Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.235
Filter
1.
Pharm Res ; 41(5): 833-837, 2024 May.
Article in English | MEDLINE | ID: mdl-38698195

ABSTRACT

Currently, the lengthy time needed to bring new drugs to market or to implement postapproval changes causes multiple problems, such as delaying patients access to new lifesaving or life-enhancing medications and slowing the response to emergencies that require new treatments. However, new technologies are available that can help solve these problems. The January 2023 NIPTE pathfinding workshop on accelerating drug product development and approval included a session in which participants considered the current state of product formulation and process development, barriers to acceleration of the development timeline, and opportunities for overcoming these barriers using new technologies. The authors participated in this workshop, and in this article have shared their perspective of some of the ways forward, including advanced manufacturing techniques and adaptive development. In addition, there is a need for paradigm shifts in regulatory processes, increased pre-competitive collaboration, and a shared strategy among regulators, industry, and academia.


Subject(s)
Drug Approval , Humans , Drug Development/methods , Drug Industry/methods , Technology, Pharmaceutical/methods , Pharmaceutical Preparations/chemistry , Chemistry, Pharmaceutical/methods , Drug Compounding/methods
2.
Int J Pharm ; 658: 124212, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38723730

ABSTRACT

Liposomes are nanosized, spherical vesicles consisting of an aqueous core encircled by one or more phospholipid bilayer shells. Liposomes have found extensive use in numerous biomedicine and nanomedicine applications due to their excellent biocompatibility, adaptable chemical composition, ease of preparation, and diverse structural characteristics. These applications include nanocarriers for drug delivery, immunoassays, nutraceuticals, tissue engineering, clinical diagnostics, and theranostics formulations. These applications stimulated significant efforts toward scaling up formation processes in anticipation of appropriate industrial advancement. Despite the advancements in conventional methods and the emergence of new approaches for liposome production, their inherent susceptibility to chemical and mechanical influences contributes to critical challenges, including limited colloidal stability and decreased efficiency in encapsulating cargo molecules. With this context, the current review provides brief insights into liposomes conventional and novel industrial production techniques. With a special focus on the structural parameters, and pivotal elements influencing the synthesis of an appropriate and stable formulation, followed by the various regulatory aspects of industrial production.


Subject(s)
Liposomes , Humans , Drug Compounding/methods , Drug Delivery Systems/methods , Chemistry, Pharmaceutical/methods , Drug Industry/methods , Animals
3.
Mol Pharm ; 21(5): 2065-2080, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38600804

ABSTRACT

Physiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application. Currently, only one country has a draft guidance document for PBBM, whereas other major regulatory authorities have had limited experience with the review of PBBM. To address this gap, industry submitted confidential PBBM case studies to be reviewed by the regulatory agencies; software companies committed to training. PBBM cases were independently and collaboratively discussed by regulators, and academic colleagues participated in some of the discussions. Successful bioequivalence "safe space" industry case examples are also presented. Overall, six regulatory agencies were involved in the case study exercises, including ANVISA, FDA, Health Canada, MHRA, PMDA, and EMA (experts from Belgium, Germany, Norway, Portugal, Spain, and Sweden), and we believe this is the first time such a collaboration has taken place. The outcomes were presented at this workshop, together with a participant survey on the utility and experience with PBBM submissions, to discuss the best scientific practices for developing, validating, and applying PBBMs. The PBBM case studies enabled industry to receive constructive feedback from global regulators and highlighted clear direction for future PBBM submissions for regulatory consideration.


Subject(s)
Biopharmaceutics , Drug Industry , Humans , Biopharmaceutics/methods , Drug Industry/methods , Models, Biological , Therapeutic Equivalency , Pharmaceutical Preparations/chemistry , United States
4.
Expert Opin Drug Discov ; 19(5): 523-535, 2024 May.
Article in English | MEDLINE | ID: mdl-38481119

ABSTRACT

INTRODUCTION: Automated patch clamp (APC) is now well established as a mature technology for ion channel drug discovery in academia, biotech and pharma companies, and in contract research organizations (CRO), for a variety of applications including channelopathy research, compound screening, target validation and cardiac safety testing. AREAS COVERED: Ion channels are an important class of drugged and approved drug targets. The authors present a review of the current state of ion channel drug discovery along with new and exciting developments in ion channel research involving APC. This includes topics such as native and iPSC-derived cells in ion channel drug discovery, channelopathy research, organellar and biologics in ion channel drug discovery. EXPERT OPINION: It is our belief that APC will continue to play a critical role in ion channel drug discovery, not only in 'classical' hit screening, target validation and cardiac safety testing, but extending these applications to include high throughput organellar recordings and optogenetics. In this way, with advancements in APC capabilities and applications, together with high resolution cryo-EM structures, ion channel drug discovery will be re-invigorated, leading to a growing list of ion channel ligands in clinical development.


