Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.401
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2322066121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968125

ABSTRACT

The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid ß-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in Drosophila. Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis. Notably, active Wnt signaling directly represses the transcription of these genes, resulting in decreased de novo lipogenesis and fatty acid ß-oxidation, but increased lipolysis. These changes lead to elevated free fatty acids and reduced triglyceride (TG) accumulation in adipocytes with active Wnt signaling. Conversely, downregulation of Wnt signaling in the fat body promotes TG accumulation in both larval and adult adipocytes. The attenuation of Wnt signaling also increases the expression of specific lipid metabolism-related genes in larval adipocytes, wing discs, and adult intestines. Taken together, these findings suggest that Wnt signaling-induced transcriptional repression plays an important role in regulating lipid homeostasis by enhancing lipolysis while simultaneously suppressing lipogenesis and fatty acid ß-oxidation.


Subject(s)
Drosophila Proteins , Wnt Signaling Pathway , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Adipocytes/metabolism , Lipid Mobilization , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Wnt1 Protein/metabolism , Wnt1 Protein/genetics , Lipolysis , Lipogenesis/genetics , Triglycerides/metabolism , Lipid Metabolism/genetics , Larva/metabolism , Larva/genetics , Transcription, Genetic , Homeostasis
2.
Elife ; 122024 Jul 16.
Article in English | MEDLINE | ID: mdl-39010741

ABSTRACT

Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5' leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5' leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.


Subject(s)
Neuroglia , Protein Biosynthesis , Animals , Neuroglia/metabolism , Neurons/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Gene Expression Regulation , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Brain/metabolism , Brain/cytology , Ribosomes/metabolism , Drosophila/genetics
3.
Open Biol ; 14(7): 240043, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39013417

ABSTRACT

Ewing sarcoma (EwS) is a cancer that arises in the bones and soft tissues, typically driven by the Ewing's sarcoma breakpoint region 1-Friend leukemia virus integration 1 (EWS-FLI) oncogene. Implementation of genetically modified animal models of EwS has proved difficult largely owing to EWS-FLI's high toxicity. The EWS-FLI1FS frameshift variant that circumvents toxicity but is still able to perform key oncogenic functions provided the first study model in Drosophila. However, the quest for Drosophila lines expressing full-length, unmodified EWS-FLI remained open. Here, we show that EWS-FLI1FS's lower toxicity is owed to reduced protein levels caused by its frameshifted C-terminal peptide, and report new strategies through which we have generated Drosophila lines that express full-length, unmodified EWS-FLI. Using these lines, we have found that the upregulation of transcription from GGAA-microsatellites (GGAAµSats) presents a positive linear correlation within a wide range of EWS-FLI protein concentrations. In contrast, rather counterintuitively, GGAAµSats-independent transcriptomic dysregulation presents relatively minor differences across the same range, suggesting that GGAAµSat-dependent and -independent transcriptional upregulation present different kinetics of response with regards to changing EWS-FLI protein concentration. Our results underpin the functional relevance of varying EWS-FLI expression levels and provide experimental tools to investigate, in Drosophila, the effect of the EWS-FLI 'high' and 'low' states that have been reported and are suspected to be important for EwS in humans.


Subject(s)
Oncogene Proteins, Fusion , Proto-Oncogene Protein c-fli-1 , RNA-Binding Protein EWS , Animals , RNA-Binding Protein EWS/metabolism , RNA-Binding Protein EWS/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Humans , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Animals, Genetically Modified , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism
4.
Funct Integr Genomics ; 24(4): 120, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38960936

ABSTRACT

The Drosophila egg chamber (EC) starts as a spherical tissue at the beginning. With maturation, the outer follicle cells of EC collectively migrate in a direction perpendicular to the anterior-posterior axis, to shape EC from spherical to ellipsoidal. Filamentous actin (F-actin) plays a significant role in shaping individual migratory cells to the overall EC shape, like in every cell migration. The primary focus of this article is to unveil the function of different Actin Binding Proteins (ABPs) in regulating mature Drosophila egg shape. We have screened 66 ABPs, and the genetic screening data revealed that individual knockdown of Arp2/3 complex genes and the "capping protein ß" (cpb) gene have severely altered the egg phenotype. Arpc1 and cpb RNAi mediated knockdown resulted in the formation of spherical eggs which are devoid of dorsal appendages. Studies also showed the role of Arpc1 and cpb on the number of laid eggs and follicle cell morphology. Furthermore, the depletion of Arpc1 and cpb resulted in a change in F-actin quantity. Together, the data indicate that Arpc1 and cpb regulate Drosophila egg shape, F-actin management, egg-laying characteristics and dorsal appendages formation.


