Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.338
Filter
1.
BMJ Open Ophthalmol ; 9(1)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830728

ABSTRACT

BACKGROUND: Unpreserved single-dose unit (SDU) eye drops are commonly used to avoid benzalkonium chloride-related toxicity. Although intended for single use, many patients report off-label repeated use of SDUs over a prolonged period. We investigated whether repeated use of dexamethasone 0.1% SDUs in the same patient increases the bacterial contamination rate. METHODS: We prospectively enrolled patients scheduled for inpatient corneal and glaucoma surgery receiving dexamethasone 0.1% SDU four times per day from the same vial. To assess contamination rates, one drop from the vial was cultured immediately after opening the SDU (t0), 10 hours later after four drop applications (t10) and 24 hours after opening without further drop applications (t24). Conjunctival swabs were taken before and after drop application. Contamination rate was assessed with a standard clinical culturing protocol without introducing a positive control. RESULTS: 110 eyes of 109 patients were evaluated. Drops collected immediately after opening the SDU (t0) were contaminated in 9/110 cultures (8.1%). At t10, 13/110 cultures were contaminated (11.8%; p=0.267) and 11/110 at t24 (10.0%; t24 vs t0; p=1.00). In 5 of 21 cases of contaminated drops at t10 and/or t24, the same isolates were cultured from the initial conjunctival swab and the SDU. In three cases, the same bacterial species was found in consecutive samples. CONCLUSION: The contamination rate of the SDU did not increase after multiple use within 24 hours. Contamination from fingertip flora was more likely than from ocular surface flora. Reuse of dexamethasone 0.1% SDU in the same patient within 24 hours appears to be safe.


Subject(s)
Dexamethasone , Glucocorticoids , Ophthalmic Solutions , Preservatives, Pharmaceutical , Humans , Dexamethasone/administration & dosage , Dexamethasone/adverse effects , Ophthalmic Solutions/adverse effects , Male , Female , Prospective Studies , Preservatives, Pharmaceutical/adverse effects , Preservatives, Pharmaceutical/administration & dosage , Aged , Middle Aged , Glucocorticoids/administration & dosage , Glucocorticoids/adverse effects , Aged, 80 and over , Adult , Drug Contamination , Glaucoma/drug therapy , Conjunctiva/microbiology , Conjunctiva/drug effects , Bacteria/drug effects , Bacteria/isolation & purification , Corneal Diseases/chemically induced
2.
J Sep Sci ; 47(9-10): e2300949, 2024 May.
Article in English | MEDLINE | ID: mdl-38726739

ABSTRACT

Hydrophilic interaction liquid chromatography (HILIC) has been widely applied to challenging analysis in biomedical and pharmaceutical fields, bridging the gap between normal-phase high-performance liquid chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC). This paper comprehensively explores the retention mechanisms of amitriptyline and its impurities A, B, C, D, F, and G on amide, amino, diol, and silica columns. Dual HILIC/RP-HPLC retention mechanisms were developed, and transitional points between HILIC and RP-HPLC mechanisms were calculated on amide, diol, and silica columns. Adsorption and partition contributions to overall retention mechanisms were evaluated using Python software in HILIC and RP-HPLC regions. The cation exchange mechanism dominates overall retention for ionized analytes in the silica column (R2 > 0.995), whereas the retention of ionized analytes increases with pH. Impacts of acetonitrile content, buffer ionic strength, and pH, along with their interactions on the retention of ionized analytes in the silica column, were determined using the chemometric approach. Acetonitrile content showed the most significant impact on the retention mechanisms. These findings highlight that a detailed investigation into retention mechanisms provides notable insights into factors influencing analyte retention and separation, promising valuable guidance for future analysis.


Subject(s)
Amides , Amitriptyline , Hydrophobic and Hydrophilic Interactions , Silicon Dioxide , Silicon Dioxide/chemistry , Amitriptyline/analysis , Amitriptyline/chemistry , Amides/chemistry , Amides/analysis , Chromatography, High Pressure Liquid , Drug Contamination , Chromatography, Liquid/methods , Molecular Structure
3.
Mol Biol Rep ; 51(1): 639, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727924

