Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.403
Filter
1.
Methods Mol Biol ; 2834: 151-169, 2025.
Article in English | MEDLINE | ID: mdl-39312164

ABSTRACT

The pharmacological space comprises all the dynamic events that determine the bioactivity (and/or the metabolism and toxicity) of a given ligand. The pharmacological space accounts for the structural flexibility and property variability of the two interacting molecules as well as for the mutual adaptability characterizing their molecular recognition process. The dynamic behavior of all these events can be described by a set of possible states (e.g., conformations, binding modes, isomeric forms) that the simulated systems can assume. For each monitored state, a set of state-dependent ligand- and structure-based descriptors can be calculated. Instead of considering only the most probable state (as routinely done), the pharmacological space proposes to consider all the monitored states. For each state-dependent descriptor, the corresponding space can be evaluated by calculating various dynamic parameters such as mean and range values.The reviewed examples emphasize that the pharmacological space can find fruitful applications in structure-based virtual screening as well as in toxicity prediction. In detail, in all reported examples, the inclusion of the pharmacological space parameters enhances the resulting performances. Beneficial effects are obtained by combining both different binding modes to account for ligand mobility and different target structures to account for protein flexibility/adaptability.The proposed computational workflow that combines docking simulations and rescoring analyses to enrich the arsenal of docking-based descriptors revealed a general applicability regardless of the considered target and utilized docking engine. Finally, the EFO approach that generates consensus models by linearly combining various descriptors yielded highly performing models in all discussed virtual screening campaigns.


Subject(s)
Molecular Docking Simulation , Ligands , Humans , Protein Binding , Proteins/chemistry , Proteins/metabolism , Drug Discovery/methods , Binding Sites
2.
Methods Mol Biol ; 2834: 181-193, 2025.
Article in English | MEDLINE | ID: mdl-39312166

ABSTRACT

The discovery of molecular toxicity in a clinical drug candidate can have a significant impact on both the cost and timeline of the drug discovery process. Early identification of potentially toxic compounds during screening library preparation or, alternatively, during the hit validation process is critical to ensure that valuable time and resources are not spent pursuing compounds that may possess a high propensity for human toxicity. This report focuses on the application of computational molecular filters, applied either pre- or post-screening, to identify and remove known reactive and/or potentially toxic compounds from consideration in drug discovery campaigns.


Subject(s)
Computational Biology , Drug Discovery , High-Throughput Screening Assays , Small Molecule Libraries , High-Throughput Screening Assays/methods , Small Molecule Libraries/toxicity , Humans , Drug Discovery/methods , Computational Biology/methods , Drug Evaluation, Preclinical/methods , Drug Design , Toxicology/methods
3.
Methods Mol Biol ; 2834: 275-291, 2025.
Article in English | MEDLINE | ID: mdl-39312170

ABSTRACT

Machine learning (ML) has increasingly been applied to predict properties of drugs. Particularly, metabolism can be predicted with ML methods, which can be exploited during drug discovery and development. The prediction of metabolism is a crucial bottleneck in the early identification of toxic metabolites or biotransformation pathways that can affect elimination of the drug and potentially hinder the development of future new drugs. Metabolism prediction can be addressed with the application of ML models trained on large and validated dataset, from early stages of lead optimization to latest stage of drug development. ML methods rely on molecular descriptors that allow to identify and learn chemical and molecular features to predict sites of metabolism (SoMs) or activity associated with mechanism of inhibition (e.g., CYP inhibition). The application of ML methods in the prediction of drug metabolism represents a powerful resource to be exploited during drug discovery and development. ML allows to improve in silico screening and safety assessments of drugs in advance, steering their path to marketing authorization. Prediction of biotransformation reactions and metabolites allows to shorten the time, save the cost, and reduce animal testing. In this context, ML methods represent a technique to fill data gaps and an opportunity to reduce animal testing, calling for the 3R principles within the Big Data era.