Subject(s)
Actins , Drosophila Proteins , Morphogenesis , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Actins/metabolism , Actins/genetics , Female , Morphogenesis/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin Capping Proteins/metabolism , Actin Capping Proteins/genetics , Ovum/metabolism , Ovum/growth & development
5.
Commun Biol ; 7(1): 783, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951619

ABSTRACT

Transport of macromolecules through the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs) consisting of nucleoporins (Nups). Elys/Mel-28 is the Nup that binds and connects the decondensing chromatin with the reassembled NPCs at the end of mitosis. Whether Elys links chromatin with the NE during interphase is unknown. Here, using DamID-seq, we identified Elys binding sites in Drosophila late embryos and divided them into those associated with nucleoplasmic or with NPC-linked Elys. These Elys binding sites are located within active or inactive chromatin, respectively. Strikingly, Elys knockdown in S2 cells results in peripheral chromatin displacement from the NE, in decondensation of NE-attached chromatin, and in derepression of genes within. It also leads to slightly more compact active chromatin regions. Our findings indicate that NPC-linked Elys, together with the nuclear lamina, anchors peripheral chromatin to the NE, whereas nucleoplasmic Elys decompacts active chromatin.


Subject(s)
Chromatin , Drosophila Proteins , Interphase , Nuclear Pore Complex Proteins , Nuclear Pore , Animals , Chromatin/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Cell Nucleus/metabolism , Binding Sites
6.
Arch Insect Biochem Physiol ; 116(3): e22132, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38993002

ABSTRACT

Perilipins are evolutionarily conserved from insects to mammals. Drosophila lipid storage droplet-1 (LSD-1) is a lipid storage droplet membrane surface-binding protein family member and a counterpart to mammalian perilipin 1 and is known to play a role in lipolysis. However, the function of LSD-1 during specific tissue development remains under investigation. This study demonstrated the role of LSD-1 in salivary gland development. Knockdown of Lsd-1 in the salivary gland was established using the GAL4/UAS system. The third-instar larvae of knockdown flies had small salivary glands containing cells with smaller nuclei. The null mutant Drosophila also showed the same phenotype. The depletion of LSD-1 expression induced a delay of endoreplication due to decreasing CycE expression and increasing DNA damage. Lsd-1 genetically interacted with Myc in the third-instar larvae. These results demonstrate that LSD-1 is involved in cell cycle and cell death programs in the salivary gland, providing novel insight into the effects of LSD-1 in regulating salivary gland development and the interaction between LSD-1 and Myc.


Subject(s)
Cell Death , Drosophila Proteins , Larva , Salivary Glands , Animals , Salivary Glands/metabolism , Salivary Glands/cytology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Larva/growth & development , Larva/metabolism , Larva/genetics , Drosophila/metabolism , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/growth & development , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , DNA Replication , DNA-Binding Proteins , Oxidoreductases, N-Demethylating , Transcription Factors
7.
Cells ; 13(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994985

ABSTRACT

The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis.


Subject(s)
Drosophila melanogaster , Receptors, Notch , Animals , Drosophila melanogaster/metabolism , Receptors, Notch/metabolism , Epithelium/metabolism , Cell Polarity , Drosophila Proteins/metabolism , Sense Organs/metabolism , Sense Organs/cytology , Signal Transduction , Epithelial Cells/metabolism , Epithelial Cells/cytology
8.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000597

ABSTRACT

Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Infertility, Male , Spermatogenesis , Animals , Male , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/deficiency , Spermatogenesis/genetics , Mitochondria/metabolism , Mitochondria/genetics , Testis/metabolism , Meiosis/genetics , Spermatogonia/metabolism , Gene Expression Profiling , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Spermatocytes/metabolism , Transcriptome
9.
Methods Mol Biol ; 2805: 137-151, 2024.
Article in English | MEDLINE | ID: mdl-39008179