ABSTRACT

BACKGROUND: Peucedani Radix, also known as "Qian-hu" is a traditional Chinese medicine derived from Peucedanum praeruptorum Dunn. It is widely utilized for treating wind-heat colds and coughs accompanied by excessive phlegm. However, due to morphological similarities, limited resources, and heightened market demand, numerous substitutes and adulterants of Peucedani Radix have emerged within the herbal medicine market. Moreover, Peucedani Radix is typically dried and sliced for sale, rendering traditional identification methods challenging. MATERIALS AND METHODS: We initially examined and compared 104 commercial "Qian-hu" samples from various Chinese medicinal markets and 44 species representing genuine, adulterants or substitutes, utilizing the mini barcode ITS2 region to elucidate the botanical origins of the commercial "Qian-hu". The nucleotide signature specific to Peucedani Radix was subsequently developed by analyzing the polymorphic sites within the aligned ITS2 sequences. RESULTS: The results demonstrated a success rate of 100% and 93.3% for DNA extraction and PCR amplification, respectively. Forty-five samples were authentic "Qian-hu", while the remaining samples were all adulterants, originating from nine distinct species. Peucedani Radix, its substitutes, and adulterants were successfully identified based on the neighbor-joining tree. The 24-bp nucleotide signature (5'-ATTGTCGTACGAATCCTCGTCGTC-3') revealed distinct differences between Peucedani Radix and its common substitutes and adulterants. The newly designed specific primers (PR-F/PR-R) can amplify the nucleotide signature region from commercial samples and processed materials with severe DNA degradation. CONCLUSIONS: We advocate for the utilization of ITS2 and nucleotide signature for the rapid and precise identification of herbal medicines and their adulterants to regulate the Chinese herbal medicine industry.


Subject(s)
DNA Barcoding, Taxonomic , DNA, Plant , DNA, Plant/genetics , DNA Barcoding, Taxonomic/methods , Drugs, Chinese Herbal/standards , Apiaceae/genetics , Apiaceae/classification , Medicine, Chinese Traditional/standards , DNA, Ribosomal Spacer/genetics , Drug Contamination , Plants, Medicinal/genetics , Phylogeny , Sequence Analysis, DNA/methods , Polymerase Chain Reaction/methods , Nucleotides/genetics , Nucleotides/analysis
4.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731577

ABSTRACT

Recently, benchtop nuclear magnetic resonance (NMR) spectrometers utilizing permanent magnets have emerged as versatile tools with applications across various fields, including food and pharmaceuticals. Their efficacy is further enhanced when coupled with chemometric methods. This study presents an innovative approach to leveraging a compact benchtop NMR spectrometer coupled with chemometrics for screening honey-based food supplements adulterated with active pharmaceutical ingredients. Initially, fifty samples seized by French customs were analyzed using a 60 MHz benchtop spectrometer. The investigation unveiled the presence of tadalafil in 37 samples, sildenafil in 5 samples, and a combination of flibanserin with tadalafil in 1 sample. After conducting comprehensive qualitative and quantitative characterization of the samples, we propose a chemometric workflow to provide an efficient screening of honey samples using the NMR dataset. This pipeline, utilizing partial least squares discriminant analysis (PLS-DA) models, enables the classification of samples as either adulterated or non-adulterated, as well as the identification of the presence of tadalafil or sildenafil. Additionally, PLS regression models are employed to predict the quantitative content of these adulterants. Through blind analysis, this workflow allows for the detection and quantification of adulterants in these honey supplements.


Subject(s)
Dietary Supplements , Honey , Magnetic Resonance Spectroscopy , Honey/analysis , Dietary Supplements/analysis , Magnetic Resonance Spectroscopy/methods , Sildenafil Citrate/analysis , Workflow , Chemometrics/methods , Tadalafil/analysis , Least-Squares Analysis , Drug Contamination/prevention & control , Discriminant Analysis
5.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731650

ABSTRACT

The present study investigates the chemical composition variances among Pinelliae Rhizoma, a widely used Chinese herbal medicine, and its common adulterants including Typhonium flagelliforme, Arisaema erubescens, and Pinellia pedatisecta. Utilizing the non-targeted metabolomics technique of employing UHPLC-Q-Orbitrap HRMS, this research aims to comprehensively delineate the metabolic profiles of Pinelliae Rhizoma and its adulterants. Multivariate statistical methods including PCA and OPLS-DA are employed for the identification of differential metabolites. Volcano plot analysis is utilized to discern upregulated and downregulated compounds. KEGG pathway analysis is conducted to elucidate the differences in metabolic pathways associated with these compounds, and significant pathway enrichment analysis is performed. A total of 769 compounds are identified through metabolomics analysis, with alkaloids being predominant, followed by lipids and lipid molecules. Significant differential metabolites were screened out based on VIP > 1 and p-value < 0.05 criteria, followed by KEGG enrichment analysis of these differential metabolites. Differential metabolites between Pinelliae Rhizoma and Typhonium flagelliforme, as well as between Pinelliae Rhizoma and Pinellia pedatisecta, are significantly enriched in the biosynthesis of amino acids and protein digestion and absorption pathways. Differential metabolites between Pinelliae Rhizoma and Arisaema erubescens are mainly enriched in tyrosine metabolism and phenylalanine metabolism pathways. These findings aim to provide valuable data support and theoretical references for further research on the pharmacological substances, resource development and utilization, and quality control of Pinelliae Rhizoma.