Subject(s)
Drug Discovery , Ion Channels , Patch-Clamp Techniques , Humans , Drug Discovery/methods , Ion Channels/drug effects , Animals , Patch-Clamp Techniques/methods , Drug Industry/methods , High-Throughput Screening Assays/methods , Drug Development/methods , Induced Pluripotent Stem Cells , Ligands
5.
MAbs ; 16(1): 2304624, 2024.
Article in English | MEDLINE | ID: mdl-38299343

ABSTRACT

High-concentration protein formulation is of paramount importance in patient-centric drug product development, but it also presents challenges due to the potential for enhanced aggregation and increased viscosity. The analysis of critical quality attributes often necessitates the transfer of samples from their primary containers together with sample dilution. Therefore, there is a demand for noninvasive, in situ biophysical methods to assess protein drug products directly in primary sterile containers, such as prefilled syringes, without dilution. In this study, we introduce a novel application of water proton nuclear magnetic resonance (wNMR) to evaluate the aggregation propensity of a high-concentration drug product, Dupixent® (dupilumab), under stress conditions. wNMR results demonstrate a concentration-dependent, reversible association of dupilumab in the commercial formulation, as well as irreversible aggregation when exposed to accelerated thermal stress, but gradually reversible aggregation when exposed to freeze and thaw cycles. Importantly, these results show a strong correlation with data obtained from established biophysical analytical tools widely used in the pharmaceutical industry. The application of wNMR represents a promising approach for in situ noninvasive analysis of high-concentration protein formulations directly in their primary containers, providing valuable insights for drug development and quality assessment.


Subject(s)
Drug Industry , Magnetic Resonance Spectroscopy , Drug Industry/methods , Viscosity , Water/chemistry
6.
J Pharm Sci ; 113(6): 1682-1688, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38325736

ABSTRACT

This study addresses the identification of undesirable microorganisms (MOs) recovered during the environmental monitoring in manufacture of sterile medicinal products. We developed a methodology evaluation based on a decision tree; then, such approach was applied to hypothetical scenarios of uncommon MOs isolation in sterile drugs production settings. The scenarios were formulated on the basis of our field experience, in terms of both MOs selection and types of sampling site. The MOs were chosen in order to include emerging pathogens and MOs responsible for drug recall, and several sampling sites were considered for their detection (air, surfaces, and personnel). The classification of the unusual MOs revealed that most of them were undesirable, because they represented the loss of environmental control or a potential impact on the quality of the product. In some cases, the uncommon MOs were not considered as undesirable. Therefore, our results demonstrated the importance of a methodology, also in terms of recovery rate of unusual MOs and of the threshold probability for the unacceptability (e.g., 1% or 5%). The proposed methodology allowed an easy and documented evaluation for the undesirable MOs isolated from the environment of the analyzed settings for sterile drugs production.


Subject(s)
Drug Contamination , Drug Contamination/prevention & control , Environmental Monitoring/methods , Sterilization/methods , Drug Industry/methods , Bacteria/isolation & purification , Bacteria/metabolism , Decision Trees , Environmental Microbiology
7.
Sci Rep ; 14(1): 2927, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38316908