ABSTRACT

Transcription in developing metazoans is inherently stochastic, involving transient and dynamic interactions among transcriptional machinery. A fundamental challenge with traditional techniques, including fixed-tissue protein and RNA staining, is the lack of temporal resolution. Quantifying kinetic changes in transcription can elucidate underlying mechanisms of interaction among regulatory modules. In this protocol, we describe the successful implementation of a combination of MS2/MCP and PP7/PCP systems in living Drosophila embryos to further our understanding of transcriptional dynamics during development. Our technique can be extended to visualize transcriptional activities of multiple genes or alleles simultaneously, characterize allele-specific expression of a target gene, and quantitatively analyze RNA polymerase II activity in a single-cell resolution.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , Animals , Embryonic Development/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Embryo, Nonmammalian/metabolism , Drosophila/embryology , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Transcription, Genetic , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
10.
J Cell Biol ; 223(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38949648

ABSTRACT

The diverse roles of the dynein motor in shaping microtubule networks and cargo transport complicate in vivo analysis of its functions significantly. To address this issue, we have generated a series of missense mutations in Drosophila Dynein heavy chain. We show that mutations associated with human neurological disease cause a range of defects, including impaired cargo trafficking in neurons. We also describe a novel microtubule-binding domain mutation that specifically blocks the metaphase-anaphase transition during mitosis in the embryo. This effect is independent from dynein's canonical role in silencing the spindle assembly checkpoint. Optical trapping of purified dynein complexes reveals that this mutation only compromises motor performance under load, a finding rationalized by the results of all-atom molecular dynamics simulations. We propose that dynein has a novel function in anaphase progression that depends on it operating in a specific load regime. More broadly, our work illustrates how in vivo functions of motors can be dissected by manipulating their mechanical properties.


Subject(s)
Anaphase , Drosophila Proteins , Drosophila melanogaster , Dyneins , Microtubules , Animals , Dyneins/metabolism , Dyneins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Microtubules/metabolism , Microtubules/genetics , Molecular Dynamics Simulation , Mutation/genetics , Spindle Apparatus/metabolism , Spindle Apparatus/genetics , Humans , Mutation, Missense
11.
Elife ; 132024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995818

ABSTRACT

Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino's chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino's chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.


Subject(s)
Chromatin , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone , Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromatin/metabolism , Chromatin/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Evolution, Molecular , Phylogeny , Protein Binding , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Histones/metabolism , Histones/genetics , DNA/metabolism , DNA/genetics
12.
Mol Brain ; 17(1): 43, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003465

ABSTRACT

Dorsal switch protein 1(DSP1), a mammalian homolog of HMGB1, is firstly identified as a dorsal co-repressor in 1994. DSP1 contains HMG-box domain and functions as a transcriptional regulator in Drosophila melanogaster. It plays a crucial role in embryonic development, particularly in dorsal-ventral patterning during early embryogenesis, through the regulation of gene expression. Moreover, DSP1 is implicated in various cellular processes, including cell fate determination and tissue differentiation, which are essential for embryonic development. While the function of DSP1 in embryonic development has been relatively well-studied, its role in the adult Drosophila brain remains less understood. In this study, we investigated the role of DSP1 in the brain by using neuronal-specific DSP1 overexpression flies. We observed that climbing ability and life span are decreased in DSP1-overexpressed flies. Furthermore, these flies demonstrated neuromuscular junction (NMJ) defect, reduced eye size and a decrease in tyrosine hydroxylase (TH)-positive neurons, indicating neuronal toxicity induced by DSP1 overexpression. Our data suggest that DSP1 overexpression leads to neuronal dysfunction and toxicity, positioning DSP1 as a potential therapeutic target for neurodegenerative diseases.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Nerve Degeneration , Neuromuscular Junction , Neurons , Phenotype , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Neurons/metabolism , Neurons/pathology , Nerve Degeneration/pathology , Nerve Degeneration/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Eye/pathology , Longevity/genetics , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
13.
Proc Natl Acad Sci U S A ; 121(30): e2319958121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39008673

