Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.212
Filter
1.
Carbohydr Polym ; 339: 122268, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823931

ABSTRACT

The influence of locust bean gum (LBG) galactomannans (GMs) molecular weight (Mw) to assemble microparticulate systems was evaluated, and carriers for deep lung delivery were developed. A commercial batch of LBG with a mannose/galactose (M/G) ratio of 2.4 (batch 1) was used to study the influence of different microwave partial acid hydrolysis conditions on carbohydrate composition, glycosidic linkages, and aqueous solutions viscosity. The microwave treatment did not affect the composition, presenting 4-Man (36-42 %), 4,6-Man (27-35 %), and T-Gal (24-25 %) as the main glycosidic linkages. Depolymerization led to a viscosity reduction (≤0.005 Pa·s) with no major impact on polysaccharide debranching. The structural composition of the LBG galactomannans were further elucidated with sequence-specific proteins using carbohydrate microarray technologies. A second batch of LBG (M/G 3.3) was used to study the impact of GMs with different Mw on microparticle assembling, characteristics, and insulin release kinetics. The low-Mw GMs microparticles led to a faster release (20 min) than the higher-Mw (40 min) ones, impacting the release kinetics. All microparticles exhibited a safety profile to cells of the respiratory tract. However, only the higher-Mw GMs allowed the assembly of microparticles with sizes suitable for this type of administration.


Subject(s)
Galactose , Mannans , Molecular Weight , Plant Gums , Mannans/chemistry , Galactose/chemistry , Galactose/analogs & derivatives , Plant Gums/chemistry , Humans , Lung/metabolism , Drug Carriers/chemistry , Particle Size , Viscosity , Insulin/chemistry , Insulin/administration & dosage , Drug Liberation , Galactans/chemistry , Mannose/chemistry , Animals
2.
Arch Dermatol Res ; 316(6): 316, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822884

ABSTRACT

In the present study, we have formulated a methotrexate (MTX)-loaded microemulsion topical gel employing quality-by-design optimization. The optimized lipid-based microemulsion was incorporated into a 2% carbopol gel. The prepared formulation was characterized for micromeritics, surface charge, surface morphology, conductivity studies, rheology studies, texture analysis/spreadability, drug entrapment, and drug loading studies. The formulation was further evaluated for drug release and release kinetics, cytotoxicity assays, drug permeation and drug retention studies, and dermatokinetics. The developed nanosystem was not only rheologically acceptable but also offered substantial drug entrapment and loading. From drug release studies, it was observed that the nanogel showed higher drug release at pH 5.0 compared to plain MTX, plain gel, and plain microemulsion. The developed system with improved dermatokinetics, nanometric size, higher drug loading, and enhanced efficacy towards A314 squamous epithelial cells offers a huge promise in the topical delivery of methotrexate.


Subject(s)
Drug Liberation , Emulsions , Gels , Methotrexate , Skin Absorption , Methotrexate/administration & dosage , Methotrexate/chemistry , Methotrexate/pharmacokinetics , Humans , Skin Absorption/drug effects , Rheology , Lipids/chemistry , Administration, Cutaneous , Skin/metabolism , Skin/drug effects , Administration, Topical , Drug Delivery Systems/methods , Animals , Particle Size , Drug Carriers/chemistry , Nanogels/chemistry
3.
Carbohydr Polym ; 339: 122250, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823917

ABSTRACT

Glycyrrhizae Radix et rhizome/licorice is a precious herb in traditional Chinese medicine (TCM). TCM's polysaccharides are medicinally active. But herbal polysaccharides pose some limitations for topical applications. Therefore, this study aimed to utilize licorice polysaccharide via mesoporous silica nanoparticles (MSN) for anti-acne efficacy in topical delivery. The polysaccharide (GGP) was extracted with a 10 % NaOH solution. Chemical characterization suggested that GGP possesses an Mw of 267.9 kDa, comprised primarily of Glc (54.1 %) and Ara (19.12 %), and probably 1,4-linked Glc as a backbone. Then, MSN and amino-functionalized MSN were synthesized, GGP entrapped, and coated with polydopamine (PDA) to produce nanoparticle cargo. The resulted product exhibited 76 % entrapment efficiency and an in vitro release of 89 % at pH 5, which is usually an acne-prone skin's pH. Moreover, it significantly increased Sebocytes' cellular uptake. GGP effectively acted as an anti-acne agent and preserved its efficacy in synthesized nanoparticles. In vivo, the results showed that a 20 % gel of MSN-NH2-GGP@PDA could mediate an inflammatory response via inhibiting pro-inflammatory cytokines and regulating anti-inflammatory cytokines. The MSN-NH2-GGP@PDA inhibited TLR2-activated-MAPK and NF-κB pathway triggered by heat-killed P. acnes. In conclusion, fabricated MSN entrapped GGP for biomimetic anti-acne efficacy in topical application.