Subject(s)
Drug Discovery , Machine Learning , Drug Discovery/methods , Humans , Pharmaceutical Preparations/metabolism , Biotransformation , Computer Simulation , Animals , Drug Development/methods
4.
Methods Mol Biol ; 2834: 393-441, 2025.
Article in English | MEDLINE | ID: mdl-39312176

ABSTRACT

The Asclepios suite of KNIME nodes represents an innovative solution for conducting cheminformatics and computational chemistry tasks, specifically tailored for applications in drug discovery and computational toxicology. This suite has been developed using open-source and publicly accessible software. In this chapter, we introduce and explore the Asclepios suite through the lens of a case study. This case study revolves around investigating the interactions between per- and polyfluorinated alkyl substances (PFAS) and biomolecules, such as nuclear receptors. The objective is to characterize the potential toxicity of PFAS and gain insights into their chemical mode of action at the molecular level. The Asclepios KNIME nodes have been designed as versatile tools capable of addressing a wide range of computational toxicology challenges. Furthermore, they can be adapted and customized to accomodate the specific needs of individual users, spanning various domains such as nanoinformatics, biomedical research, and other related applications. This chapter provides an in-depth examination of the technical underpinnings and foundations of these tools. It is accompanied by a practical case study that demonstrates the utilization of Asclepios nodes in a computational toxicology investigation. This showcases the extendable functionalities that can be applied in diverse computational chemistry contexts. By the end of this chapter, we aim for readers to have a comprehensive understanding of the effectiveness of the Asclepios node functions. These functions hold significant potential for enhancing a wide spectrum of cheminformatics applications.


Subject(s)
Drug Discovery , Software , Workflow , Drug Discovery/methods , Humans , Toxicology/methods , Cheminformatics/methods , Computational Biology/methods , Fluorocarbons/chemistry , Fluorocarbons/toxicity
5.
PLoS One ; 19(9): e0310433, 2024.
Article in English | MEDLINE | ID: mdl-39264962

ABSTRACT

Hit screening, which involves the identification of compounds or targets capable of modulating disease-relevant processes, is an important step in drug discovery. Some assays, such as image-based high-content screenings, produce complex multivariate readouts. To fully exploit the richness of such data, advanced analytical methods that go beyond the conventional univariate approaches should be employed. In this work, we tackle the problem of hit identification in multivariate assays. As with univariate assays, a hit from a multivariate assay can be defined as a candidate that yields an assay value sufficiently far away in distance from the mean or central value of inactives. Viewed another way, a hit is an outlier from the distribution of inactives. A method was developed for identifying multivariate hit in high-dimensional data sets based on principal components and robust Mahalanobis distance (the multivariate analogue to the Z- or T-statistic). The proposed method, termed mROUT (multivariate robust outlier detection), demonstrates superior performance over other techniques in the literature in terms of maintaining Type I error, false discovery rate and true discovery rate in simulation studies. The performance of mROUT is also illustrated on a CRISPR knockout data set from in-house phenotypic screening programme.


Subject(s)
High-Throughput Screening Assays , Multivariate Analysis , Humans , High-Throughput Screening Assays/methods , Drug Discovery/methods , Algorithms , Principal Component Analysis , Computer Simulation
6.
Int J Mol Sci ; 25(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39273451

ABSTRACT

Interest and research focusing on the design of novel pharmaceutical agents is always growing [...].


Subject(s)
Drug Discovery , Heterocyclic Compounds , Drug Discovery/methods , Humans , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/therapeutic use
7.
Int J Mol Sci ; 25(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39273521