ABSTRACT

Neuropeptides (NPs) and their cognate receptors are critical effectors of diverse physiological processes and behaviors. We recently reported of a noncanonical function of the Drosophila Glucose-6-Phosphatase (G6P) gene in a subset of neurosecretory cells in the central nervous system that governs systemic glucose homeostasis in food-deprived flies. Here, we show that G6P-expressing neurons define six groups of NP-secreting cells, four in the brain and two in the thoracic ganglion. Using the glucose homeostasis phenotype as a screening tool, we find that neurons located in the thoracic ganglion expressing FMRFamide NPs (FMRFaG6P neurons) are necessary and sufficient to maintain systemic glucose homeostasis in starved flies. We further show that G6P is essential in FMRFaG6P neurons for attaining a prominent Golgi apparatus and secreting NPs efficiently. Finally, we establish that G6P-dependent FMRFa signaling is essential for the build-up of glycogen stores in the jump muscle which expresses the receptor for FMRFamides. We propose a general model in which the main role of G6P is to counteract glycolysis in peptidergic neurons for the purpose of optimizing the intracellular environment best suited for the expansion of the Golgi apparatus, boosting release of NPs and enhancing signaling to respective target tissues expressing cognate receptors.


Subject(s)
Drosophila melanogaster , FMRFamide , Glucose-6-Phosphatase , Glycogen , Neurons , Neuropeptides , Signal Transduction , Animals , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , FMRFamide/metabolism , Glucose/metabolism , Glucose-6-Phosphatase/metabolism , Glucose-6-Phosphatase/genetics , Glycogen/metabolism , Golgi Apparatus/metabolism , Homeostasis , Muscles/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Neuropeptides/genetics
14.
FASEB J ; 38(14): e23805, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39003630

ABSTRACT

Iron homeostasis is of critical importance to living organisms. Drosophila melanogaster has emerged as an excellent model to study iron homeostasis, while the regulatory mechanism of iron metabolism remains poorly understood. Herein, we accidently found that knockdown of juvenile hormone (JH) acid methyltransferase (Jhamt) specifically in the fat body, a key rate-limiting enzyme for JH synthesis, led to iron accumulation locally, resulting in serious loss and dysfunction of fat body. Jhamt knockdown-induced phenotypes were mitigated by iron deprivation, antioxidant and Ferrostatin-1, a well-known inhibitor of ferroptosis, suggesting ferroptosis was involved in Jhamt knockdown-induced defects in the fat body. Further study demonstrated that upregulation of Tsf1 and Malvolio (Mvl, homolog of mammalian DMT1), two iron importers, accounted for Jhamt knockdown-induced iron accumulation and dysfunction of the fat body. Mechanistically, Kr-h1, a key transcription factor of JH, acts downstream of Jhamt inhibiting Tsf1 and Mvl transcriptionally. In summary, the findings indicated that fat body-derived Jhamt is required for the development of Drosophila by maintaining iron homeostasis in the fat body, providing unique insight into the regulatory mechanisms of iron metabolism in Drosophila.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Fat Body , Homeostasis , Iron , Methyltransferases , Animals , Drosophila melanogaster/metabolism , Iron/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Fat Body/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Juvenile Hormones/metabolism , Ferroptosis/physiology , Kruppel-Like Transcription Factors
15.
Nat Commun ; 15(1): 6068, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025931

ABSTRACT

Neurexins are key adhesion proteins that coordinate extracellular and intracellular synaptic components. Nonetheless, the low abundance of these multidomain proteins has complicated any localization and structure-function studies. Here we combine an ALFA tag (AT)/nanobody (NbALFA) tool with classic genetics, cell biology and electrophysiology to examine the distribution and function of the Drosophila Nrx-1 in vivo. We generate full-length and ΔPDZ ALFA-tagged Nrx-1 variants and find that the PDZ binding motif is key to Nrx-1 surface expression. A PDZ binding motif provided in trans, via genetically encoded cytosolic NbALFA-PDZ chimera, fully restores the synaptic localization and function of NrxΔPDZ-AT. Using cytosolic NbALFA-mScarlet intrabody, we achieve compartment-specific detection of endogenous Nrx-1, track live Nrx-1 transport along the motor neuron axons, and demonstrate that Nrx-1 co-migrates with Rab2-positive vesicles. Our findings illustrate the versatility of the ALFA system and pave the way towards dissecting functional domains of complex proteins in vivo.


