Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.873
Filter
1.
Nurs Health Sci ; 26(2): e13126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754867

ABSTRACT

Multidrug-resistant organism infections are a serious health problem globally, and can result in patient mortality and morbidity. In this descriptive study, we produced the first web application for transmission prevention specific to the situation based on nursing experience, knowledge, and practice guidelines and to evaluate web application satisfaction among Thai nurses. The sample comprised 282 Thai registered nurses experienced in caring for patients with multidrug-resistant organisms in a tertiary hospital. A demographic form and knowledge test were completed anonymously online. Data were analyzed using descriptive statistics. The application emphasized crucial topics for which participants had low preliminary knowledge and included tutorial sessions, pictures, video clips, drills, and a post-test. The application was piloted with a random sample of 30 nurses, and an instrument tested their satisfaction with this. Results revealed that preliminary knowledge scores for preventing transmission were moderate, and participants were highly satisfied with the application. Findings suggest the application is suitable for Thai nurses and could be applied to nursing practice elsewhere. However, further testing is recommended before implementing it into nursing practice.


Subject(s)
Internet , Humans , Female , Thailand , Adult , Male , Surveys and Questionnaires , Middle Aged , Nurses/psychology , Nurses/statistics & numerical data , Personal Satisfaction , Drug Resistance, Multiple
2.
BMC Res Notes ; 17(1): 129, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725016

ABSTRACT

OBJECTIVES: The study evaluated sub-microscopic malaria infections in pregnancy using two malaria Rapid Diagnostic Tests (mRDTs), microscopy and RT-PCR and characterized Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and Plasmodium falciparum dihydropteroate synthase (Pfdhps) drug resistant markers in positive samples. METHODS: This was a cross sectional survey of 121 pregnant women. Participants were finger pricked, blood drops were collected for rapid diagnosis with P. falciparum histidine-rich protein 11 rapid diagnostic test kit and the ultra-sensitive Alere Pf malaria RDT, Blood smears for microscopy and dried blood spots on Whatman filter paper for molecular analysis were made. Real time PCR targeting the var acidic terminal sequence (varATS) gene of P. falciparum was carried out on a CFX 96 real time system thermocycler (BioRad) in discriminating malaria infections. For each run, laboratory strain of P. falciparum 3D7 and nuclease free water were used as positive and negative controls respectively. Additionally, High resolution melt analyses was employed for genotyping of the different drug resistance markers. RESULTS: Out of one hundred and twenty-one pregnant women sampled, the SD Bioline™ Malaria Ag P.f HRP2-based malaria rapid diagnostic test (mRDT) detected eight (0.06%) cases, the ultra-sensitive Alere™ malaria Ag P.f rapid diagnostic test mRDT had similar outcome in the same samples as detected by the HRP2-based mRDT. Microscopy and RT-PCR confirmed four out of the eight infections detected by both rapid diagnostic tests as true positive and RT-PCR further detected three false negative samples by the two mRDTs providing a sub-microscopic malaria prevalence of 3.3%. Single nucleotide polymorphism in Pfdhps gene associated with sulphadoxine resistance revealed the presence of S613 mutant genotypes in three of the seven positive isolates and isolates with mixed wild/mutant genotype at codon A613S. Furthermore, four mixed genotypes at the A581G codon were also recorded while the other Pfdhps codons (A436G, A437G and K540E) showed the presence of wild type alleles. In the Pfdhfr gene, there were mutations in 28.6%, 28.6%, and 85.7% at the I51, R59 and N108 codons respectively. Mixed wild and mutant type genotypes were also observed in 28.6% each of the N51I, and C59R codons. For the Pfcrt, two haplotypes CVMNK and CVIET were observed. The SVMNT was altogether absent. Triple mutant CVIET 1(14.3%) and triple mutant + wild genotype CVIET + CVMNK 1(14.3%) were observed. The Pfmdr1 haplotypes were single mutants YYND 1(14.3%); NFND 1(14.3%) and double mutants YFND 4(57.1%); YYDD 1(14.3%).