ABSTRACT

Gemigliptin-Rosuvastatin single-pill combination is a promising therapeutic tool in the effective control of hyperglycemia and hypercholesterolemia. Organic sensors with high quantum yields have profoundly significant applications in the pharmaceutical industry, such as routine quality control of marketed formulations. Herein, the fluorescence sensor, 2-Morpholino-4,6-dimethyl nicotinonitrile 3, (λex; 226 nm, λem; 406 nm), was synthesized with a fluorescence quantum yield of 56.86% and fully characterized in our laboratory. This sensor showed high efficiency for the determination of Gemigliptin (GEM) and Rosuvastatin (RSV) traces through their stoichiometric interactions and simultaneously fractionated by selective solvation. The interaction between the stated analytes and sensor 3 was a quenching effect. Various experimental parameters and the turn-off mechanism were addressed. The adopted approach fulfilled the ICH validation criteria and showed linear satisfactory ranges, 0.2-2 and 0.1-1 µg/mL for GEM and RSV, respectively with nano-limits of detection less than 30 ng/mL for both analytes. The synthesized sensor has been successfully applied for GEM and RSV co-assessment in their synthetic polypill with excellent % recoveries of 98.83 ± 0.86 and 100.19 ± 0.64, respectively. No statistically significant difference between the results of the proposed and reported spectrophotometric methods in terms of the F- and t-tests. Ecological and whiteness appraisals of the proposed study were conducted via three novel approaches: the Greenness Index via Spider Diagram, the Analytical Greenness Metric, and the Red-Green-Blue 12 model. The aforementioned metrics proved the superiority of the adopted approach over the previously published one regarding eco-friendliness and sustainability. Our devised fluorimetric turn-off sensing method showed high sensitivity, selectivity, feasibility, and rapidity with minimal cost and environmental burden over other sophisticated techniques, making it reliable in quality control labs.


Subject(s)
Piperidones , Pyrimidines , Quality Control , Rosuvastatin Calcium , Spectrometry, Fluorescence , Technology, Pharmaceutical , Laboratories , Drug Combinations , Drug Industry/instrumentation , Drug Industry/methods , Drug Industry/standards , Drug Compounding/instrumentation , Drug Compounding/methods , Drug Compounding/standards , Technology, Pharmaceutical/instrumentation , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/standards , Color , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Spectrometry, Fluorescence/standards , Dosage Forms
8.
AAPS PharmSciTech ; 25(2): 37, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355916

ABSTRACT

Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.


Subject(s)
Chemistry, Pharmaceutical , Technology, Pharmaceutical , Drug Compounding/methods , Technology, Pharmaceutical/methods , Chemistry, Pharmaceutical/methods , Hot Melt Extrusion Technology , Drug Industry/methods , Hot Temperature
9.
Drug Discov Today ; 29(1): 103845, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013043

ABSTRACT

In both academia and the pharmaceutical industry, innovative hypotheses, methodologies and technologies that can shorten the drug research and development, leading to higher success rates, are vital. In this review, we demonstrate how innovative variations of the scaffold-hopping strategy have been used to create new druggable molecular spaces, drugs, clinical candidates, preclinical candidates, and bioactive agents. We also analyze molecular modulations that enabled improvements of the pharmacodynamic (PD), physiochemical, and pharmacokinetic (PK) properties (P3 properties) of the drugs resulting from these scaffold-hopping strategies.


Subject(s)
Drug Discovery , Drug Industry , Drug Discovery/methods , Drug Industry/methods , Drug Design
10.
Eur J Pharm Biopharm ; 194: 159-169, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110160

ABSTRACT

The identification of process Design Space (DS) is of high interest in highly regulated industrial sectors, such as pharmaceutical industry, where assurance of manufacturability and product quality is key for process development and decision-making. If the process can be controlled by a set of manipulated variables, the DS can be expanded in comparison to an open-loop scenario, where there are no controls in place. Determining the benefits of control strategies may be challenging, particularly when the available model is complex and computationally expensive - which is typically the case of pharmaceutical manufacturing. In this study, we exploit surrogate-based feasibility analysis to determine whether the process satisfies all process constraints by manipulating the process inputs and reduce the effect of uncertainty. The proposed approach is successfully tested on two simulated pharmaceutical case studies of increasing complexity, i.e., considering (i) a single pharmaceutical unit operation, and (ii) a pharmaceutical manufacturing line comprised of a sequence of connected unit operations. Results demonstrate that different control actions can be effectively exploited to operate the process in a wider range of inputs and mitigate uncertainty.


Subject(s)
Drug Industry , Technology, Pharmaceutical , Technology, Pharmaceutical/methods , Uncertainty , Quality Control , Drug Industry/methods , Pharmaceutical Preparations
11.
Eur J Pharm Biopharm ; 195: 114174, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160986