Subject(s)
Drosophila Proteins , Single-Domain Antibodies , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Single-Domain Antibodies/metabolism , Drosophila melanogaster/metabolism , Motor Neurons/metabolism , PDZ Domains , Axons/metabolism , Neural Cell Adhesion Molecules/metabolism , Neural Cell Adhesion Molecules/genetics , Protein Transport , Cell Adhesion Molecules, Neuronal
16.
Sci Rep ; 14(1): 16567, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019933

ABSTRACT

Serine proteases are important regulators of airway epithelial homeostasis. Altered serum or cellular levels of two serpins, Scca1 and Spink5, have been described for airway diseases but their function beyond antiproteolytic activity is insufficiently understood. To close this gap, we generated fly lines with overexpression or knockdown for each gene in the airways. Overexpression of both fly homologues of Scca1 and Spink5 induced the growth of additional airway branches, with more variable results for the respective knockdowns. Dysregulation of Scca1 resulted in a general delay in fruit fly development, with increases in larval and pupal mortality following overexpression of this gene. In addition, the morphological changes in the airways were concomitant with lower tolerance to hypoxia. In conclusion, the observed structural changes of the airways evidently had a strong impact on the airway function in our model as they manifested in a lower physical fitness of the animals. We assume that this is due to insufficient tissue oxygenation. Future work will be directed at the identification of key molecular regulators following the airway-specific dysregulation of Scca1 and Spink5 expression.


Subject(s)
Asthma , Drosophila melanogaster , Serpins , Trachea , Animals , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Trachea/metabolism , Trachea/pathology , Asthma/metabolism , Asthma/pathology , Asthma/genetics , Serpins/metabolism , Serpins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Oxygen/metabolism
17.
Nat Commun ; 15(1): 5715, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977659

ABSTRACT

Mitochondria are maternally inherited, but the mechanisms underlying paternal mitochondrial elimination after fertilization are far less clear. Using Drosophila, we show that special egg-derived multivesicular body vesicles promote paternal mitochondrial elimination by activating an LC3-associated phagocytosis-like pathway, a cellular defense pathway commonly employed against invading microbes. Upon fertilization, these egg-derived vesicles form extended vesicular sheaths around the sperm flagellum, promoting degradation of the sperm mitochondrial derivative and plasma membrane. LC3-associated phagocytosis cascade of events, including recruitment of a Rubicon-based class III PI(3)K complex to the flagellum vesicular sheaths, its activation, and consequent recruitment of Atg8/LC3, are all required for paternal mitochondrial elimination. Finally, lysosomes fuse with strings of large vesicles derived from the flagellum vesicular sheaths and contain degrading fragments of the paternal mitochondrial derivative. Given reports showing that in some mammals, the paternal mitochondria are also decorated with Atg8/LC3 and surrounded by multivesicular bodies upon fertilization, our findings suggest that a similar pathway also mediates paternal mitochondrial elimination in other flagellated sperm-producing organisms.


Subject(s)
Drosophila Proteins , Fertilization , Mitochondria , Multivesicular Bodies , Phagocytosis , Spermatozoa , Animals , Mitochondria/metabolism , Male , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Female , Spermatozoa/metabolism , Multivesicular Bodies/metabolism , Drosophila melanogaster/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Ovum/metabolism , Lysosomes/metabolism , Sperm Tail/metabolism , Mitophagy
18.
Cell Rep ; 43(6): 114362, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870008

ABSTRACT

Wnt/Wingless (Wg) signaling is critical in development and disease, including cancer. Canonical Wnt signaling is mediated by ß-catenin/Armadillo (Arm in Drosophila) transducing signals to the nucleus, with IFT-A/Kinesin 2 complexes promoting nuclear translocation of ß-catenin/Arm. Here, we demonstrate that a conserved small N-terminal Arm34-87/ß-catenin peptide binds to IFT140, acting as a dominant interference tool to attenuate Wg/Wnt signaling in vivo. Arm34-87 expression antagonizes endogenous Wnt/Wg signaling, resulting in the reduction of its target expression. Arm34-87 inhibits Wg/Wnt signaling by interfering with nuclear translocation of endogenous Arm/ß-catenin, and this can be modulated by levels of wild-type ß-catenin or IFT140, with the Arm34-87 effect being enhanced or suppressed. Importantly, this mechanism is conserved in mammals with the equivalent ß-catenin24-79 peptide blocking nuclear translocation and pathway activation, including in cancer cells. Our work indicates that Wnt signaling can be regulated by a defined N-terminal ß-catenin peptide and thus might serve as an entry point for therapeutic applications to attenuate Wnt/ß-catenin signaling.