ABSTRACT

The vast corpus of heterogeneous biomedical data stored in databases, ontologies, and terminologies presents a unique opportunity for drug design. Integrating and fusing these sources is essential to develop data representations that can be analyzed using artificial intelligence methods to generate novel drug candidates or hypotheses. Here, we propose Non-Negative Matrix Tri-Factorization as an invaluable tool for integrating and fusing data, as well as for representation learning. Additionally, we demonstrate how representations learned by Non-Negative Matrix Tri-Factorization can effectively be utilized by traditional artificial intelligence methods. While this approach is domain-agnostic and applicable to any field with vast amounts of structured and semi-structured data, we apply it specifically to computational pharmacology and drug repurposing. This field is poised to benefit significantly from artificial intelligence, particularly in personalized medicine. We conducted extensive experiments to evaluate the performance of the proposed method, yielding exciting results, particularly compared to traditional methods. Novel drug-target predictions have also been validated in the literature, further confirming their validity. Additionally, we tested our method to predict drug synergism, where constructing a classical matrix dataset is challenging. The method demonstrated great flexibility, suggesting its applicability to a wide range of tasks in drug design and discovery.


Subject(s)
Drug Repositioning , Drug Repositioning/methods , Humans , Artificial Intelligence , Computational Biology/methods , Machine Learning , Algorithms , Drug Discovery/methods , Multiomics
8.
Int J Mol Sci ; 25(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39273596

ABSTRACT

Staphylococcus aureus infections present a significant threat to the global healthcare system. The increasing resistance to existing antibiotics and their limited efficacy underscores the urgent need to identify new antibacterial agents with low toxicity to effectively combat various S. aureus infections. Hence, in this study, we have screened T-muurolol for possible interactions with several S. aureus-specific bacterial proteins to establish its potential as an alternative antibacterial agent. Based on its binding affinity and interactions with amino acids, T-muurolol was identified as a potential inhibitor of S. aureus lipase, dihydrofolate reductase, penicillin-binding protein 2a, D-Ala:D-Ala ligase, and ribosome protection proteins tetracycline resistance determinant (RPP TetM), which indicates its potentiality against S. aureus and its multi-drug-resistant strains. Also, T-muurolol exhibited good antioxidant and anti-inflammatory activity by showing strong binding interactions with flavin adenine dinucleotide (FAD)-dependent nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase, and cyclooxygenase-2. Consequently, molecular dynamics (MD) simulation and recalculating binding free energies elucidated its binding interaction stability with targeted proteins. Furthermore, quantum chemical structure analysis based on density functional theory (DFT) depicted a higher energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital (EHOMO-LUMO) with a lower chemical potential index, and moderate electrophilicity suggests its chemical hardness and stability and less polarizability and reactivity. Additionally, pharmacological parameters based on ADMET, Lipinski's rules, and bioactivity score validated it as a promising drug candidate with high activity toward ion channel modulators, nuclear receptor ligands, and enzyme inhibitors. In conclusion, the current findings suggest T-muurolol as a promising alternative antibacterial agent that might be a potential phytochemical-based drug against S. aureus. This study also suggests further clinical research before human application.


Subject(s)
Anti-Bacterial Agents , Drug Discovery , Phytochemicals , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Drug Discovery/methods , Molecular Docking Simulation , Molecular Dynamics Simulation , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Computer Simulation , Humans , Antioxidants/pharmacology , Antioxidants/chemistry
9.
Life Sci ; 356: 123031, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39226989

ABSTRACT

AIMS: Nonalcoholic steatohepatitis (NASH) is the severe subtype of nonalcoholic fatty diseases (NAFLD) with few options for treatment. Patients with NASH exhibit partial responses to the current therapeutics and adverse effects. Identification of the binding proteins for the drugs is essential to understanding the mechanism and adverse effects of the drugs and fuels the discovery of potent and safe drugs. This paper aims to critically discuss recent advances in covalent and noncovalent approaches for identifying binding proteins that mediate NASH progression, along with an in-depth analysis of the mechanisms by which these targets regulate NASH. MATERIALS AND METHODS: A literature search was conducted to identify the relevant studies in the database of PubMed and the American Chemical Society. The search covered articles published from January 1990 to July 2024, using the search terms with keywords such as NASH, benzophenone, diazirine, photo-affinity labeling, thermal protein profiling, CETSA, target identification. KEY FINDINGS: The covalent approaches utilize drugs modified with diazirine and benzophenone to covalently crosslink with the target proteins, which facilitates the purification and identification of target proteins. In addition, they map the binding sites in the target proteins. By contrast, noncovalent approaches identify the binding targets of unmodified drugs in the intact cell proteome. The advantages and limitations of both approaches have been compared, along with a comprehensive analysis of recent innovations that further enhance the efficiency and specificity. SIGNIFICANCE: The analyses of the applicability of these approaches provide novel tools to delineate NASH pathogenesis and promote drug discovery.


