Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 139(51): 18522-18535, 2017 12 27.
Article in English | MEDLINE | ID: mdl-29166564

ABSTRACT

Family A G protein-coupled receptors (GPCRs) control diverse biological processes and are of great clinical relevance. Their archetype rhodopsin becomes naturally light sensitive by binding covalently to the photoswitchable tethered ligand (PTL) retinal. Other GPCRs, however, neither bind covalently to ligands nor are light sensitive. We sought to impart the logic of rhodopsin to light-insensitive Family A GPCRs in order to enable their remote control in a receptor-specific, cell-type-specific, and spatiotemporally precise manner. Dopamine receptors (DARs) are of particular interest for their roles in motor coordination, appetitive, and aversive behavior, as well as neuropsychiatric disorders such as Parkinson's disease, schizophrenia, mood disorders, and addiction. Using an azobenzene derivative of the well-known DAR ligand 2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin (PPHT), we were able to rapidly, reversibly, and selectively block dopamine D1 and D2 receptors (D1R and D2R) when the PTL was conjugated to an engineered cysteine near the dopamine binding site. Depending on the site of tethering, the ligand behaved as either a photoswitchable tethered neutral antagonist or inverse agonist. Our results indicate that DARs can be chemically engineered for selective remote control by light and provide a template for precision control of Family A GPCRs.


Subject(s)
Dopamine D2 Receptor Antagonists/pharmacology , Dopamine D2 Receptor Antagonists/radiation effects , Drug Inverse Agonism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/radiation effects , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/radiation effects , Binding Sites , Cysteine/chemistry , Dopamine/metabolism , Humans , Ligands , Receptors, Dopamine D1/antagonists & inhibitors
2.
Chembiochem ; 18(16): 1639-1649, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28557180

ABSTRACT

Unbiased chemoproteomic profiling of small-molecule interactions with endogenous proteins is important for drug discovery. For meaningful results, all protein classes have to be tractable, including G protein-coupled receptors (GPCRs). These receptors are hardly tractable by affinity pulldown from lysates. We report a capture compound (CC)-based strategy to target and identify GPCRs directly from living cells. We synthesized CCs with sertindole attached to the CC scaffold in different orientations to target the dopamine D2 receptor (DRD2) heterologously expressed in HEK 293 cells. The structure-activity relationship of sertindole for DRD2 binding was reflected in the activities of the sertindole CCs in radioligand displacement, cell-based assays, and capture compound mass spectrometry (CCMS). The activity pattern was rationalized by molecular modelling. The most-active CC showed activities very similar to that of unmodified sertindole. A concentration of DRD2 in living cells well below 100 fmol used as an experimental input was sufficient for unambiguous identification of captured DRD2 by mass spectrometry. Our new CCMS workflow broadens the arsenal of chemoproteomic technologies to close a critical gap for the comprehensive characterization of drug-protein interactions.


Subject(s)
Dopamine D2 Receptor Antagonists/chemistry , Imidazoles/chemistry , Indoles/chemistry , Receptors, Dopamine D2/analysis , Animals , Dopamine D2 Receptor Antagonists/chemical synthesis , Dopamine D2 Receptor Antagonists/radiation effects , HEK293 Cells , Humans , Imidazoles/chemical synthesis , Imidazoles/radiation effects , Indoles/chemical synthesis , Indoles/radiation effects , Ligands , Molecular Docking Simulation , Radioligand Assay , Rats , Receptors, Dopamine D2/radiation effects , Spiperone/chemistry , Structure-Activity Relationship , Swine , Tandem Mass Spectrometry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...