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Polymorphism, Single Nucleotide , Female , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Pregnancy , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Adult , Cross-Sectional Studies , Polymorphism, Single Nucleotide/genetics , Nigeria/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Alleles , Young Adult , Pregnancy Complications, Parasitic/parasitology , Pregnancy Complications, Parasitic/genetics , Pregnancy Complications, Parasitic/diagnosis , Drug Resistance, Multiple/genetics , Dihydropteroate Synthase/genetics , Tetrahydrofolate Dehydrogenase/genetics , Protozoan Proteins/genetics , Adolescent
3.
J Med Chem ; 67(10): 8020-8042, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38727048

ABSTRACT

Promising targeted therapy options to overcome drug resistance and side effects caused by platinum(II) drugs for treatment in hepatocellular carcinoma are urgently needed. Herein, six novel multifunctional platinum(IV) complexes through linking platinum(II) agents and glycyrrhetinic acid (GA) were designed and synthesized. Among them, complex 20 showed superior antitumor activity against tested cancer cells including cisplatin resistance cells than cisplatin and simultaneously displayed good liver-targeting ability. Moreover, complex 20 can significantly cause DNA damage and mitochondrial dysfunction, promote reactive oxygen species generation, activate endoplasmic reticulum stress, and eventually induce apoptosis. Additionally, complex 20 can effectively inhibit cell migration and invasion and trigger autophagy and ferroptosis in HepG-2 cells. More importantly, complex 20 demonstrated stronger tumor inhibition ability than cisplatin or the combo of cisplatin/GA with almost no systemic toxicity in HepG-2 or A549 xenograft models. Collectively, complex 20 could be developed as a potential anti-HCC agent for cancer treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Glycyrrhetinic Acid , Liver Neoplasms , Humans , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/chemistry , Glycyrrhetinic Acid/chemical synthesis , Glycyrrhetinic Acid/analogs & derivatives , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Animals , Mice , Drug Resistance, Multiple/drug effects , Ligands , Hepatocytes/drug effects , Hepatocytes/metabolism , Mice, Nude , Apoptosis/drug effects , Hep G2 Cells , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Cisplatin/pharmacology , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/therapeutic use , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
4.
PLoS Comput Biol ; 20(5): e1012098, 2024 May.
Article in English | MEDLINE | ID: mdl-38820350

ABSTRACT

Multi-drug combinations to treat bacterial populations are at the forefront of approaches for infection control and prevention of antibiotic resistance. Although the evolution of antibiotic resistance has been theoretically studied with mathematical population dynamics models, extensions to spatial dynamics remain rare in the literature, including in particular spatial evolution of multi-drug resistance. In this study, we propose a reaction-diffusion system that describes the multi-drug evolution of bacteria based on a drug-concentration rescaling approach. We show how the resistance to drugs in space, and the consequent adaptation of growth rate, is governed by a Price equation with diffusion, integrating features of drug interactions and collateral resistances or sensitivities to the drugs. We study spatial versions of the model where the distribution of drugs is homogeneous across space, and where the drugs vary environmentally in a piecewise-constant, linear and nonlinear manner. Although in many evolution models, per capita growth rate is a natural surrogate for fitness, in spatially-extended, potentially heterogeneous habitats, fitness is an emergent property that potentially reflects additional complexities, from boundary conditions to the specific spatial variation of growth rates. Applying concepts from perturbation theory and reaction-diffusion equations, we propose an analytical metric for characterization of average mutant fitness in the spatial system based on the principal eigenvalue of our linear problem, λ1. This enables an accurate translation from drug spatial gradients and mutant antibiotic susceptibility traits to the relative advantage of each mutant across the environment. Our approach allows one to predict the precise outcomes of selection among mutants over space, ultimately from comparing their λ1 values, which encode a critical interplay between growth functions, movement traits, habitat size and boundary conditions. Such mathematical understanding opens new avenues for multi-drug therapeutic optimization.