Subject(s)
Acne Vulgaris , Glycyrrhiza , Nanoparticles , Polysaccharides , Silicon Dioxide , Glycyrrhiza/chemistry , Silicon Dioxide/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Nanoparticles/chemistry , Animals , Porosity , Acne Vulgaris/drug therapy , Mice , Administration, Topical , Humans , Drug Carriers/chemistry , Drug Liberation , Indoles , Polymers
4.
Int J Pharm ; 658: 124223, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38744413

ABSTRACT

This study aimed to microencapsulate the probiotic strain Lactiplantibacillus plantarum 4S6R (basonym Lactobacillus plantarum) in both microcapsules and microspheres by prilling/vibration technique. A specific polymeric mixture, selected for its responsiveness to parallel colonic stimuli, was individuated as a carrier of microparticles. Although the microspheres were consistent with some critical quality parameters, they showed a low encapsulation efficiency and were discarded. The microcapsules produced demonstrated high yields (97.52%) and encapsulation efficiencies (90.06%), with dimensional analysis and SEM studies confirming the desired size morphology and structure. The results of thermal stress tests indicate the ability of the microcapsules to protect the probiotic. Stability studies showed a significant advantage of the microcapsules over non-encapsulated probiotics, with greater stability over time. The release study under simulated gastrointestinal conditions demonstrated the ability of the microcapsules to protect the probiotics from gastric acid and bile salts, ensuring their viability. Examination in a simulated faecal medium revealed the ability of the microcapsules to release the bacteria into the colon, enhancing their beneficial impact on gut health. This research suggests that the selected mixture of reactive polymers holds promise for improving the survival and efficacy of probiotics in the gastrointestinal tract, paving the way for the development of advanced probiotic products.


Subject(s)
Capsules , Colon , Lactobacillus plantarum , Microspheres , Probiotics , Probiotics/administration & dosage , Colon/microbiology , Colon/metabolism , Bile Acids and Salts/chemistry , Drug Compounding/methods , Drug Liberation , Particle Size , Drug Delivery Systems/methods , Gastric Acid/chemistry , Gastric Acid/metabolism , Drug Stability , Feces/microbiology
5.
Int J Pharm ; 658: 124227, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38750979

ABSTRACT

Media that mimic physiological fluids at the site of administration have proven to be valuable in vitro tools for predicting in vivo drug release, particularly for routes of administration where animal studies cannot accurately predict human performance. The objective of the present study was to develop simulated interstitial fluids (SISFs) that mimic the major components and physicochemical properties of subcutaneous interstitial fluids (ISFs) from preclinical species and humans, but that can be easily prepared in the laboratory and used in in vitro experiments to estimate in vivo drug release and absorption of subcutaneously administered formulations. Based on data from a previous characterization study of ISFs from different species, two media were developed: a simulated mouse-rat ISF and a simulated human-monkey ISF. The novel SISFs were used in initial in vitro diffusion studies with a commercial injectable preparation of liraglutide. Although the in vitro model used for this purpose still requires significant refinement, these two new media will undoubtedly contribute to a better understanding of the in vivo performance of subcutaneous injectables in different species and will help to reduce the number of unnecessary in vivo experiments in preclinical species by implementation in predictive in vitro models.


