABSTRACT

Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.


Subject(s)
Cadmium Compounds , Dopamine , Electrochemical Techniques , Nanostructures , Neurotransmitter Agents , Sulfides , Cadmium Compounds/chemistry , Electrochemical Techniques/methods , Dopamine/analysis , Dopamine/blood , Nanostructures/chemistry , Neurotransmitter Agents/analysis , Neurotransmitter Agents/blood , Humans , Sulfides/chemistry , Photochemical Processes , Saliva/chemistry , Density Functional Theory , Biosensing Techniques/methods , Semiconductors , Microelectrodes
19.
Carbohydr Polym ; 337: 122146, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710570

ABSTRACT

Diabetic wounds remain a global challenge due to disordered wound healing led by inflammation, infection, oxidative stress, and delayed proliferation. Therefore, an ideal wound dressing for diabetic wounds not only needs tissue adhesiveness, injectability, and self-healing properties but also needs a full regulation of the microenvironment. In this work, adhesive wound dressings (HA-DA/PRP) with injectability were fabricated by combining platelet rich plasma (PRP) and dopamine-modified-hyaluronic acid (HA-DA). The engineered wound dressings exhibited tissue adhesiveness, rapid self-healing, and shape adaptability, thereby enhancing stability and adaptability to irregular wounds. The in vitro experiments demonstrated that HA-DA/PRP adhesives significantly promoted fibroblast proliferation and migration, attributed to the loaded PRP. The adhesives showed antibacterial properties against both gram-positive and negative bacteria. Moreover, in vitro experiments confirmed that HA-DA/PRP adhesives effectively mitigated oxidative stress and inflammation. Finally, HA-DA/PRP accelerated the healing of diabetic wounds by inhibiting bacterial growth, promoting granulation tissue regeneration, accelerating neovascularization, facilitating collagen deposition, and modulating inflammation through inducing M1 to M2 polarization, in an in vivo model of infected diabetic wounds. Overall, HA-DA/PRP adhesives with the ability to comprehensively regulate the microenvironment in diabetic wounds may provide a novel approach to expedite the diabetic wounds healing in clinic.


Subject(s)
Anti-Bacterial Agents , Diabetes Mellitus, Experimental , Hyaluronic Acid , Hydrogels , Platelet-Rich Plasma , Wound Healing , Hyaluronic Acid/chemistry , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Platelet-Rich Plasma/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Diabetes Mellitus, Experimental/drug therapy , Mice , Rats , Bandages , Male , Cell Proliferation/drug effects , Humans , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Dopamine/chemistry , Fibroblasts/drug effects , Adhesives/chemistry , Adhesives/pharmacology
20.
ACS Sens ; 9(5): 2346-2355, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38713172

ABSTRACT

Dopamine (DA) and serotonin (5-HT) are neurotransmitters that regulate a wide range of physiological and behavioral processes. Monitoring of both neurotransmitters with real-time analysis offers important insight into the mechanisms that shape animal behavior. However, bioelectronic tools to simultaneously monitor DA and 5-HT interactive dynamics in freely moving animals are underdeveloped. This is mainly due to the limited sensor sensitivity with miniaturized electronics. Here, we present a semi-implantable electrochemical device achieved by integrating a multi-surface-modified carbon fiber microelectrode with a miniaturized potentiostat module to detect DA and 5-HT in vivo with high sensitivity and selectivity. Specifically, carbon fiber microelectrodes were modified through electrochemical treatment and surface coatings to improve sensitivity, selectivity, and antifouling properties. A customized, lightweight potentiostat module was developed for untethered electrochemical measurements. Integrated with the microelectrode, the microsystem is compact (2.8 × 2.3 × 2.1 cm) to minimize its impacts on animal behavior and achieved simultaneous detection of DA and 5-HT with sensitivities of 48.4 and 133.0 nA/µM, respectively, within submicromolar ranges. The system was attached to the crayfish dorsal carapace, allowing electrode implantation into the heart of a crayfish to monitor DA and 5-HT dynamics, followed by drug injections. The semi-implantable biosensor system displayed a significant increase in oxidation peak currents after DA and 5-HT injections. The device successfully demonstrated the application for in vivo simultaneous monitoring of DA and 5-HT in the hemolymph (i.e., blood) of freely behaving crayfish underwater, yielding a valuable experimental tool to expand our understanding of the comodulation of DA and 5-HT.


Subject(s)
Astacoidea , Dopamine , Electrochemical Techniques , Microelectrodes , Serotonin , Animals , Dopamine/analysis , Serotonin/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Wireless Technology , Carbon Fiber/chemistry , Biosensing Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...