Subject(s)
Armadillo Domain Proteins , Cell Nucleus , Drosophila Proteins , Wnt Signaling Pathway , beta Catenin , beta Catenin/metabolism , Animals , Drosophila Proteins/metabolism , Cell Nucleus/metabolism , Humans , Armadillo Domain Proteins/metabolism , Armadillo Domain Proteins/genetics , Wnt1 Protein/metabolism , Wnt1 Protein/genetics , Active Transport, Cell Nucleus , Drosophila melanogaster/metabolism , Peptides/metabolism , Peptides/pharmacology , Protein Binding , Amino Acid Sequence , Transcription Factors
19.
Dev Biol ; 514: 37-49, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38885804

ABSTRACT

The conserved bazooka (baz/par3) gene acts as a key regulator of asymmetrical cell divisions across the animal kingdom. Associated Par3/Baz-Par6-aPKC protein complexes are also well known for their role in the establishment of apical/basal cell polarity in epithelial cells. Here we define a novel, positive function of Baz/Par3 in the Notch pathway. Using Drosophila wing and eye development, we demonstrate that Baz is required for Notch signaling activity and optimal transcriptional activation of Notch target genes. Baz appears to act independently of aPKC in these contexts, as knockdown of aPKC does not cause Notch loss-of-function phenotypes. Using transgenic Notch constructs, our data positions Baz activity downstream of activating Notch cleavage steps and upstream of Su(H)/CSL transcription factor complex activity on Notch target genes. We demonstrate a biochemical interaction between NICD and Baz, suggesting that Baz is required for NICD activity before NICD binds to Su(H). Taken together, our data define a novel role of the polarity protein Baz/Par3, as a positive and direct regulator of Notch signaling through its interaction with NICD.


Subject(s)
Drosophila Proteins , Receptors, Notch , Signal Transduction , Wings, Animal , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Receptors, Notch/metabolism , Wings, Animal/metabolism , Wings, Animal/embryology , Wings, Animal/growth & development , Gene Expression Regulation, Developmental , Protein Binding , Drosophila melanogaster/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Eye/embryology , Eye/metabolism , Eye/growth & development , Drosophila/metabolism , Drosophila/embryology , Cell Polarity , Intracellular Signaling Peptides and Proteins
20.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891830

ABSTRACT

The dynamic process of Drosophila spermatogenesis involves asymmetric division, mitosis, and meiosis, which ultimately results in the production of mature spermatozoa. Disorders of spermatogenesis can lead to infertility in males. ADAR (adenosine deaminase acting on RNA) mutations in Drosophila cause male infertility, yet the causative factors remain unclear. In this study, immunofluorescence staining was employed to visualize endogenous ADAR proteins and assess protein levels via fluorescence-intensity analysis. In addition, the early differentiation disorders and homeostatic alterations during early spermatogenesis in the testes were examined through quantification of transit-amplifying region length, counting the number of GSCs (germline stem cells), and fertility experiments. Our findings suggest that deletion of ADAR causes testicular tip transit-amplifying cells to accumulate and become infertile in older male Drosophila. By overexpressing ADAR in early germline cells, male infertility can be partially rescued. Transcriptome analysis showed that ADAR maintained early spermatogenesis homeostasis through the bone-morphogenetic-protein (BMP) signaling pathway. Taken together, these findings have the potential to help explore the role of ADAR in early spermatogenesis.


Subject(s)
Adenosine Deaminase , Bone Morphogenetic Proteins , Drosophila Proteins , Drosophila melanogaster , Signal Transduction , Spermatogenesis , Animals , Male , Spermatogenesis/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Infertility, Male/genetics , Infertility, Male/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...