Subject(s)
Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Models, Biological , Drug Resistance, Multiple, Bacterial/genetics , Computational Biology , Bacteria/drug effects , Bacteria/genetics , Computer Simulation , Drug Resistance, Multiple/genetics , Evolution, Molecular , Humans
5.
Eur J Med Chem ; 272: 116466, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704938

ABSTRACT

P-glycoprotein (Pgp) modulators are promising agents for overcoming multidrug resistance (MDR) in cancer chemotherapy. In this study, via structural optimization of our lead compound S54 (nonsubstrate allosteric inhibitor of Pgp), 29 novel pyxinol amide derivatives bearing an aliphatic heterocycle were designed, synthesized, and screened for MDR reversal activity in KBV cells. Unlike S54, these active derivatives were shown to transport substrates of Pgp. The most potent derivative 4c exhibited promising MDR reversal activity (IC50 of paclitaxel = 8.80 ± 0.56 nM, reversal fold = 211.8), which was slightly better than that of third-generation Pgp modulator tariquidar (IC50 of paclitaxel = 9.02 ± 0.35 nM, reversal fold = 206.6). Moreover, the cytotoxicity of this derivative was 8-fold lower than that of tariquidar in human normal HK-2 cells. Furthermore, 4c blocked the efflux function of Pgp and displayed high selectivity for Pgp but had no effect on its expression and distribution. Molecular docking revealed that 4c bound preferentially to the drug-binding domain of Pgp. Overall, 4c is a promising lead compound for developing Pgp modulators.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Amides , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Molecular Docking Simulation , Humans , Drug Resistance, Multiple/drug effects , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Structure-Activity Relationship , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects
6.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731935

ABSTRACT

Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.


Subject(s)
Apoptosis , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Leukemia , Lymphoma , Mitochondria , X-Linked Inhibitor of Apoptosis Protein , X-Linked Inhibitor of Apoptosis Protein/metabolism , Humans , Apoptosis/drug effects , Drug Resistance, Neoplasm/drug effects , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Leukemia/metabolism , Leukemia/drug therapy , Leukemia/pathology , Drug Resistance, Multiple/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Down-Regulation/drug effects , Cell Proliferation/drug effects , Cytostatic Agents/pharmacology , Antineoplastic Agents/pharmacology
7.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791591

ABSTRACT

Multidrug resistance (MDR) is frequently induced after long-term exposure to reduce the therapeutic effect of chemotherapeutic drugs, which is always associated with the overexpression of efflux proteins, such as P-glycoprotein (P-gp). Nano-delivery technology can be used as an efficient strategy to overcome tumor MDR. In this study, mesoporous silica nanoparticles (MSNs) were synthesized and linked with a disulfide bond and then coated with lipid bilayers. The functionalized shell/core delivery systems (HT-LMSNs-SS@DOX) were developed by loading drugs inside the pores of MSNs and conjugating with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and hyaluronic acid (HA) on the outer lipid surface. HT-LMSNs-SS and other carriers were characterized and assessed in terms of various characteristics. HT-LMSNs-SS@DOX exhibited a dual pH/reduction responsive drug release. The results also showed that modified LMSNs had good dispersity, biocompatibility, and drug-loading capacity. In vitro experiment results demonstrated that HT-LMSNs-SS were internalized by cells and mainly by clathrin-mediated endocytosis, with higher uptake efficiency than other carriers. Furthermore, HT-LMSNs-SS@DOX could effectively inhibit the expression of P-gp, increase the apoptosis ratios of MCF-7/ADR cells, and arrest cell cycle at the G0/G1 phase, with enhanced ability to induce excessive reactive oxygen species (ROS) production in cells. In tumor-bearing model mice, HT-LMSNs-SS@DOX similarly exhibited the highest inhibition activity against tumor growth, with good biosafety, among all of the treatment groups. Therefore, the nano-delivery systems developed herein achieve enhanced efficacy towards resistant tumors through targeted delivery and redox-responsive drug release, with broad application prospects.


Subject(s)
Doxorubicin , Drug Resistance, Neoplasm , Lipid Bilayers , Nanoparticles , Oxidation-Reduction , Silicon Dioxide , Silicon Dioxide/chemistry , Humans , Animals , Drug Resistance, Neoplasm/drug effects , Nanoparticles/chemistry , Mice , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Lipid Bilayers/chemistry , Drug Carriers/chemistry , Drug Liberation , Drug Delivery Systems , Apoptosis/drug effects , Porosity , Female , MCF-7 Cells , Xenograft Model Antitumor Assays , Cell Line, Tumor , Hyaluronic Acid/chemistry , Drug Resistance, Multiple/drug effects , Mice, Nude
8.
J Biochem Mol Toxicol ; 38(6): e23732, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769657