Subject(s)
Metabolomics , Pinellia , Rhizome , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Pinellia/metabolism , Pinellia/chemistry , Rhizome/metabolism , Rhizome/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Mass Spectrometry/methods , Drug Contamination , Metabolome , Metabolic Networks and Pathways
6.
Se Pu ; 42(5): 432-444, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736386

ABSTRACT

Amphotericin B (AmB) is a polyene-macrolide antimicrobial drug with a broad antibacterial spectrum and remarkable efficacy against deep fungal infections. It binds to ergosterol on the fungal cell membrane and alters its permeability, thereby destroying the membrane. AmB is a multicomponent antimicrobial medication that contains a wide range of impurities, rendering quality analysis extremely difficult. In the current Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3), high performance liquid chromatography (HPLC) is applied to examine related substances in AmB. However, this technique presents a number of issues. For instance, the mobile phases used in the HPLC method described in both references contain nonvolatile inorganic salts, which cannot be coupled with a mass spectrometry (MS) detector. In addition, because the mobile phases used have a low pH, the component/impurities of AmB drug can easily be degraded or interconverted during the analytical process, leading to reduced analytical accuracy. Therefore, the accuracy and sensitivity of this method must be improved. In this study, a method based on on-line two-dimensional high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (2D HPLC-Q TOF/MS) was developed to analyze the impurity profile of AmB in accordance with the Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3). The method combines on-line dilution and a multiple-capture HPLC system to achieve the efficient separation of AmB component/impurities. It also resolves the issue of poor solvent compatibility in 2D HPLC, increases the analytical flux, enhances the automation capability, reduces the mutual conversion of AmB and its impurities during the analytical process, and increases the detection sensitivity of the method. MS was also used to determine the structural inference of unstable components and impurities. An XBridge Shield C18 column (250 mm×4.6 mm, 3 µm) was used for first-dimensional-liquid chromatography with gradient elution using methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (10∶30∶60, v/v/v, pH 4.7) as mobile phase A and methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (12∶68∶20, v/v/v, pH 3.9) as mobile phase B. An Xtimate C8 column (10 mm×2.1 mm, 5 µm) was used as the trap column, and trapping and desalting were performed using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v). An Xtimate C8 column (250 mm×2.1 mm, 5 µm) was used for second-dimensional-liquid chromatography with gradient elution using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v) and 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (5∶95, v/v) as mobile phases. The data were collected in positive-ion mode. In this study, the structures of six impurities in amphotericin B were inferred, according to the fragmentation, the MS and MS2 spectra of each impurity. The developed method can be used to quickly and sensitively analyze the impurity profile of AmB. Furthermore, the research results on impurity profiles can be applied to guide improvements in AmB production.


Subject(s)
Amphotericin B , Drug Contamination , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Amphotericin B/analysis , Amphotericin B/chemistry , Mass Spectrometry/methods
7.
Se Pu ; 42(5): 481-486, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736392

ABSTRACT

Ibandronate sodium, a third-generation diphosphate drug used worldwide to treat osteoporosis, has the advantages of convenient use, low toxicity, and significant therapeutic effects. However, the residual organic solvents in the synthesis process of sodium ibandronate not only have a negative impact on the efficacy of the drug, but also lead to a decrease in drug stability. Moreover, if the residual amounts of these solvents exceed safety standards, they may pose serious threats to human health. This study successfully established a convenient and efficient method based on headspace-gas chromatography (HS-GC) for the simultaneous determination of five residual solvents (methanol, acetone, benzene, toluene, 1-pentanol) in the raw materials of ibandronate sodium. The results indicated that satisfactory analytical performance can be achieved by using DB-624 capillary column (30 m×0.32 mm×1.8 µm) and a flame ionization detector in conjunction with headspace autosampling and a temperature program. The specific operating conditions included an initial temperature of 40 ℃, with a hold of 2 min, followed by a temperature ramp first to 200 ℃ at a rate of 5 ℃/min and then to 240 ℃ at a rate of 20 ℃/min, with a hold of 5 min. Nitrogen with a flow rate of 1 mL/min and split ratio of 14∶1 was used as the carrier gas. The headspace vial temperature was maintained at 80 ℃, and the sample equilibration time was 20 min. Under the established analytical conditions, good linear relationships were obtained between the mass concentrations of methanol (72-216 µg/mL), acetone (120-360 µg/mL), benzene (0.048-0.144 µg/mL), toluene (21.36-64.08 µg/mL), and 1-pentanol (120-360 µg/mL) and their corresponding peak areas, with correlation coefficients (r) greater than 0.990. The limits of detection for these solvents were 2.88, 0.011, 0.90, 0.24, and 0.024 ng/mL, respectively, with limits of quantification of 11.5, 0.043, 3.6, 0.96, and 0.096 ng/mL, respectively. Furthermore, the recoveries of these solvents ranged from 86.3% to 101.9%, with relative standard deviations (RSDs, n=3) of less than 2.49%. The proposed method is simple, accurate, reliable, and suitable for the rapid and simultaneous determination of five residual solvents in the raw materials of ibandronate sodium. This study has important practical significance in improving drug safety and ensuring public health.