Subject(s)
Extracellular Fluid , Extracellular Fluid/metabolism , Animals , Humans , Mice , Rats , Injections, Subcutaneous , Subcutaneous Absorption , Models, Biological , Drug Liberation
6.
Int J Nanomedicine ; 19: 3991-4005, 2024.
Article in English | MEDLINE | ID: mdl-38720939

ABSTRACT

Purpose: Surgical site infections pose a significant challenge for medical services. Systemic antibiotics may be insufficient in preventing bacterial biofilm development. With the local administration of antibiotics, it is easier to minimize possible complications, achieve drugs' higher concentration at the injured site, as well as provide their more sustained release. Therefore, the main objective of the proposed herein studies was the fabrication and characterization of innovative hydrogel-based composites for local vancomycin (VAN) therapy. Methods: Presented systems are composed of ionically gelled chitosan particles loaded with vancomycin, embedded into biomimetic collagen/chitosan/hyaluronic acid-based hydrogels crosslinked with genipin and freeze-dried to serve in a flake/disc-like form. VAN-loaded carriers were characterized for their size, stability, and encapsulation efficiency (EE) using dynamic light scattering technique, zeta potential measurements, and UV-Vis spectroscopy, respectively. The synthesized composites were tested in terms of their physicochemical and biological features. Results: Spherical structures with sizes of about 200 nm and encapsulation efficiencies reaching values of approximately 60% were obtained. It was found that the resulting particles exhibit stability over time. The antibacterial activity of the developed materials against Staphylococcus aureus was established. Moreover, in vitro cell culture study revealed that the surfaces of all prepared systems are biocompatible as they supported the proliferation and adhesion of the model MG-63 cells. In addition, we have demonstrated significantly prolonged VAN release while minimizing the initial burst effect for the composites compared to bare nanoparticles and verified their desired physicochemical features during swellability, and degradation experiments. Conclusion: It is expected that the developed herein system will enable direct delivery of the antibiotic at an exposed to infections surgical site, providing drugs sustained release and thus will reduce the risk of systemic toxicity. This strategy would both inhibit biofilm formation and accelerate the healing process.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Staphylococcus aureus , Vancomycin , Vancomycin/chemistry , Vancomycin/pharmacology , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Chitosan/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Drug Carriers/chemistry , Collagen/chemistry , Collagen/pharmacology , Particle Size , Drug Liberation , Surgical Wound Infection/prevention & control , Surgical Wound Infection/drug therapy , Microbial Sensitivity Tests , Biofilms/drug effects
7.
AAPS PharmSciTech ; 25(5): 105, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724807

ABSTRACT

The formulation of microspheres involves a complex manufacturing process with multiple steps. Identifying the appropriate process parameters to achieve the desired quality attributes poses a significant challenge. This study aims to optimize the critical process parameters (CPPs) involved in the preparation of naltrexone microspheres using a Quality by Design (QbD) methodology. Additionally, the research aims to assess the drug release profiles of these microspheres under both in vivo and in vitro conditions. Critical process parameters (CPPs) and critical quality attributes (CQAs) were identified, and a Box-Behnken design was utilized to delineate the design space, ensuring alignment with the desired Quality Target Product Profile (QTPP). The investigated CPPs comprised polymer concentration, aqueous phase ratio to organic phase ratio, and quench volume. The microspheres were fabricated using the oil-in-water emulsion solvent extraction technique. Analysis revealed that increased polymer concentration was correlated with decreased particle size, reduced quench volume resulted in decreased burst release, and a heightened aqueous phase ratio to organic phase ratio improved drug entrapment. Upon analyzing the results, an optimal formulation was determined. In conclusion, the study conducted in vivo drug release testing on both the commercially available innovator product and the optimized test product utilizing an animal model. The integration of in vitro dissolution data with in vivo assessments presents a holistic understanding of drug release dynamics. The QbD approach-based optimization of CPPs furnishes informed guidance for the development of generic pharmaceutical formulations.