Subject(s)
Drug Discovery , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Humans , Drug Discovery/methods , Animals , Small Molecule Libraries/pharmacology , Protein Binding , Proteins/metabolism
10.
Pharmacol Res ; 208: 107381, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39218422

ABSTRACT

Natural polyphenols, abundant in the human diet, are derived from a wide variety of sources. Numerous preclinical studies have demonstrated their significant anticancer properties against various malignancies, making them valuable resources for drug development. However, traditional experimental methods for developing anticancer therapies from natural polyphenols are time-consuming and labor-intensive. Recently, artificial intelligence has shown promising advancements in drug discovery. Integrating AI technologies into the development process for natural polyphenols can substantially reduce development time and enhance efficiency. In this study, we review the crucial roles of natural polyphenols in anticancer treatment and explore the potential of AI technologies to aid in drug development. Specifically, we discuss the application of AI in key stages such as drug structure prediction, virtual drug screening, prediction of biological activity, and drug-target protein interaction, highlighting the potential to revolutionize the development of natural polyphenol-based anticancer therapies.


Subject(s)
Artificial Intelligence , Neoplasms , Polyphenols , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , Polyphenols/chemistry , Animals , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Drug Discovery/methods , Drug Development
11.
Bioinformatics ; 40(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221997

ABSTRACT

MOTIVATION: The identification and understanding of drug-target interactions (DTIs) play a pivotal role in the drug discovery and development process. Sequence representations of drugs and proteins in computational model offer advantages such as their widespread availability, easier input quality control, and reduced computational resource requirements. These make them an efficient and accessible tools for various computational biology and drug discovery applications. Many sequence-based DTI prediction methods have been developed over the years. Despite the advancement in methodology, cold start DTI prediction involving unknown drug or protein remains a challenging task, particularly for sequence-based models. Introducing DTI-LM, a novel framework leveraging advanced pretrained language models, we harness their exceptional context-capturing abilities along with neighborhood information to predict DTIs. DTI-LM is specifically designed to rely solely on sequence representations for drugs and proteins, aiming to bridge the gap between warm start and cold start predictions. RESULTS: Large-scale experiments on four datasets show that DTI-LM can achieve state-of-the-art performance on DTI predictions. Notably, it excels in overcoming the common challenges faced by sequence-based models in cold start predictions for proteins, yielding impressive results. The incorporation of neighborhood information through a graph attention network further enhances prediction accuracy. Nevertheless, a disparity persists between cold start predictions for proteins and drugs. A detailed examination of DTI-LM reveals that language models exhibit contrasting capabilities in capturing similarities between drugs and proteins. AVAILABILITY AND IMPLEMENTATION: Source code is available at: https://github.com/compbiolabucf/DTI-LM.


Subject(s)
Computational Biology , Proteins , Proteins/chemistry , Proteins/metabolism , Computational Biology/methods , Drug Discovery/methods , Pharmaceutical Preparations/chemistry , Algorithms , Software
12.
J Vis Exp ; (211)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39311615

ABSTRACT

Chemical space is a multidimensional descriptor space that encloses all possible molecules, and at least 1 x 1060 organic substances with a molecular weight below 500 Da are thought to be potentially relevant for drug discovery. Natural products have been the primary source of the new pharmacological entities marketed during the past forty years and continue to be one of the most productive sources for the creation of innovative medications. Chemoinformatics-based computational tools accelerate the drug development process for natural products. Methods including estimating bioactivities, safety profiles, ADME, and natural product likeness measurement have been used. Here, we go over recent developments in chemoinformatic tools designed to visualize, characterize, and expand the chemical space of natural compound data sets using various molecular representations, create visual representations of such spaces, and investigate structure-property relationships within chemical spaces. With an emphasis on drug discovery applications, we evaluate the open-source databases BIOFACQUIM and PeruNPDB as proof of concept.