Subject(s)
Ibandronic Acid , Solvents , Chromatography, Gas/methods , Solvents/chemistry , Ibandronic Acid/analysis , Diphosphonates/analysis , Drug Contamination
8.
PLoS One ; 19(5): e0303773, 2024.
Article in English | MEDLINE | ID: mdl-38753829

ABSTRACT

The Burkholderia cepacia complex (Bcc) is the number one bacterial complex associated with contaminated Finished Pharmaceutical Products (FPPs). This has resulted in multiple healthcare related infection morbidity and mortality events in conjunction with significant FPP recalls globally. Current microbiological quality control of FPPs before release for distribution depends on lengthy, laborious, non-specific, traditional culture-dependent methods which lack sensitivity. Here, we present the development of a culture-independent Bcc Nucleic Acid Diagnostic (NAD) method for detecting Bcc contaminants associated with Over-The-Counter aqueous FPPs. The culture-independent Bcc NAD method was validated to be specific for detecting Bcc at different contamination levels from spiked aqueous FPPs. The accuracy in Bcc quantitative measurements was achieved by the high degree of Bcc recovery from aqueous FPPs. The low variation observed between several repeated Bcc quantitative measurements further demonstrated the precision of Bcc quantification in FPPs. The robustness of the culture-independent Bcc NAD method was determined when its accuracy and precision were not significantly affected during testing of numerous aqueous FPP types with different ingredient matrices, antimicrobial preservative components and routes of administration. The culture-independent Bcc NAD method showed an ability to detect Bcc in spiked aqueous FPPs at a concentration of 20 Bcc CFU/mL. The rapid (≤ 4 hours from sample in to result out), robust, culture-independent Bcc NAD method presented provides rigorous test specificity, accuracy, precision, and sensitivity. This method, validated with equivalence to ISO standard ISO/TS 12869:2019, can be a valuable diagnostic tool in supporting microbiological quality control procedures to aid the pharmaceutical industry in preventing Bcc contamination of aqueous FPPs for consumer safety.


Subject(s)
Burkholderia cepacia complex , Drug Contamination , Burkholderia cepacia complex/isolation & purification , Burkholderia cepacia complex/genetics , Drug Contamination/prevention & control , Pharmaceutical Preparations/analysis
9.
Int J Pharm Compd ; 28(3): 229-240, 2024.
Article in English | MEDLINE | ID: mdl-38768508

ABSTRACT

Sterilization methods to produce sterile preparations include heat, gas, radiation, and filtration. This article focuses on heat, gas, and radiation sterilization, plus a brief introduction to bright-light sterilization. Microbiology basics and microbial death kinetics, key to understanding why these sterilization methods work, will also be briefly discussed. Filtration sterilization will be covered in a separate article.


Subject(s)
Drug Compounding , Sterilization , Sterilization/methods , Drug Compounding/standards , Hot Temperature , Drug Contamination/prevention & control , Filtration/instrumentation , Gases
10.
J Pharm Biomed Anal ; 245: 116200, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38723557

ABSTRACT

A high-performance liquid chromatography (HPLC) method was developed for the analysis of Allopurinol and its Ph.Eur. impurities using a porous graphitic carbon (PGC) stationary phase. Retention behavior of solutes was studied across a wide temperature range (30-90 °C) and various gradient times (5-20 min). Analysis of the data revealed distinct retention mechanisms between reversed-phase and PGC phases. However, it was proved that the retention of Allopurinol and its Ph.Eur. impurities on PGC stationary phase can be effectively modeled using the linear solvent strength (LSS) theory. This allows for the utilization of LSS-based method development software to optimize methods under these conditions. By using commercial chromatographic modeling software, separation of Allopurinol and Ph.Eur. impurities was optimized within a large design space. At the optimized operating conditions (pH = 2.0, tG = 6 min, T = 60 °C), all solutes were separated within 6 min with baseline resolution. Comparison between predicted and experimentally measured chromatograms further confirmed the applicability of LSS theory in developing analytical methods for PGC-based HPLC systems. The presented approach offers a general framework for method development on PGC phases.