ABSTRACT

Over the last years, the pharmaceutical industry has faced real challenges regarding quality assurance. In this context, the establishment of more holistic approaches to the pharmaceutical development has been encouraged. The emergence of the Quality by Design (QbD) paradigm as systematic, scientific and risk-based methodology introduced a new concept of pharmaceutical quality. In essence, QbD can be interpreted as a strategy to maximize time and cost savings. An in-depth understanding of the formulation and manufacturing process is demanded to optimize the safety, efficacy and quality of a drug product at all stages of development. This innovative approach streamlines the pharmaceutical Research and Development (R&D) process, provides greater manufacturing flexibility and reduces regulatory burden. To assist in QbD implementation, International Conference on Harmonisation (ICH), U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) organized and launched QbD principles in their guidance for industry, identifying key concepts and tools to design and develop a high-quality drug product. Despite the undeniable advantages of the QbD approach, and the widespread information on QbD regulatory expectations, its full implementation in the pharmaceutical field is still limited. The present review aims to establish a crosswise overview on the current application status of QbD within the framework of the ICH guidelines (ICH Q8(R2) - Q14 and ICH Q2(R2)). Moreover, it outlines the way information gathered from the QbD methodology is being harmonized in Marketing Authorization Applications (MAAs) for European market approval. This work also highlights the challenges that hinder the deployment of the QbD strategy as a standard practice.


Subject(s)
Drug Development , Drug Industry , Drug Industry/methods , United States , United States Food and Drug Administration
12.
J Pharm Sci ; 113(3): 505-512, 2024 03.
Article in English | MEDLINE | ID: mdl-38103689

ABSTRACT

Forced degradation, also known as stress testing, is used throughout pharmaceutical development for many purposes including assessing the comparability of biopharmaceutical products according to ICH Guideline Q5E. These formal comparability studies, the results of which are submitted to health authorities, investigate potential impacts of manufacturing process changes on the quality, safety, and efficacy of the drug. Despite the wide use of forced degradation in comparability assessments, detailed guidance on the design and interpretation of such studies is scarce. The BioPhorum Development Group is an industry-wide consortium enabling networking and sharing of common practices for the development of biopharmaceuticals. The BioPhorum Development Group Forced Degradation Workstream recently conducted several group discussions and a benchmarking survey to understand current industry approaches for the use of forced degradation studies to assess comparability of protein-based biopharmaceuticals. The results provide insight into the design of forced degradation studies, analytical characterization and testing strategies, data evaluation criteria, as well as some considerations and differences for non-platform modalities (e.g., non-traditional mAbs). This article presents survey responses from several global companies of various sizes and provides an industry perspective and experience regarding the practicalities of using forced degradation to assess comparability.


Subject(s)
Biological Products , Drug Development , Antibodies, Monoclonal , Drug Industry/methods
16.
Int J Pharm ; 643: 123274, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37507098

ABSTRACT

Today's pharmaceutical industry is facing various challenges. Two of them are issues with supply chain security and the increasing demand for personalized medicine. Both can be addressed by increasing flexibility and a more decentralized approach to pharmaceutical manufacturing. In this study, we present a setup that provides flexibility in terms of supplied raw materials and the product, i.e., a direct-compression setup for personalized tablets operating at a single-tablet-scale. The performance of the implemented single-tablet-scale technology for dosing and mixing was investigated. In addition, an analysis of the critical quality attributes (CQAs) of immediate release ibuprofen and loratadine tablets was performed. The developed dosing device achieved acceptance rates of > 90 % for doses ≥ 20 mg for various pharmaceutical powders. Regarding the vibratory mixing process, a dependency of the performance on the applied frequencies and acceleration was observed, with 100 Hz and âˆ¼ 90 G performing best, yet still exhibiting varying mixing efficacies depending on the granular system. The tablets produced met U.S. Pharmacopeia requirements regarding mechanical stability and dissolution characteristics. Given these results, we consider the developed setup a proof of concept of a tool to provide personalized tablets to patients while minimizing the dependency on complex supply chains.


Subject(s)
Drug Industry , Technology, Pharmaceutical , Humans , Technology, Pharmaceutical/methods , Drug Industry/methods , Pressure , Tablets , Powders , Drug Compounding/methods
17.
Drug Discov Today ; 28(7): 103611, 2023 07.
Article in English | MEDLINE | ID: mdl-37164307

ABSTRACT

Pharmaceutical companies face challenges in business continuity resulting from declining research and development productivity. This study examines the relationship between two strategic pillars: region and therapeutic area, while considering company size. The results indicate that a therapeutic area focus is an effective strategy for small/medium-sized companies, whereas a regional focus is effective for larger companies. These findings highlight the limitations of the traditional global pharmaceutical model from 2004 to 2018 and aim to contribute to the future corporate strategic planning of these companies.