Subject(s)
Chemistry, Pharmaceutical , Delayed-Action Preparations , Drug Delivery Systems , Drug Liberation , Microspheres , Naltrexone , Particle Size , Naltrexone/chemistry , Naltrexone/administration & dosage , Naltrexone/pharmacokinetics , Animals , Chemistry, Pharmaceutical/methods , Delayed-Action Preparations/chemistry , Drug Delivery Systems/methods , Polymers/chemistry , Emulsions/chemistry , Drug Compounding/methods , Solubility , Solvents/chemistry
8.
Int J Nanomedicine ; 19: 3847-3859, 2024.
Article in English | MEDLINE | ID: mdl-38708182

ABSTRACT

Background: Dihydroartemisinin (DHA) has emerged as a promising candidate for anticancer therapy. However, the application of DHA in clinics has been hampered by several limitations including poor bioavailability, short circulation life, and low solubility, significantly restricting its therapeutic efficacy and leading to notable side effects during the treatment. Purpose: We present DHA-loaded zeolitic imidazolate framework-8 (D-ZIF) with controllable and targeted DHA release properties, leading to enhanced antitumor effects while reducing potential side effects. Methods: D-ZIF was prepared by one-pot synthesis method using methylimidazole (MIM), Zn(NO3)2•6H2O and DHA. We characterized the physical and chemical properties of D-ZIF by TEM, DLS, XRD, FT-IR, and TG. We measured the drug loading efficiency and the cumulative release of DHA in different pH conditions. We evaluated the cytotoxicity of D-ZIF on renal cell carcinoma (RCC786-O), glioma cells (U251), TAX-resistant human lung adenocarcinoma (A549-TAX) cells by CCK8 in vitro. We explored the possible antitumor mechanism of D-ZIF by Western blot. We evaluated the biocompatibility and hemolysis of D-ZIF and explored the in vivo antitumor efficiency in mice model by TUNEL testing and blood biomarker evaluations. Results: D-ZIF showed rhombic dodecahedral morphology with size of 129±7.2 nm and possessed a noticeable DHA encapsulation efficiency (72.9%). After 48 hours, D-ZIF released a cumulative 70.0% of the loaded DHA at pH 6.5, and only 42.1% at pH 7.4. The pH-triggered programmed release behavior of D-ZIF could enhance anticancer effect of DHA while minimizing side effects under normal physiological conditions. Compared with the free DHA group with 31.75% of A549-TAX cell apoptosis, the percentage of apoptotic cells was approximately 76.67% in the D-ZIF group. D-ZIF inhibited tumor growth by inducing tumor cell apoptosis through the mechanism of ROS production and regulation of Nrf2/HO-1 and P38 MAPK signaling pathways. D-ZIF showed potent effects in treating tumors with high safety in vivo. Conclusion: This pH-responsive release mechanism enhanced the targeting efficiency of DHA towards tumor cells, thereby increasing drug concentration in tumor sites with negligible side effects. Herein, D-ZIF holds great promise for curing cancers with minimal adverse effects.


Subject(s)
Antineoplastic Agents , Artemisinins , Drug Resistance, Neoplasm , Imidazoles , Lung Neoplasms , Metal-Organic Frameworks , Reactive Oxygen Species , Artemisinins/chemistry , Artemisinins/pharmacology , Artemisinins/pharmacokinetics , Animals , Humans , Reactive Oxygen Species/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacokinetics , Metal-Organic Frameworks/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Hydrogen-Ion Concentration , A549 Cells , Drug Liberation , Mice, Nude , Apoptosis/drug effects , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Hemolysis/drug effects
9.
AAPS PharmSciTech ; 25(5): 97, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710894

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14-39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Indazoles , Liposomes , Nanoparticles , Pancreatic Neoplasms , Particle Size , Pyrimidines , Sulfonamides , Indazoles/administration & dosage , Indazoles/pharmacology , Humans , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Sulfonamides/chemistry , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Drug Liberation , Chemistry, Pharmaceutical/methods
10.
AAPS PharmSciTech ; 25(5): 94, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710898

ABSTRACT

This study introduces and assesses the potential of a Luliconazole-loaded nanofiber (LUL-NF) patch, fabricated through electrospinning, for enhancing topical drug delivery. The primary objectives involve evaluating the nanofiber structure, characterizing physical properties, determining drug loading and release kinetics, assessing antifungal efficacy, and establishing the long-term stability of the NF patch. LUL-NF patches were fabricated via electrospinning and observed by SEM at approximately 200 nm dimensions. The comprehensive analysis included physical properties (thickness, folding endurance, swelling ratio, weight, moisture content, and drug loading) and UV analysis for drug quantification. In vitro studies explored sustained drug release kinetics, while microbiological assays evaluated antifungal efficacy against Candida albicans and Aspergillus Niger. Stability studies confirmed long-term viability. Comparative analysis with the pure drug, placebo NF patch, LUL-NF patch, and Lulifod gel was conducted using agar diffusion, revealing enhanced performance of the LUL-NF patch. SEM analysis revealed well-defined LUL-NF patches (0.80 mm thickness) with exceptional folding endurance (> 200 folds) and a favorable swelling ratio (12.66 ± 0.73%). The patches exhibited low moisture uptake (3.4 ± 0.09%) and a moisture content of 11.78 ± 0.54%. Drug loading in 1 cm2 section was 1.904 ± 0.086 mg, showing uniform distribution and sustained release kinetics in vitro. The LUL-NF patch demonstrated potent antifungal activity. Stability studies affirmed long-term stability, and comparative analysis highlighted increased inhibition compared to a pure drug, LUL-NF patch, and a commercial gel. The electrospun LUL-NF patch enhances topical drug delivery, promising extended therapy through single-release, one-time application, and innovative drug delivery strategies, supported by thorough analysis.


Subject(s)
Antifungal Agents , Aspergillus niger , Candida albicans , Drug Delivery Systems , Drug Liberation , Imidazoles , Nanofibers , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Nanofibers/chemistry , Candida albicans/drug effects , Aspergillus niger/drug effects , Drug Delivery Systems/methods , Imidazoles/chemistry , Imidazoles/administration & dosage , Imidazoles/pharmacology , Delayed-Action Preparations , Microbial Sensitivity Tests/methods , Drug Carriers/chemistry , Drug Stability
11.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710921

ABSTRACT

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Subject(s)
Administration, Intranasal , Brain , Drug Delivery Systems , Drug Liberation , Glycerides , Nasal Mucosa , Particle Size , Verapamil , Administration, Intranasal/methods , Animals , Brain/metabolism , Brain/drug effects , Drug Delivery Systems/methods , Verapamil/administration & dosage , Verapamil/pharmacokinetics , Tissue Distribution , Glycerides/chemistry , Nasal Mucosa/metabolism , Biological Availability , Rats , Calcium Channel Blockers/pharmacokinetics , Calcium Channel Blockers/administration & dosage , Poloxamer/chemistry , Male , Chemistry, Pharmaceutical/methods , Rats, Wistar , Nanoparticles/chemistry
12.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731538

ABSTRACT

Adenosine, as a water-soluble active substance, has various pharmacological effects. This study proposes a layer-by-layer assembly method of composite wall materials, using hydroxypropyl-ß-cyclodextrin as the inner wall and whey protein isolate as the outer wall, to encapsulate adenosine within the core material, aiming to enhance adenosine microcapsules' stability through intermolecular interactions. By combining isothermal titration calorimetry with molecular modeling analysis, it was determined that the core material and the inner wall and the inner wall and the outer wall interact through intermolecular forces. Adenosine and hydroxypropyl-ß-cyclodextrin form an optimal 1:1 complex through hydrophobic interactions, while hydroxypropyl-ß-cyclodextrin and whey protein isolate interact through hydrogen bonds. The embedding rate of AD/Hp-ß-CD/WPI microcapsules was 36.80%, and the 24 h retention rate under the release behavior test was 76.09%. The method of preparing adenosine microcapsules using composite wall materials is environmentally friendly and shows broad application prospects in storage and delivery systems with sustained release properties.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Adenosine , Capsules , Whey Proteins , Whey Proteins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Capsules/chemistry , Adenosine/chemistry , Drug Compounding/methods , Hydrophobic and Hydrophilic Interactions , Drug Liberation , Models, Molecular , Hydrogen Bonding , Layer-by-Layer Nanoparticles
13.
Sci Rep ; 14(1): 10798, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734777

ABSTRACT

The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.


Subject(s)
Biocompatible Materials , Bone Substitutes , Durapatite , Nanocomposites , Silicates , Durapatite/chemistry , Nanocomposites/chemistry , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Silicates/chemistry , Biocompatible Materials/chemistry , Calcium Compounds/chemistry , Drug Liberation , Dexamethasone/chemistry , Dexamethasone/pharmacology , Polymers/chemistry , Humans , X-Ray Diffraction , Materials Testing , Spectroscopy, Fourier Transform Infrared , Animals
14.
Int J Pharm Compd ; 28(3): 194-204, 2024.
Article in English | MEDLINE | ID: mdl-38768501

ABSTRACT

Ticagrelor is used to inhibit acute coronary syndrome, but its poor solubility and low bioavailability limit its in-vivo efficacy. The purpose of this study was to manufacture an optimized ticagrelor-loaded self-microemulsifying drug-delivery system in the form of tablets to enhance the solubility and dissolution of that drug. A preliminary study was conducted to determine the extent of turbidity of oils for this study, and a pseudoternaryphase diagram was used to identify the region of formation of microemulsion with 3 ratios (1:1,1:2, and 1:3). The solubility of ticagrelor was determined with the selected oil and a surfactant-and-cosurfactant mixture. A simplex lattice mixture design was used to compound the microemulsion. The microemulsion was converted to granules by the use of an adsorbent (aerosol) after a precipitation study. After characterization, the resultant granules were compressed into tablets for an in-vitro release study. The optimized formulation was subjected to various characterization procedures to determine the zeta potential, particle size, and surface morphology. The solubility of the drug was found to have increased manyfold in all formulations, and the optimized formulation was found to be 221.37 mg/mL. With respect to the ticagrelor tablets, aerosol up to 30% was needed as an adsorbent in the self-microemulsifying drug-delivery system. The compression of the ticagrelor granules was satisfactory for tablet formation. In all formulations, the release of the active drug was more than 80% within 30 minutes of dissolution time. The optimized icagrelorloaded self-microemulsifying drug-delivery system formulation consisted of medium-chain triglyceride oil (47.88.0%), surfactant (28.25%), and cosurfactant (23.85%), which significantly improved the dissolution of ticagrelor. The results of analysis via scanning electron microscopy revealed that the surface and size of the drug and the zeta potential were also satisfactory and suggested that the optimized ticagrelor-loaded self-microemulsifying drug-delivery system described in this report could be successfully used as an efficient method for achieving enhanced dissolution of ticagrelor.


Subject(s)
Drug Compounding , Emulsions , Solubility , Tablets , Ticagrelor , Ticagrelor/administration & dosage , Ticagrelor/chemistry , Particle Size , Surface-Active Agents/chemistry , Drug Liberation , Drug Delivery Systems , Chemistry, Pharmaceutical
15.
AAPS PharmSciTech ; 25(5): 116, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769223

ABSTRACT

Oral dispersible films have received broad interest due to fast drug absorption and no first-path metabolism, leading to high bioavailability and better patient compliance. Saxagliptin (SXG) is an antidiabetic drug that undergoes first-path metabolism, resulting in a less active metabolite, so the development of SXG oral dispersible films (SXG-ODFs) improves SXG bioavailability. The formula optimisation included a response surface experimental design and the impact of three formulation factors, the type and concentration of polymer and plasticiser concentration on in-vitro disintegration time and folding endurance. Two optimised SXG-ODFs prepared using either polyvinyl alcohol (PVA) or hydroxypropyl methylcellulose were investigated. SXG-ODFs prepared with PVA demonstrated a superior rapid disintegration time, ranging from 17 to 890 s, with the fastest disintegration time recorded at 17 s. These short durations can be attributed to the hydrophilic nature of PVA, facilitating rapid hydration and disintegration upon contact with saliva. Additionally, PVA-based films displayed remarkable folding endurance, surpassing 200 folds without rupture, indicating flexibility and stability. The high tensile strength of PVA-based films further underscores their robust mechanical properties, with tensile strength values reaching up to 4.53 MPa. SXG exhibits a UV absorption wavelength of around 212 nm, posing challenges for traditional quantitative spectrophotometric analysis, so a polyaniline nanoparticles-based solid-contact screen-printed ion-selective electrode (SP-ISE) was employed for the determination of SXG release profile effectively in comparison to HPLC. SP-ISE showed a better real-time release profile of SXG-ODFs, and the optimised formula showed lower blood glucose levels than commercial tablets.


Subject(s)
Adamantane , Aniline Compounds , Dipeptides , Drug Liberation , Nanoparticles , Polyvinyl Alcohol , Adamantane/chemistry , Adamantane/analogs & derivatives , Dipeptides/chemistry , Dipeptides/pharmacokinetics , Dipeptides/administration & dosage , Aniline Compounds/chemistry , Nanoparticles/chemistry , Administration, Oral , Polyvinyl Alcohol/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Humans , Hypromellose Derivatives/chemistry , Tensile Strength , Chemistry, Pharmaceutical/methods , Biological Availability , Solubility , Electrodes
16.
Langmuir ; 40(20): 10551-10560, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38710593

ABSTRACT

Although finasteride (FNS) tablets are considered the most effective drug for the treatment of androgenetic alopecia (AGA), their clinical applications are limited due to the associated side effects including decreased libido, breast enlargement, and liver dysfunction. In this study, we have developed a personalized microneedle (PMN) with a double-layer structure that incorporates FNS-loaded microspheres (MPs) to accommodate irregular skin surfaces. This design enables the sustained release of FNS, thereby reducing potential side effects. The needle body was synthesized with high-strength hyaluronic acid (HA) as the base material substrate. The backing layer utilized methacrylate gelatin (GelMA) with specific toughness, enabling PMN to penetrate the skin while adapting to various skin environments. The length of PMN needles (10 × 10) was approximately 600 µm, with the bottom of the needles measuring about 330 µm × 330 µm. The distance between adjacent tips was around 600 µm, allowing the drug to penetrate the stratum corneum of the skin. The results of the drug release investigation indicated the sustained and regulated release of FNS from PMN, as compared to that of pure FNS and FNS-MPs. Further, the cytotoxicity assay demonstrates that PMS displays good cytocompatibility. Altogether, this mode of administration has immense potential for the development of delivery of other drugs, as well as in the medical field.


Subject(s)
Administration, Cutaneous , Finasteride , Microspheres , Needles , Finasteride/administration & dosage , Finasteride/pharmacokinetics , Finasteride/chemistry , Hyaluronic Acid/chemistry , Animals , Humans , Drug Delivery Systems , Drug Liberation , Skin/metabolism , Skin/drug effects
17.
ACS Nano ; 18(20): 13117-13129, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38727027

ABSTRACT

The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.


Subject(s)
Flurbiprofen , Osteoarthritis , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Animals , Flurbiprofen/chemistry , Flurbiprofen/administration & dosage , Flurbiprofen/pharmacology , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Drug Delivery Systems , Humans , Drug Carriers/chemistry , Lubrication , Drug Liberation , Mice , Male , Anilides
18.
Sci Rep ; 14(1): 11400, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762571

ABSTRACT

The current study developed an innovative design for the production of smart multifunctional core-double shell superparamagnetic nanoparticles (NPs) with a focus on the development of a pH-responsive drug delivery system tailored for the controlled release of Phenytoin, accompanied by real-time monitoring capabilities. In this regard, the ultra-small superparamagnetic iron oxide@silica NPs (IO@Si MNPs) were synthesized and then coated with a layer of gelatin containing Phenytoin as an antiepileptic drug. The precise saturation magnetization value for the resultant NPs was established at 26 emu g-1. The polymeric shell showed a pH-sensitive behavior with the capacity to regulate the release of encapsulated drug under neutral pH conditions, simultaneously, releasing more amount of the drug in a simulated tumorous-epileptic acidic condition. The NPs showed an average size of 41.04 nm, which is in the desired size range facilitating entry through the blood-brain barrier. The values of drug loading and encapsulation efficiency were determined to be 2.01 and 10.05%, respectively. Moreover, kinetic studies revealed a Fickian diffusion process of Phenytoin release, and diffusional exponent values based on the Korsmeyer-Peppas equation were achieved at pH 7.4 and pH 6.3. The synthesized NPs did not show any cytotoxicity. Consequently, this new design offers a faster release of PHT at the site of a tumor in response to a change in pH, which is essential to prevent epileptic attacks.


Subject(s)
Anticonvulsants , Drug Delivery Systems , Gelatin , Phenytoin , Silicon Dioxide , Gelatin/chemistry , Anticonvulsants/chemistry , Anticonvulsants/administration & dosage , Silicon Dioxide/chemistry , Hydrogen-Ion Concentration , Phenytoin/chemistry , Phenytoin/administration & dosage , Drug Delivery Systems/methods , Humans , Ferric Compounds/chemistry , Drug Liberation , Drug Carriers/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Particle Size
19.
BMC Vet Res ; 20(1): 211, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762728

ABSTRACT

Beneficial weight-loss properties of glucagon-like peptide-1 receptor agonists (GLP-1RA) in obese people, with corresponding improvements in cardiometabolic risk factors, are well established. OKV-119 is an investigational drug delivery system that is being developed for the long-term delivery of the GLP-1RA exenatide to feline patients. The purpose of this study was to evaluate the drug release characteristics of subcutaneous OKV-119 implants configured to release exenatide for 84 days. Following a 7-day acclimation period, five purpose-bred cats were implanted with OKV-119 protypes and observed for a 112-day study period. Food intake, weekly plasma exenatide concentrations and body weight were measured. Exenatide plasma concentrations were detected at the first measured timepoint (Day 7) and maintained above baseline for over 84 Days. Over the first 28 days, reduced caloric intake and a reduction in body weight were observed in four of five cats. In these cats, a body weight reduction of at least 5% was maintained throughout the 112-day study period. This study demonstrates that a single OKV-119 implant can deliver the GLP-1RA exenatide for a months long duration. Results suggest that exposure to exenatide plasma concentrations ranging from 1.5 ng/ml to 4 ng/ml are sufficient for inducing weight loss in cats.


Subject(s)
Exenatide , Animals , Exenatide/administration & dosage , Exenatide/pharmacokinetics , Exenatide/pharmacology , Cats , Male , Female , Drug Delivery Systems/veterinary , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Body Weight , Drug Liberation , Drug Implants , Eating/drug effects , Venoms/administration & dosage , Venoms/pharmacokinetics , Glucagon-Like Peptide-1 Receptor/agonists
20.
ACS Appl Mater Interfaces ; 16(20): 25869-25878, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728411

ABSTRACT

Liraglutide has been extensively applied in the treatment of type 2 diabetes mellitus (T2DM), but its 11-15 h half-life resulted in daily administration, which led to poor patient compliance. This study aimed to solve this problem by developing liraglutide-loaded microspheres with a 1 month sustained release prepared by the W1/O/W2 method combined with the premix membrane emulsification technique to improve therapeutic efficacy. Remarkably, we found that the amphiphilic properties of liraglutide successfully reduced the oil-water interfacial tension, resulting in a stable primary emulsion and decreasing the level of drug leakage into the external water phase. As a result, exceptional drug loading (>8%) and encapsulation efficiency (>85%) of microspheres were achieved. Furthermore, the uniformity in microsphere size facilitated an in-depth exploration of the structural characteristics of liraglutide-loaded microspheres. The results indicated that the dimensions of the internal cavities of the microspheres were significantly influenced by the size of the inner water droplets in the primary emulsion. A denser and more uniform cavity structure decreased the initial burst release, improving the release process of liraglutide from the microspheres. To evaluate the release behavior of liraglutide from microspheres, a set of in vitro release assays and in vivo pharmacodynamics were performed. The liraglutide-loaded microspheres effectively decreased fasting blood glucose (FBG) levels and hemoglobin A1c (HbA1c) levels while enhancing the pancreatic and hepatic functions in db/db mice. In conclusion, liraglutide sustained-release microspheres showed the potential for future clinical applications in the management of T2DM and provided an effective therapeutic approach to overcoming patient compliance issues.


Subject(s)
Delayed-Action Preparations , Diabetes Mellitus, Type 2 , Liraglutide , Microspheres , Liraglutide/chemistry , Liraglutide/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Animals , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Mice , Blood Glucose/drug effects , Blood Glucose/analysis , Diabetes Mellitus, Experimental/drug therapy , Male , Drug Liberation , Emulsions/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...