Subject(s)
Allopurinol , Graphite , Solvents , Chromatography, High Pressure Liquid/methods , Graphite/chemistry , Solvents/chemistry , Allopurinol/chemistry , Allopurinol/analysis , Porosity , Temperature , Drug Contamination/prevention & control , Hot Temperature
11.
Phytomedicine ; 129: 155667, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728918

ABSTRACT

BACKGROUND: It has been a current research hospots using fingerprinting technology for quality control of Chinese herbal medicines (CHMs), which provides a scientific basis for establishment of overall quality control in accordance with the characteristics of CHMs. The fingerprinting technology for CHMs is diverse, and the research field covers many disciplines, such as analytical chemistry, pharmacology, pharmaceutics, biochemistry, and molecular biology. PURPOSE: To effectively understand the key areas and future directions of research regarding the fingerprint and adulteration of CHMs. METHODS/RESULTS: this paper analyzed 879 articles in this field in the Web of Science Core Collection from 2000 to 2023 with CiteSpace and VOSviewer, and systematically assessed the research process, hotspots, topic distribution among disciplines, etc. The most prominent contributors of fingerprint and adulteration of CHMs research are mainly from China, India, the United States, England, and Brazil. The knowledge domains of fingerprint and adulteration of CHMs research focus mainly on the topics of molecular authentication, DNA barcoding, HPLC, near-infrared spectroscopy, manage data, chemometrics, and electrochemical fingerprinting. Most countries have recognized the pharmaceutical potential of natural products, and have paid more attention to the fingerprint and adulteration of CHMs in the past decade. Future the research tends to focus more on molecular identification and authentication, and electrochemical and chromatographic fingerprinting in controlling the adulteration of CHMs. CONCLUSION: This research provides a valuable reference for scholars in related fields to analyze existing research results, understand the development trend, and explore new research directions.


Subject(s)
Drug Contamination , Drugs, Chinese Herbal , Quality Control , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Chromatography, High Pressure Liquid/methods , DNA Barcoding, Taxonomic
12.
Biofabrication ; 16(3)2024 May 17.
Article in English | MEDLINE | ID: mdl-38701770

ABSTRACT

Ensuring the safety of parenteral drugs before injection into patients is of utmost importance. New regulations around the globe and the need to refrain from using animals however, have highlighted the need for new cell sources to be used in next-generation bioassays to detect the entire spectrum of possible contaminating pyrogens. Given the current drawbacks of the Monocyte-Activation-Test (MAT) with respect to the use of primary peripheral blood mono-nuclear cells or the use of monocytic cell lines, we here demonstrate the manufacturing of sensor monocytes/macrophages from human induced pluripotent stem cells (iMonoMac), which are fully defined and superior to current cell products. Using a modern and scalable manufacturing platform, iMonoMac showed typical macrophage-like morphology and stained positive for several Toll like receptor (TLRs) such as TLR-2, TLR-5, TLR-4. Furthermore, iMonoMac derived from the same donor were sensitive to endotoxins, non-endotoxins, and process related pyrogens at a high dynamic range and across different cellular densities. Of note, iMonoMac showed increased sensitivity and reactivity to a broad range of pyrogens, demonstrated by the detection of interleukin-6 at low concentrations of LPS and MALP-2 which could not be reached using the current MAT cell sources. To further advance the system, iMonoMac or genetically engineered iMonoMac with NF-κB-luciferase reporter cassette could reveal a specific activation response while correlating to the classical detection method employing enzyme-linked immunosorbent assay to measure cytokine secretion. Thus, we present a valuable cellular tool to assess parenteral drugs safety, facilitating the future acceptance and design of regulatory-approved bioassays.


Subject(s)
Induced Pluripotent Stem Cells , Macrophages , Pyrogens , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Humans , Macrophages/metabolism , Macrophages/drug effects , Macrophages/cytology , Drug Contamination , Toll-Like Receptors/metabolism , Endotoxins , Interleukin-6/metabolism , Monocytes/cytology , Monocytes/metabolism , Monocytes/drug effects , Infusions, Parenteral
13.
Toxins (Basel) ; 16(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38787081