Subject(s)
Biological Products , Drug Discovery , Biological Products/chemistry , Drug Discovery/methods , Cheminformatics/methods , Databases, Chemical
13.
J Chem Inf Model ; 64(18): 6993-7006, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39225069

ABSTRACT

Chemical substructure search is a critical task in medicinal chemistry and small-molecule drug discovery, enabling the retrieval of molecules from databases based on specific chemical features. While systems exist for this purpose, the challenge of efficient and swift searching persists, particularly as data storage migrates to the cloud, introducing new complexities. This study provides a comprehensive analysis of chemical substructure searches, showcasing the benefits of graphics processing unit-accelerated fingerprint screening. The research highlights strategies for optimizing performance, making significant advancements in substructure searching, a pivotal aspect of drug discovery and molecular research. The accessible and scalable nature of the proposed approach makes it a valuable resource for scientists aiming to enhance their substructure search capabilities.


Subject(s)
Computer Graphics , Drug Discovery , Drug Discovery/methods , Databases, Chemical , Software
14.
J Chem Inf Model ; 64(18): 7046-7055, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39225694

ABSTRACT

Accurate in silico predictions of how strongly small molecules bind to proteins, such as those afforded by relative binding free energy (RBFE) calculations, can greatly increase the efficiency of the hit-to-lead and lead optimization stages of the drug discovery process. The success of such calculations, however, relies heavily on their precision. Here, we show that a recently developed alchemical enhanced sampling (ACES) approach can consistently improve the precision of RBFE calculations on a large and diverse set of proteins and small molecule ligands. The addition of ACES to conventional RBFE calculations lowered the average hysteresis by over 35% (0.3-0.4 kcal/mol) and the average replicate spread by over 25% (0.2-0.3 kcal/mol) across a set of 10 protein targets and 213 small molecules while maintaining similar or improved accuracy. We show in atomic detail how ACES improved convergence of several representative RBFE calculations through enhancing the sampling of important slowly transitioning ligand degrees of freedom.


Subject(s)
Protein Binding , Proteins , Thermodynamics , Ligands , Proteins/chemistry , Proteins/metabolism , Molecular Dynamics Simulation , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Drug Discovery/methods
15.
J Chem Inf Model ; 64(18): 6938-6956, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39237105

ABSTRACT

Drug-target interactions (DTIs) prediction algorithms are used at various stages of the drug discovery process. In this context, specific problems such as deorphanization of a new therapeutic target or target identification of a drug candidate arising from phenotypic screens require large-scale predictions across the protein and molecule spaces. DTI prediction heavily relies on supervised learning algorithms that use known DTIs to learn associations between molecule and protein features, allowing for the prediction of new interactions based on learned patterns. The algorithms must be broadly applicable to enable reliable predictions, even in regions of the protein or molecule spaces where data may be scarce. In this paper, we address two key challenges to fulfill these goals: building large, high-quality training datasets and designing prediction methods that can scale, in order to be trained on such large datasets. First, we introduce LCIdb, a curated, large-sized dataset of DTIs, offering extensive coverage of both the molecule and druggable protein spaces. Notably, LCIdb contains a much higher number of molecules than publicly available benchmarks, expanding coverage of the molecule space. Second, we propose Komet (Kronecker Optimized METhod), a DTI prediction pipeline designed for scalability without compromising performance. Komet leverages a three-step framework, incorporating efficient computation choices tailored for large datasets and involving the Nyström approximation. Specifically, Komet employs a Kronecker interaction module for (molecule, protein) pairs, which efficiently captures determinants in DTIs, and whose structure allows for reduced computational complexity and quasi-Newton optimization, ensuring that the model can handle large training sets, without compromising on performance. Our method is implemented in open-source software, leveraging GPU parallel computation for efficiency. We demonstrate the interest of our pipeline on various datasets, showing that Komet displays superior scalability and prediction performance compared to state-of-the-art deep learning approaches. Additionally, we illustrate the generalization properties of Komet by showing its performance on an external dataset, and on the publicly available LH benchmark designed for scaffold hopping problems. Komet is available open source at https://komet.readthedocs.io and all datasets, including LCIdb, can be found at https://zenodo.org/records/10731712.