Subject(s)
Commerce , Drug Industry , Drug Industry/methods , Small Business , Pharmaceutical Preparations
18.
J Pharm Sci ; 112(7): 1997-2003, 2023 07.
Article in English | MEDLINE | ID: mdl-37137440

ABSTRACT

With the anticipated health challenges brought by demographic and technological changes, ensuring capacity in underlying workforce in place is essential for addressing patients' needs. Therefore, a timely identification of important drivers facilitating capacity building is important for strategic decisions and workforce planning. In 2020, internationally renowned pharmaceutical scientists (N = 92), largely from the academia and pharmaceutical industry, with mostly pharmacy and pharmaceutical sciences educational background were approached (through a questionnaire) for their considerations on influencing drivers to facilitate meeting current capacity in pharmaceutical sciences research. From a global view, based on the results of the questionnaire, the top drivers were better alignment with patient needs as well as strengthening education - both through continuous learning and deeper specialisation. The study also showed that capacity building is more than simply increasing the influx of graduates. Pharmaceutical sciences are being influenced by other disciplines, and we can expect more diversity in scientific background and training. Capacity building of pharmaceutical scientists should allow flexibility for rapid change driven by the clinic and need for specialised science and it should be underpinned by lifelong learning.


Subject(s)
Capacity Building , Pharmacy , Humans , Drug Industry/methods , Pharmaceutical Preparations
19.
Microb Cell Fact ; 22(1): 64, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016390

ABSTRACT

BACKGROUND: Icaritin is an aglycone of flavonoid glycosides from Herba Epimedii. It has good performance in the treatment of hepatocellular carcinoma in clinical trials. However, the natural icaritin content of Herba Epimedii is very low. At present, the icaritin is mainly prepared from flavonoid glycosides by α-L-rhamnosidases and ß-glucosidases in two-step catalysis process. However, one-pot icaritin production required reported enzymes to be immobilized or bifunctional enzymes to hydrolyze substrate with long reaction time, which caused complicated operations and high costs. To improve the production efficiency and reduce costs, we explored α-L-rhamnosidase SPRHA2 and ß-glucosidase PBGL to directly hydrolyze icariin to icaritin in one-pot, and developed the whole-cell catalytic method for efficient icaritin production. RESULTS: The SPRHA2 and PBGL were expressed in Escherichia coli, respectively. One-pot production of icaritin was achieved by co-catalysis of SPRHA2 and PBGL. Moreover, whole-cell catalysis was developed for icariin hydrolysis. The mixture of SPRHA2 cells and PBGL cells transformed 200 g/L icariin into 103.69 g/L icaritin (yield 95.23%) in 4 h in whole-cell catalysis under the optimized reaction conditions. In order to further increase the production efficiency and simplify operations, we also constructed recombinant E. coli strains that co-expressed SPRHA2 and PBGL. Crude icariin extracts were also efficiently hydrolyzed by the whole-cell catalytic system. CONCLUSIONS: Compared to previous reports on icaritin production, in this study, whole-cell catalysis showed higher production efficiency of icaritin. This study provides promising approach for industrial production of icaritin in the future.


Subject(s)
Drug Industry , Drugs, Chinese Herbal , Flavonoids , Industrial Microbiology , Catalysis , Drugs, Chinese Herbal/chemical synthesis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Escherichia coli/genetics , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Sphingomonadaceae/enzymology , Sphingomonadaceae/genetics , Paenibacillus/enzymology , Paenibacillus/genetics , Industrial Microbiology/methods , Drug Industry/methods , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Flavonoids/biosynthesis , Hydrolysis
20.
J Pharmacokinet Pharmacodyn ; 50(3): 147-172, 2023 06.
Article in English | MEDLINE | ID: mdl-36870005

ABSTRACT

Exposure-response (E-R) analyses are an integral component in the development of oncology products. Characterizing the relationship between drug exposure metrics and response allows the sponsor to use modeling and simulation to address both internal and external drug development questions (e.g., optimal dose, frequency of administration, dose adjustments for special populations). This white paper is the output of an industry-government collaboration among scientists with broad experience in E-R modeling as part of regulatory submissions. The goal of this white paper is to provide guidance on what the preferred methods for E-R analysis in oncology clinical drug development are and what metrics of exposure should be considered.


Subject(s)
Drug Development , Medical Oncology , Computer Simulation , Drug Industry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...