ABSTRACT

Herbal medicines are widely used for clinical purposes worldwide. These herbs are susceptible to phytopathogenic fungal invasion during the culturing, harvesting, storage, and processing stages. The threat of fungal and mycotoxin contamination requires the evaluation of the health risks associated with these herbal medicines. In this study, we collected 138 samples of 23 commonly used herbs from 20 regions in China, from which we isolated a total of 200 phytopathogenic fungi. Through morphological observation and ITS sequencing, 173 fungal isolates were identified and classified into 24 genera, of which the predominant genera were Fusarium (27.74%) and Alternaria (20.81%), followed by Epicoccum (11.56%), Nigrospora (7.51%), and Trichocladium (6.84%). Quantitative analysis of the abundance of both Fusarium and Alternaria in herbal medicines via RT-qPCR revealed that the most abundant fungi were found on the herb Taraxacum mongolicum, reaching 300,000 copies/µL for Fusarium and 700 copies/µL for Alternaria. The in vitro mycotoxin productivities of the isolated Fusarium and Alternaria strains were evaluated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and it was found that the Fusarium species mainly produced the acetyl forms of deoxynivalenol, while Alternaria species mainly produced altertoxins. These findings revealed widely distributed fungal contamination in herbal medicines and thus raise concerns for the sake of the quality and safety of herbal medicines.


Subject(s)
Drug Contamination , Fungi , Mycotoxins , China , Fungi/isolation & purification , Fungi/genetics , Fungi/classification , Mycotoxins/analysis , Plants, Medicinal/microbiology , Fusarium/isolation & purification , Fusarium/genetics , Drugs, Chinese Herbal , Alternaria/isolation & purification , Alternaria/genetics , Tandem Mass Spectrometry
14.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1818-1825, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812194

ABSTRACT

A label-free fluorescence method based on malachite green/aptamer was developed for the detection of ochratoxin A(OTA) in traditional Chinese medicines. Malachite green itself exhibits weak fluorescence. Upon interaction with the aptamer specific to OTA, the G-quadruplex structure of the aptamer provides a protective microenvironment for malachite green, which significantly enhances its fluorescence signal. After OTA is added, preferential binding occurs between the aptamer and OTA, and malachite green will be released from the aptamer, which weakens the fluorescence signal. According to this principle, this paper established a fluorescence method with the aptamer of OTA as the recognition element and malachite green as the fluorescent probe for the detection of OTA in traditional Chinese medicines. The key experimental factors such as the concentrations of metal ions, aptamer, and malachite green were optimized to improve the performance of the method. OTA was detected under the optimal experimental conditions, and the results showed that with the increase in OTA concentration, the fluorescence signal gradually weakened. Within the range of 20-1 000 nmol·L~(-1), the OTA concentration was linearly correlated with the fluorescence signal ratio ΔF/F(ΔF=F_0-F, where F_0 is the fluorescence signal of aptamer/malachite green, and F is the fluorescence signal of OTA/aptamer/malachite green), with R~2 of 0.995. The limit of detection of the established method was 7.1 nmol·L~(-1). Furthermore, three substances structurally similar to OTA and two mycotoxins that may coexist with OTA were selected for experiments, which aimed to examine the cross-reactivity and specificity of the established method. The cross-reactivity experiments demonstrated that the interferers did not significantly affect the fluorescence signal of the detection system. The specificity experiments revealed that when mycotoxins were mixed with OTA, the fluorescence signal generated by the mixture closely resembled that of OTA itself. The results indicated that even in the presence of interferents, the established method remained unaffected and demonstrated excellent specificity. Additionally, this method exhibited remarkable reproducibility and stability. In the case of simple centrifugation and dilution of traditional Chinese medicine samples(Puerariae Lobatae Radix, Sophorae Flavescentis Radix, and Periplocae Cortex), the OTA detection method was applicable, with recovery rates ranging from 91.5% to 121.3%. Notably, this approach does not need complex pretreatment of traditional Chinese medicines while offering simple operation, low detection costs, and short detection time. Furthermore, by incorporating aptamers into the quality evaluation of traditional Chinese medicines, this method expands the application scope of aptamers.


Subject(s)
Aptamers, Nucleotide , Drugs, Chinese Herbal , Ochratoxins , Rosaniline Dyes , Rosaniline Dyes/chemistry , Rosaniline Dyes/analysis , Ochratoxins/analysis , Ochratoxins/chemistry , Aptamers, Nucleotide/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Spectrometry, Fluorescence/methods , Drug Contamination/prevention & control , Fluorescence , Medicine, Chinese Traditional
15.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1826-1833, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812195

ABSTRACT

Whether adulteration exists is a difficult problem in the identification of traditional Chinese medicine(TCM). Bubali Cornu is mainly available in the medicinal material market in the form of buffalo horn silk or buffalo horn powder but lacks obvious identification characteristics, so there is a risk of adulteration. However, the method of identification of adulteration in Bubali Cornu is lacking at present. In order to ensure authenticity and identify adulteration of TCM Bubali Cornu, control the quality of TCM Bubali Cornu, and ensure the authenticity of clinical use, the DNA fingerprints of 43 batches of samples from pharmaceutical companies and medicinal material markets were identified, and the amplification primers of fluorescent DNA fingerprints of Bubali Cornu and Bovis Grunniens Cornu were screened. The DNA fingerprints of Bubali Cornu were obtained by fluorescent capillary typing. The identification effect of fluorescent capillary typing on different adulteration ratios was also tested. Two pairs of fluorescent STR typing primers, namely 16Sa and CRc, which can distinguish Bubali Cornu and Bovis Grunniens Cornu, were screened out, and a DNA fingerprint identification method was established. The 16Sa migration peaks of Bovis Grunniens Cornu and Bubali Cornu were 223.4-223.9 bp and 225.5-226.1 bp. The CRc migration peaks of Bovis Grunniens Cornu and Bubali Cornu were 518.8-524.8 bp and 535.9-542.5 bp. The peak height of the migration peak could be used for preliminary quantification of the adulterants with an adulteration ratio below 50%, and the quantitative results were similar to the adulteration ratio. In this study, a simple and quick universal DNA fingerprint method was established for the identification of Bubali Cornu and its adulterants, which could realize the identification of TCM Bubali Cornu and the semi-quantitative identification of the adulterants.


Subject(s)
Buffaloes , DNA Fingerprinting , Drug Contamination , DNA Fingerprinting/methods , Animals , Buffaloes/genetics , Medicine, Chinese Traditional , Horns , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis
16.
PLoS One ; 19(4): e0299789, 2024.
Article in English | MEDLINE | ID: mdl-38574164

ABSTRACT

We examined the spatial distribution of Per- and Polyfluoroalkyl Substances (PFAS) in the US drinking water and explored the relationship between PFAS contamination, public water systems (PWS) characteristics, and socioeconomic attributes of the affected communities. Using data from the EPA's third Unregulated Contaminant Rule, the Census Bureau, and the Bureau of Labor Statistics, we identified spatial contamination hot spots and found that PFAS contamination was correlated with PWSs size, non-surface raw water intake sources, population, and housing density. We also found that non-white communities had less PFAS in drinking water. Lastly, we observed that PFAS contamination varied depending on regional industrial composition. The results showed that drinking water PFAS contamination was an externality of not only some industrial activities but also household consumption.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Drinking Water/analysis , Water Pollutants, Chemical/analysis , Water Pollution , Drug Contamination
17.
Klin Monbl Augenheilkd ; 241(4): 392-397, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38653293

ABSTRACT

PURPOSE: To introduce a novel technique of the aseptic manufacture of autologous serum eye drops (ASEDs) with a prefiltered closed system and to analyze the sterility of the produced ophtioles between 2018 and 2022. METHODS: This is a prospective single-center study conducted at the Department of Ophthalmology at a Swiss University Hospital between 2018 and 2022. For regulatory reasons, closed systems for manufacturing ASEDs are strongly recommended. We attached an upstream sterile filter (Sterivex PES0.22 µm Burlington, USA) to a commercially available closed system (COL System Modena, Italy) for manufacturing ASEDs. The goal of this novel approach was to reduce the microbiological contamination of the donated autologous blood. Using the presented manufacturing method, we are able to produce, on average, 56 ophtioles per batch, containing either 1.45 mL or 2.5 mL of autologous serum per ophtiole. For each batch of ASEDs, we performed a microbiological analysis by automated blood culture testing (BACTEC). This system examines the presence of bacteria and fungi. RESULTS: We analyzed all manufactured batches between 2018 and 2022. None of the 2297 batches and the resulting 129 060 ophtioles showed bacterial or mycotic contamination. During the analyzed period, two batches were discarded: one due to fibrin-lipid aggregations, further microbiological and histological work-up excluded any contamination; another due to false-positive HIV in serological testing. Overall, the contamination rate was 0%, and the batch discharge rate was 0.09%. CONCLUSIONS: The combination of upstream sterile filtration with a commercial closed system for manufacturing ASEDs proved to be effective in ensuring sterility without any contamination over the past 4 years. This is becoming crucial, as the demand for autologous blood products for treating ocular surface disorders, such as refractory dry eyes or nonhealing defects of the corneal epithelium, is on the rise.