Subject(s)
Algorithms , Drug Discovery , Proteins , Drug Discovery/methods , Proteins/chemistry , Proteins/metabolism , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism
16.
Proc Natl Acad Sci U S A ; 121(39): e2415550121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39297680

ABSTRACT

The 2024 Lasker~DeBakey Clinical Medical Research Award has been given to Joel Habener and Svetlana Mojsov for their discovery of a new hormone GLP-1(7-37) and to Lotte Knudsen for her role in developing sustained acting versions of this hormone as a treatment for obesity. Each of the three had a distinct set of skills that made this advance possible; Habener is an endocrinologist and molecular biologist, Mojsov is a peptide chemist, and Knudsen is a pharmaceutical scientist. Their collective efforts have done what few thought possible-the development of highly effective medicines for reducing weight. Their research has also solved a mystery that began more than a century ago.


Subject(s)
Glucagon-Like Peptide 1 , Obesity , Obesity/drug therapy , Glucagon-Like Peptide 1/metabolism , Humans , Anti-Obesity Agents/therapeutic use , Anti-Obesity Agents/pharmacology , Drug Discovery/history , Drug Discovery/methods , Animals , History, 21st Century , Awards and Prizes
17.
J Mol Biol ; 436(17): 168617, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39237198

ABSTRACT

In recent years, advancements in deep learning techniques have significantly expanded the structural coverage of the human proteome. GalaxySagittarius-AF translates these achievements in structure prediction into target prediction for druglike compounds by incorporating predicted structures. This web server searches the database of human protein structures using both similarity- and structure-based approaches, suggesting potential targets for a given druglike compound. In comparison to its predecessor, GalaxySagittarius, GalaxySagittarius-AF utilizes an enlarged structure database, incorporating curated AlphaFold model structures alongside their binding sites and ligands, predicted using an updated version of GalaxySite. GalaxySagittarius-AF covers a large human protein space compared to many other available computational target screening methods. The structure-based prediction method enhances the use of expanded structural information, differentiating it from other target prediction servers that rely on ligand-based methods. Additionally, the web server has undergone enhancements, operating two to three times faster than its predecessor. The updated report page provides comprehensive information on the sequence and structure of the predicted protein targets. GalaxySagittarius-AF is accessible at https://galaxy.seoklab.org/sagittarius_af without the need for registration.


Subject(s)
Proteome , Humans , Proteome/chemistry , Proteome/metabolism , Ligands , Databases, Protein , Binding Sites , Software , Computational Biology/methods , Protein Conformation , Deep Learning , Drug Discovery/methods , Models, Molecular , Proteins/chemistry , Proteins/metabolism
18.
J Mol Biol ; 436(17): 168548, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39237203