ABSTRACT

Achieving targeted, customized, and combination therapies with clarity of the involved molecular pathways is crucial in the treatment as well as overcoming multidrug resistance (MDR) in cancer. Nanotechnology has emerged as an innovative and promising approach to address the problem of drug resistance. Developing nano-formulation-based therapies using therapeutic agents poses a synergistic effect to overcome MDR in cancer. In this review, we aimed to highlight the important pathways involved in the progression of MDR in cancer mediated through nanotechnology-based approaches that have been employed to circumvent them in recent years. Here, we also discussed the potential use of marine metabolites to treat MDR in cancer, utilizing active drug-targeting nanomedicine-based techniques to enhance selective drug accumulation in cancer cells. The discussion also provides future insights for developing complex targeted, multistage responsive nanomedical drug delivery systems for effective cancer treatments. We propose more combinational studies and their validation for the possible marine-based nanoformulations for future development.


Subject(s)
Biological Products , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Nanotechnology , Neoplasms , Humans , Biological Products/chemistry , Biological Products/therapeutic use , Biological Products/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Nanotechnology/methods , Aquatic Organisms/chemistry , Animals , Nanomedicine/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Drug Delivery Systems
9.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2222-2229, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812237

ABSTRACT

This study aims to investigate the effect and mechanism of Stellera chamaejasme extract(SCL) on multidrug resistance(MDR) in breast cancer. Human triple-negative breast cancer cell line MDA-MB-231 and its adriamycin-resistant cell line MDA-MB-231/ADR were used in the experiment. Cell viability was detected by methyl thiazolyl tetrazolium(MTT) assay, and cell apoptosis was detected by DAPI staining and Annexin-V/Pi double staining. Western blot(WB) was used to detect the expression levels of Keap1, Nrf2, HO-1, Bcl-2, Bax, caspase-9, and caspase-3. Immunofluorescence staining was used to observe the distribution of Nrf2 in the cell, and flow cytometry was used to detect the level of reactive oxygen species(ROS) in the cell. The results showed that the resis-tance factor of SCL was 0.69, and that of adriamycin and paclitaxel was 8.40 and 16.36, respectively. DAPI staining showed that SCL could cause nuclear shrinkage and fragmentation of breast cancer cells. Annexin-V/Pi double staining showed that the average apoptosis rate of the drug-resistant cells was 32.64% and 50.29%, respectively under medium and high doses of SCL. WB results showed that SCL could significantly reduce the expression levels of anti-apoptotic proteins Bcl-2, caspase-9, and caspase-3 and significantly increase the expression level of pro-apoptotic protein Bax. Further studies showed that SCL could significantly promote the expression of Keap1, significantly inhibit the expression of Nrf2 and HO-1, and significantly reduce the expression level of Nrf2 in the nucleus. Correspondingly, flow cytometry showed that the intracellular ROS level was significantly increased. In conclusion, SCL can significantly inhibit the proliferation of MDA-MB-231 multidrug-resistant cells of triple-negative breast cancer and cause cell apoptosis, and the mechanism is related to inhibiting Keap1/Nrf2 signaling pathway, leading to ROS accumulation in drug-resistant cells and increasing the expression of apoptosis-related proteins.


Subject(s)
Apoptosis , Drug Resistance, Neoplasm , NF-E2-Related Factor 2 , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Apoptosis/drug effects , Female , Drug Resistance, Multiple/drug effects , Thymelaeaceae/chemistry , Drugs, Chinese Herbal/pharmacology , Reactive Oxygen Species/metabolism , Doxorubicin/pharmacology , Cell Survival/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Cell Proliferation/drug effects , MDA-MB-231 Cells
10.
Eur J Med Chem ; 270: 116363, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38593587

ABSTRACT

Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemistry , Drug Resistance, Multiple , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy
11.
Open Vet J ; 14(1): 553-563, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633170

ABSTRACT

Background: Bacterial infections causing digestive problems are among the most serious threats to Egypt's duck industry, owing to their effects on feed utilization and body weight gain. Aim: As a result, the goal of this study was to identify bacterial pathogens causing enteritis in ducks as well as testing their antimicrobials resistance capabilities. Methods: Forty-two duck flocks from different localities at four Egyptian Governorates (El-Sharkia, El-Gharbia, El-Dakahlia, and El-Qaliobia) have been subjected to clinical and postmortem examination as well as bacterial isolation and identification. The liver samples have been collected aseptically from freshly euthanized ducks for bacterial isolation followed by identification using conventional biochemical tests, VITEK 2 system, and confirmatory polymerase chain reaction (PCR) for detection of the uid A gene (beta-glucuronidase enzyme) of Escherichia coli. In addition, antimicrobial sensitivity testing for the isolates against different antimicrobials by the VITEK 2 system was used. Results: Forty-six positive bacterial isolates were identified using conventional methods and the VITEK 2 system including Staphylococcus spp. (52.17%), E. coli (41.30%), and 2.17% for each of Enterococcus casseli lavus, Salmonella enterica subspecies arizonae, and Enterobacter cloacae. PCR was positive for E. coli uid A gene at 556 bp. The antibiogram patterns of isolated pathogens from naturally infected ducks in our work demonstrated 87% multidrug resistance with varying results against different antimicrobial drugs tested. Such findings supported the fact of the upgrading multidrug resistance of Staphylococci and Enterobacteriacae. Conclusion: The most prevalent bacterial pathogens associated with duck enteritis were Staphylococcus spp. and E. coli with the first report of S. enterica subspecies arizonae causing duck enteritis in Egypt.


Subject(s)
Salmonella enterica , Animals , Salmonella arizonae , Ducks , Egypt , Escherichia coli , Anti-Bacterial Agents/pharmacology , Staphylococcus , Drug Resistance, Multiple
12.
Molecules ; 29(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38611964

ABSTRACT

Two new phenylspirodrimanes, stachybotrins K and L (1 and 2), together with eight known analogues (3-10), were isolated from deep-sea-derived Stachybotrys sp. MCCC 3A00409. Their structures were determined by extensive NMR data and mass spectroscopic analysis. Absolute configurations of new compounds were determined through a comparison of their circular dichroism (CD) spectra with other reported compounds. The possible reversal effects of all compounds were assayed in the resistant cancer cell lines. Stachybotrysin B (8) can reverse multidrug resistance (MDR) in ABCB1-overexpression cells (KBv200, Hela/VCR) at the non-cytotoxic concentration. Doxorubicin accumulation assay and molecular-docking analysis reveal that the mechanism of its reversal MDR effect may be related to the increase in the intracellular concentration of substrate anticancer drugs.


Subject(s)
Stachybotrys , Humans , Biological Assay , Circular Dichroism , HeLa Cells , Drug Resistance, Multiple
13.
Proc Natl Acad Sci U S A ; 121(15): e2321116121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557176

ABSTRACT

Multidrug resistance (MDR) is a major factor in the failure of many forms of tumor chemotherapy. Development of a specific ligand for MDR-reversal would enhance the intracellular accumulation of therapeutic agents and effectively improve the tumor treatments. Here, an aptamer was screened against a doxorubicin (DOX)-resistant human hepatocellular carcinoma cell line (HepG2/DOX) via cell-based systematic evolution of ligands by exponential enrichment. A 50 nt truncated sequence termed d3 was obtained with high affinity and specificity for HepG2/DOX cells. Multidrug resistance protein 1 (MDR1) is determined to be a possible recognition target of the selected aptamer. Aptamer d3 binding was revealed to block the MDR of the tumor cells and increase the accumulation of intracellular anticancer drugs, including DOX, vincristine, and paclitaxel, which led to a boost to the cell killing of the anticancer drugs and lowering their survival of the tumor cells. The aptamer d3-mediated MDR-reversal for effective chemotherapy was further verified in an in vivo animal model, and combination of aptamer d3 with DOX significantly improved the suppression of tumor growth by treating a xenograft HepG2/DOX tumor in vivo. This work demonstrates the feasibility of a therapeutic DNA aptamer as a tumor MDR-reversal agent, and combination of the selected aptamer with chemotherapeutic drugs shows great potential for liver cancer treatments.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Animals , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Multiple , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Therapy, Combination , Cell Line, Tumor
14.
Sci Rep ; 14(1): 9259, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649719

ABSTRACT

Chemotherapy resistance poses clinical challenges in pancreatic cancer treatment. Developing cell lines resistant to chemotherapy is crucial for investigating drug resistance mechanisms and identifying alternative treatment pathways. The genetic and biological attributes of pancreatic cancer depend on its aetiology, racial demographics and anatomical origin, underscoring the need for models that comprehensively represent these characteristics. Here, we introduce PDAC-X2, a pancreatic cancer cell line derived from Chinese patients. We conducted a comprehensive analysis encompassing the immune phenotype, biology, genetics, molecular characteristics and tumorigenicity of the cell line. PDAC-X2 cells displayed epithelial morphology and expressed cell markers (CK7 and CK19) alongside other markers (E-cadherin, Vimentin, Ki-67, CEA and CA19-9). The population doubling time averaged around 69 h. In vivo, PDAC-X2 cells consistently maintained their tumorigenicity, achieving a 100% tumour formation rate. Characterised by a predominantly tetraploid karyotype, this cell line exhibited a complex genetic markup. Notably, PDAC-X2 cells demonstrated resistance to multiple drugs, including gemcitabine, paclitaxel, 5-fluorouracil and oxaliplatin. In conclusion, PDAC-X2 presents an invaluable preclinical model. Its utility lies in facilitating the study of drug resistance mechanisms and the exploration of alternative therapeutic approaches aimed at enhancing the prognosis of this tumour type.


Subject(s)
Carcinoma, Pancreatic Ductal , Drug Resistance, Neoplasm , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Animals , Mice , Drug Resistance, Multiple/genetics , Xenograft Model Antitumor Assays , Male , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gemcitabine , Asian People , East Asian People
15.
Nanoscale ; 16(17): 8434-8446, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38592819

ABSTRACT

Combination therapy has proven effective in counteracting tumor multidrug resistance (MDR). However, the pharmacokinetic differences among various drugs and inherent water insolubility for most small molecule agents greatly hinder their synergistic effects, which makes the delivery of drugs for combination therapy in vivo a key problem. Herein, we propose a protonated strategy to transform a water-insoluble small molecule drug-inhibitor conjugate into an amphiphilic one, which then self-assembles into nanoparticles for co-delivery in vivo to overcome tumor MDR. Specifically, paclitaxel (PTX) is first coupled with a third-generation P-glycoprotein (P-gp) inhibitor zosuquidar (Zos) through a glutathione (GSH)-responsive disulfide bond to produce a hydrophobic drug-inhibitor conjugate (PTX-ss-Zos). Subsequently treated with hydrochloric acid ethanol solution (HCl/EtOH), PTX-ss-Zos is transformed into the amphiphilic protonated precursor and then forms nanoparticles (PTX-ss-Zos@HCl NPs) in water by molecular self-assembly. PTX-ss-Zos@HCl NPs can be administered intravenously and accumulated specifically at tumor sites. Once internalized by cancer cells, PTX-ss-Zos@HCl NPs can be degraded under the overexpressed GSH to release PTX and Zos simultaneously, which synergistically reverse tumor MDR and inhibit tumor growth. This offers a promising strategy to develop small molecule self-assembled nanoagents to reverse tumor MDR in combination therapy.


Subject(s)
Drug Resistance, Multiple , Drug Resistance, Neoplasm , Hydrophobic and Hydrophilic Interactions , Nanoparticles , Paclitaxel , Humans , Paclitaxel/chemistry , Paclitaxel/pharmacology , Drug Resistance, Neoplasm/drug effects , Animals , Drug Resistance, Multiple/drug effects , Mice , Nanoparticles/chemistry , Cell Line, Tumor , Mice, Nude , Protons , Mice, Inbred BALB C , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Female , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism
16.
Sci Rep ; 14(1): 7176, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38531847

ABSTRACT

Overuse of antibiotics during coronavirus disease 2019 (COVID-19) in an attempt to reduce COVID-19 mortality in the short term may have contributed to long-term mortality from antimicrobial resistance (AMR). The aim of this study was to evaluate the impact of the COVID-19 pandemic on AMR in Egypt and map the distribution of multidrug-resistant (MDR) and extensive drug-resistant (XDR) across Egypt. Through a multicenter cross-sectional study 2430 culture results were collected in 2019 and 2022 pre and post-COVID-19 pandemic in Egypt, including 400 Klebsiella pneumoniae, 760 Escherichia coli, 650 Acinetobacter baumannii, and 620 Methicillin-resistant staphylococcus aureus (MRSA) culture results. MDR and XDR culture results distribution across Egypt was highlighted through the geographic information system. Mixed effect logistic regression models and sub-group analysis were performed according to the type of specimens to test the impact of COVID-19 on resistance. Adjusted analysis demonstrated K. pneumoniae resistance has increased against quinolones and carbapenems (P < 0.001). Resistance of E. coli has increased significantly against imipenem and meropenem. While E.coli susceptibility has increased to cefoxitin, levofloxacin, and ciprofloxacin. A. baumannii resistance has increased more than double against ceftazidime, cefepime, and piperacillin-tazobactam (P < 0.001). MRSA reserved its susceptibility to vancomycin and linezolid. MDR K. pneumoniae and A. baumannii have increased post-COVID-19 from 67% to 94% and from 79% to 98%, respectively (P < 0.001). XDR K. pneumoniae and A. baumannii have increased from 6% to 46%, and from 47% to 69%, respectively (P < 0.001). COVID-19 has changed the profile of AMR in Egypt so that urgent action is required to mitigate this threat and preserve our capacity to face infections in future decades.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Cross-Sectional Studies , Egypt , Escherichia coli , Pandemics , Drug Resistance, Bacterial , Drug Resistance, Multiple , Microbial Sensitivity Tests
17.
Integr Biol (Camb) ; 162024 Jan 23.
Article in English | MEDLINE | ID: mdl-38537223

ABSTRACT

Efflux transporters are a fundamental component of both prokaryotic and eukaryotic cells, play a crucial role in maintaining cellular homeostasis, and represent a key bridge between single cell and population levels. From a biomedical perspective, they play a crucial role in drug resistance (and especially multi-drug resistance, MDR) in a range of systems spanning bacteria and human cancer cells. Typically, multiple efflux transporters are present in these cells, and the efflux transporters transport a range of substrates (with partially overlapping substrates between transporters). Furthermore, in the context of drug resistance, the levels of transporters may be elevated either due to extra or intracellular factors (feedforward regulation) or due to the drug itself (feedback regulation). As a consequence, there is a real need for a transparent systems-level understanding of the collective functioning of a set of transporters and their response to one or more drugs. We develop a systems framework for this purpose and examine the functioning of sets of transporters, their interplay with one or more drugs and their regulation (both feedforward and feedback). Using computational and analytical work, we obtain transparent insights into the systems level functioning of a set of transporters arising from the interplay between the multiplicity of drugs and transporters, different drug-transporter interaction parameters, sequestration and feedback and feedforward regulation. These insights transparently arising from the most basic consideration of a multiplicity of transporters have broad relevance in natural biology, biomedical engineering and synthetic biology. Insight, Innovation, Integration: Innovation: creating a structured systems framework for evaluating the impact of multiple transporters on drug efflux and drug resistance. Systematic analysis allows us to evaluate the effect of multiple transporters on one/more drugs, and dissect associated resistance mechanisms. Integration allows for elucidation of key cause-and-effect relationships and a transparent systems-level understanding of the collective functioning of transporters and their impact on resistance, revealing the interplay of key underlying factors. Systems-level insights include the essentially different behaviour of transporters as part of a group; unintuitive effects of influx; effects of elevated transporter-levels by feedforward and drug-induced mechanisms. Relevance: a systems understanding of efflux, their role in MDR, providing a framework/platform for use in designing treatment, and in synthetic biology design.


Subject(s)
ATP-Binding Cassette Transporters , Neoplasms , Humans , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/pharmacology , ATP-Binding Cassette Transporters/therapeutic use , Drug Resistance, Multiple , Biological Transport , Neoplasms/drug therapy , Homeostasis
18.
Eur J Pharm Biopharm ; 198: 114267, 2024 May.
Article in English | MEDLINE | ID: mdl-38514020

ABSTRACT

Due to the high prevalence of cancer, progress in the management of cancer is the need of the hour. Most cancer patients develop chemotherapeutic drug resistance, and many remain insidious due to overexpression of Multidrug Resistance Protein 1 (MDR1), also known as Permeability-glycoprotein (P-gp) or ABCB1 transporter (ATP-binding cassette subfamily B member 1). P-gp, a transmembrane protein that protects vital organs from outside chemicals, expels medications from malignant cells. The blood-brain barrier (BBB), gastrointestinal tract (GIT), kidneys, liver, pancreas, and cancer cells overexpress P-gp on their apical surfaces, making treatment inefficient and resistant. Compounds that compete with anticancer medicines for transportation or directly inhibit P-gp may overcome biological barriers. Developing nanotechnology-based formulations may help overcome P-gp-mediated efflux and improve bioavailability and cell chemotherapeutic agent accumulation. Nanocarriers transport pharmaceuticals via receptor-mediated endocytosis, unlike passive diffusion, which bypasses ABCB1. Anticancer drugs and P-gp inhibitors in nanocarriers may synergistically increase drug accumulation and chemotherapeutic agent toxicity. The projection of desirable binding and effect may be procured initially by molecular docking of the inhibitor with P-gp, enabling the reduction of preliminary trials in formulation development. Here, P-gp-mediated efflux and several possible outcomes to overcome the problems associated with currently prevalent cancer treatments are highlighted.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Drug Resistance, Multiple , Molecular Docking Simulation , Drug Resistance, Neoplasm , Antineoplastic Agents/chemistry , ATP Binding Cassette Transporter, Subfamily B/metabolism , Pharmaceutical Preparations , Neoplasms/drug therapy
19.
Eur J Med Chem ; 269: 116294, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38508119

ABSTRACT

Lamellarins are polyaromatic alkaloids isolated from marine organisms, including mollusks, tunicates, and sponges. Currently, over 60 structurally distinct natural lamellarins have been reported, and most of them exhibit promising biological activities, such as topoisomerase inhibition, mitochondrial function inhibition, multidrug resistance reversing, and anti-HIV activity. There has also been a significant progress on the synthetic study of lamellarins which has been regularly updated by numerous medicinal chemists as well. This review provides a detailed summary of the synthesis, pharmacology, and structural modification of lamellarins over the past decades.


Subject(s)
Alkaloids , Biological Products , Urochordata , Animals , Structure-Activity Relationship , Drug Resistance, Multiple , Mitochondria , Urochordata/chemistry , Alkaloids/chemistry
20.
Sci Rep ; 14(1): 7589, 2024 03 31.
Article in English | MEDLINE | ID: mdl-38555345

ABSTRACT

P-glycoprotein (P-gp) imparts multi-drug resistance (MDR) on the cancers cell and malignant tumor clinical therapeutics. We report a class of newly designed and synthesized oxygen-heterocyclic-based pyran analogues (4a-l) bearing different aryl/hetaryl-substituted at the 1-postion were synthesized, aiming to impede the P-gp function. These compounds (4a-l) have been tested against cancerous PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines as well as non-cancerous HFL-1 and WI-38 cell lines to determine their anti-proliferative potency.The findings demonstrated the superior potency of 4a-c with 4-F, 2-Cl, and 3-Cl derivatives and 4h,g with 4-NO2, 4-MeO derivatives against PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines.Compounds 4a-c were tested for P-gp inhibition and demonstrated significant vigour against MCF-7/ADR cells with IC50 = 5.0-10.7 µM. The Rho123 accumulation assay showed that compounds 4a-c adequately inhibited P-gp function, as predicted. Furthermore, 4a or 4b administration resulted in MCF-7/ADR cell accumulation in the S phase, while compound 4c induced apoptosis by causing cell cycle arrest at G2/M. The molecular docking was applied to understand the likely modes of action and guide us in the rational design of more potent analogs. The investigate derivatives showed their good binding potential for p-gp active site with excellent docking scores and interactions. Finally, the majority of investigated derivatives 4a-c derivatives showed high oral bioavailability, but they did not cross the blood-brain barrier. These results suggest that they have favorable pharmacokinetic properties. Therefore, these compounds could serve as leads for designing more potent and stable drugs in the future.


Subject(s)
Antineoplastic Agents , Oxygen , Humans , MCF-7 Cells , Oxygen/metabolism , Molecular Docking Simulation , Drug Resistance, Neoplasm , Drug Resistance, Multiple , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Doxorubicin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...