Subject(s)
Drug Contamination , Ophthalmic Solutions , Serum , Humans , Drug Contamination/prevention & control , Prospective Studies , Sterilization/methods , Asepsis/methods
18.
J Chromatogr A ; 1722: 464866, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581976

ABSTRACT

The detection of aromatic aldehydes, considered potential genotoxic impurities, holds significant importance during drug development and production. Current analytical methods necessitate complex pre-treatment processes and exhibit insufficient specificity and sensitivity. This study presents the utilization of naphthalenediimide as a pre-column derivatisation reagent to detect aromatic aldehyde impurities in pharmaceuticals via high-performance liquid chromatography (HPLC). We screened a series of derivatisation reagents through density functional theory (DFT) and investigated the phenomenon of photoinduced electron transfer (PET) for both the derivatisation reagents and the resulting products. Optimal experimental conditions for derivatisation were achieved at 40 °C for 60 min. This approach has been successfully applied to detect residual aromatic aldehyde genotoxic impurities in various pharmaceutical preparations, including 4-Nitrobenzaldehyde, 2-Nitrobenzaldehyde, 1,4-Benzodioxane-6-aldehyde, and 5-Hydroxymethylfurfural. The pre-column derivatisation method significantly enhanced detection sensitivity and reduced the limit of detection (LOD), which ranged from 0.002 to 0.008 µg/ml for the analytes, with relative standard deviations < 3 %. The correlation coefficient (R2) >0.998 demonstrated high quality. In chloramphenicol eye drops, the concentration of 4-Nitrobenzaldehyde was measured to be 8.6 µg/mL below the specified concentration, with recoveries ranging from 90.0 % to 119.2 %. In comparison to existing methods, our work simplifies the pretreatment process, enhances the sensitivity and specificity of the analysis, and offers comprehensive insights into impurity detection in pharmaceutical preparations.


Subject(s)
Aldehydes , Drug Contamination , Imides , Limit of Detection , Naphthalenes , Chromatography, High Pressure Liquid/methods , Naphthalenes/chemistry , Naphthalenes/analysis , Aldehydes/analysis , Aldehydes/chemistry , Imides/chemistry , Mutagens/analysis , Mutagens/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Benzaldehydes/chemistry , Benzaldehydes/analysis
19.
AMA J Ethics ; 26(4): E289-294, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38564743

ABSTRACT

This commentary responds to a case about diethylene glycol-contaminated glycerin in cough syrup. Glycerin is a commonly used excipient in medicines to improve texture and taste. Excipients are typically pharmacologically inactive ingredients contained in prescription and over-the-counter drugs that play a critical role in the delivery, effectiveness, and stability of active drug substances. The commentary first canvasses how contaminants enter the excipient supply chains. One way is by misleading labeling or intentional adulteration by manufacturers or suppliers. Another way is by human or systemic error. This commentary then discusses quality control testing and suggests the ethical and clinical importance of increased transparency in excipient supply chains.


Subject(s)
Excipients , Glycerol , Child , Humans , Excipients/adverse effects , Pharmaceutical Preparations , Drug Contamination , Cough/drug therapy
20.
Sci Rep ; 14(1): 9629, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671013

ABSTRACT

Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing outbreak, disrupting human life worldwide. Vaccine development was prioritized to obtain a biological substance for combating the viral pathogen and lessening disease severity. In vaccine production, biological origin and relevant materials must be carefully examined for potential contaminants in conformity with good manufacturing practice. Due to fast mutation, several SARS-CoV-2 variants and sublineages have been identified. Currently, most of COVID-19 vaccines are developed based on the protein sequence of the Wuhan wild type strain. New vaccines specific for emerging SARS-CoV-2 strains are continuously needed to tackle the incessant evolution of the virus. Therefore, in vaccine development and production, a reliable method to identify the nature of subunit vaccines is required to avoid cross-contamination. In this study, liquid chromatography-mass spectrometry using quadrupole-time of flight along with tryptic digestion was developed for distinguishing protein materials derived from different SARS-CoV-2 strains. After analyzing the recombinantly produced receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, nine characteristic peptides were identified with acceptable limits of detection. They can be used together to distinguish 14 SARS-CoV-2 strains, except Kappa and Epsilon. Plant-produced RBD-Fc protein derived from Omicron strains can be easily distinguished from the others with 4-5 unique peptides. Eventually, a peptide key was developed based on the nine peptides, offering a prompt and precise flowchart to facilitate SARS-CoV-2 strain identification in COVID-19 vaccine manufacturing.


Subject(s)
COVID-19 Vaccines , COVID-19 , Quality Control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19 Vaccines/immunology , Humans , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/prevention & control , COVID-19/virology , Chromatography, Liquid , Drug Contamination/prevention & control , Mass Spectrometry/methods , Vaccines, Subunit/immunology , Liquid Chromatography-Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...