ABSTRACT

The DockThor-VS platform (https://dockthor.lncc.br/v2/) is a free protein-ligand docking server conceptualized to facilitate and assist drug discovery projects to perform docking-based virtual screening experiments accurately and using high-performance computing. The DockThor docking engine is a grid-based method designed for flexible-ligand and rigid-receptor docking. It employs a multiple-solution genetic algorithm and the MMFF94S molecular force field scoring function for pose prediction. This engine was engineered to handle highly flexible ligands, such as peptides. Affinity prediction and ranking of protein-ligand complexes are performed with the linear empirical scoring function DockTScore. The main steps of the ligand and protein preparation are available on the DockThor Portal, making it possible to change the protonation states of the amino acid residues, and include cofactors as rigid entities. The user can also customize and visualize the main parameters of the grid box. The results of docking experiments are automatically clustered and ordered, providing users with a diverse array of meaningful binding modes. The platform DockThor-VS offers a user-friendly interface and powerful algorithms, enabling researchers to conduct virtual screening experiments efficiently and accurately. The DockThor Portal utilizes the computational strength of the Brazilian high-performance platform SDumont, further amplifying the efficiency and speed of docking experiments. Additionally, the web server facilitates and enhances virtual screening experiments by offering curated structures of potential targets and compound datasets, such as proteins related to COVID-19 and FDA-approved drugs for repurposing studies. In summary, DockThor-VS is a dynamic and evolving solution for docking-based virtual screening to be applied in drug discovery projects.


Subject(s)
Molecular Docking Simulation , Software , Ligands , Algorithms , Drug Discovery/methods , Protein Binding , Humans , Proteins/chemistry , Proteins/metabolism , User-Computer Interface
19.
J Mol Biol ; 436(17): 168554, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39237201

ABSTRACT

Molecular modeling and simulation serve an important role in exploring biological functions of proteins at the molecular level, which is complementary to experiments. CHARMM-GUI (https://www.charmm-gui.org) is a web-based graphical user interface that generates complex molecular simulation systems and input files, and we have been continuously developing and expanding its functionalities to facilitate various complex molecular modeling and make molecular dynamics simulations more accessible to the scientific community. Currently, covalent drug discovery emerges as a popular and important field. Covalent drug forms a chemical bond with specific residues on the target protein, and it has advantages in potency for its prolonged inhibition effects. Even though there are higher demands in modeling PDB protein structures with various covalent ligand types, proper modeling of covalent ligands remains challenging. This work presents a new functionality in CHARMM-GUI PDB Reader & Manipulator that can handle a diversity of ligand-amino acid linkage types, which is validated by a careful benchmark study using over 1,000 covalent ligand structures in RCSB PDB. We hope that this new functionality can boost the modeling and simulation study of covalent ligands.


Subject(s)
Molecular Dynamics Simulation , Proteins , Software , Ligands , Proteins/chemistry , Proteins/metabolism , Databases, Protein , Models, Molecular , Protein Conformation , User-Computer Interface , Drug Discovery/methods
20.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 64-75, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39262261

ABSTRACT

Alzheimer's disease (AD) is a significant global healthcare challenge, particularly in the elderly population. This neurodegenerative disorder is characterized by impaired memory and progressive decline in cognitive function. BACE1, a transmembrane protein found in neurons, oligodendrocytes, and astrocytes, exhibits varying levels across different neural subtypes. Abnormal BACE1 activity in the brains of individuals with AD leads to the formation of beta-amyloid proteins. The complex interplay between myelin sheath formation, BACE1 activity, and beta-amyloid accumulation suggests a critical role in understanding the pathological mechanisms of AD. The primary objective of this study was to identify molecular inhibitors that target Aß. Structure-based virtual screening (SBVS) was employed using the MCULE database, which houses over 2 million chemical compounds. A total of 59 molecules were selected after the toxicity profiling. Subsequently, five compounds conforming to the Egan-Egg permeation predictive model of the ADME rules were selected and subjected to molecular docking using AutoDock Vina on the Mcule drug discovery platform. The top two ligands and the positive control, 5HA, were subjected to molecular dynamics simulation for five nanoseconds. Toxicity profiling, physiochemical properties, lipophilicity, solubility, pharmacokinetics, druglikeness, medicinal chemistry attributes, average potential energy, RMSD, RMSF, and Rg analyses were conducted to identify the ligand MCULE-9199128437-0-2 as a promising inhibitor of BACE1.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Molecular Docking Simulation , Molecular Dynamics Simulation , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Humans , Ligands , Drug Discovery/methods , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL