Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.746
Filter
1.
AIDS Res Ther ; 21(1): 37, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844950

ABSTRACT

INTRODUCTION: Despite the widespread use of pre-exposure prophylaxis (PrEP) in preventing human immunodeficiency virus (HIV) transmission, scant information on HIV drug resistance mutations (DRMs) has been gathered over the past decade. This review aimed to estimate the pooled prevalence of pre-exposure prophylaxis and its two-way impact on DRM. METHODS: We systematically reviewed studies on DRM in pre-exposure prophylaxis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis 2020 guidelines. PubMed, Cochrane, and SAGE databases were searched for English-language primary studies published between January 2001 and December 2023. The initial search was conducted on 9 August 2021 and was updated through 31 December 2023 to ensure the inclusion of the most recent findings. The registration number for this protocol review was CRD42022356061. RESULTS: A total of 26,367 participants and 562 seroconversion cases across 12 studies were included in this review. The pooled prevalence estimate for all mutations was 6.47% (95% Confidence Interval-CI 3.65-9.93), while Tenofovir Disoproxil Fumarate/Emtricitabine-associated drug resistance mutation prevalence was 1.52% (95% CI 0.23-3.60) in the pre-exposure prophylaxis arm after enrolment. A subgroup analysis, based on the study population, showed the prevalence in the heterosexual and men who have sex with men (MSM) groups was 5.53% (95% CI 2.55-9.40) and 7.47% (95% CI 3.80-12.11), respectively. Notably, there was no significant difference in the incidence of DRM between the pre-exposure prophylaxis and placebo groups (log-OR = 0.99, 95% CI -0.20 to 2.18, I2 = 0%; p = 0.10). DISCUSSION: Given the constrained prevalence of DRM, the World Health Organization (WHO) advocates the extensive adoption of pre-exposure prophylaxis. Our study demonstrated no increased risk of DRM with pre-exposure prophylaxis (p > 0.05), which is consistent with these settings. These findings align with the previous meta-analysis, which reported a 3.14-fold higher risk in the pre-exposure prophylaxis group than the placebo group, although the observed difference did not reach statistical significance (p = 0.21). CONCLUSIONS: Despite the low prevalence of DRM, pre-exposure prophylaxis did not significantly increase the risk of DRM compared to placebo. However, long-term observation is required to determine further disadvantages of extensive pre-exposure prophylaxis use. PROSPERO Number: CRD42022356061.


Subject(s)
Anti-HIV Agents , Drug Resistance, Viral , HIV Infections , HIV-1 , Mutation , Pre-Exposure Prophylaxis , Humans , HIV Infections/prevention & control , HIV Infections/virology , HIV Infections/drug therapy , Drug Resistance, Viral/genetics , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/administration & dosage , HIV-1/drug effects , HIV-1/genetics , Male , Administration, Oral , Female , Tenofovir/therapeutic use , Tenofovir/administration & dosage , Prevalence
2.
Sci Rep ; 14(1): 10620, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724547

ABSTRACT

Although most people living with HIV (PLWH) receiving antiretroviral therapy (ART) achieve continuous viral suppression, some show detectable HIV RNA as low-level viremia (LLV) (50-999 copies/mL). Drug resistance mutations (DRMs) in PLWH with LLV is of particular concern as which may lead to treatment failure. In this study, we investigated the prevalence of LLV and LLV-associated DRMs in PLWH in Zhengzhou City, China. Of 3616 ART-experienced PLWH in a long-term follow-up cohort from Jan 2022 to Aug 2023, 120 were identified as having LLV. Of these PLWH with LLV, we obtained partial pol and integrase sequences from 104 (70 from HIV-1 RNA and 34 from proviral DNA) individuals. DRMs were identified in 44 individuals. Subtyping analysis indicated that the top three subtypes were B (48.08%, 50/104), CRF07_BC (31.73%, 33/104), and CRF01_AE (15.38%, 16/104). The proportions of nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), and integrase strand transfer inhibitors (INSTIs) associated DRMs were 23.83% (24/104), 35.58% (37/104), 5.77% (6/104), and 3.85% (4/104), respectively, which contributed to an overall prevalence of 42.31% (44/104). When analyzed by individual DRMs, the most common mutation(s) were V184 (18.27%, 19/104), followed by V179 (11.54%, 12/104), K103 (9.62%, 10/104), Y181 (9.62%, 10/104), M41 (7.69%, 8/104), and K65R (7.69%, 8/104). The prevalence of DRMs in ART-experienced PLWH with LLV is high in Zhengzhou City and continuous surveillance can facilitate early intervention and provision of effective treatment.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , Mutation , Viremia , Humans , HIV-1/genetics , HIV-1/drug effects , HIV Infections/drug therapy , HIV Infections/virology , HIV Infections/epidemiology , China/epidemiology , Drug Resistance, Viral/genetics , Male , Female , Viremia/drug therapy , Viremia/epidemiology , Adult , Middle Aged , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology , RNA, Viral/genetics
3.
Biol Pharm Bull ; 47(5): 967-977, 2024.
Article in English | MEDLINE | ID: mdl-38763751

ABSTRACT

Ensitrelvir is a noncovalent inhibitor of the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2. Acquisition of drug resistance in virus-derived proteins is a serious therapeutic concern, and drug resistance occurs due to amino acid mutations. In this study, we computationally constructed 24 mutants, in which one residue around the active site was replaced with alanine and performed molecular dynamics simulations to the complex of Mpro and ensitrelvir to predict the residues involved in drug resistance. We evaluated the changes in the entire protein structure and ligand configuration in each of these mutants and estimated which residues were involved in ensitrelvir recognition. This method is called a virtual alanine scan. In nine mutants (S1A, T26A, H41A, M49A, L141A, H163A, E166A, V186A, and R188A), although the entire protein structure and catalytic dyad (cysteine (Cys)145 and histidine (His)41) were not significantly moved, the ensitrelvir configuration changed. Thus, it is considered that these mutants did not recognize ensitrelvir while maintaining Mpro enzymatic activities, and Ser1, Thr26, His41, Met49, Leu141, His163, Glu166, Val186, and Arg188 may be related to ensitrelvir resistance. The ligand shift noted in M49A was similar to that observed in M49I, which has been shown to be experimentally ensitrelvir resistant. These findings suggest that our research approach can predict mutations that incite drug resistance.


Subject(s)
Alanine , Catalytic Domain , Coronavirus 3C Proteases , Drug Resistance, Viral , Molecular Dynamics Simulation , SARS-CoV-2 , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , SARS-CoV-2/drug effects , Alanine/genetics , Drug Resistance, Viral/genetics , Humans , Mutation , COVID-19 Drug Treatment , Protease Inhibitors/pharmacology , Indazoles , Triazines , Triazoles
4.
Sci Rep ; 14(1): 10742, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730249

ABSTRACT

The selection pressure imposed by the host immune system impacts on hepatitis B virus (HBV) variability. This study evaluates HBV genetic diversity, nucleos(t)ide analogs resistance and HBsAg escape mutations in HBV patients under distinct selective pressures. One hundred and thirteen individuals in different phases of HBV infection were included: 13 HBeAg-positive chronic infection, 9 HBeAg-positive chronic hepatitis, 47 HBeAg-negative chronic infection (ENI), 29 HBeAg-negative chronic hepatitis (ENH) and 15 acute infected individuals. Samples were PCR amplified, sequenced and genetically analyzed for the overlapping POL/S genes. Most HBV carriers presented genotype A (84/113; 74.3%), subgenotype A1 (67/84; 79.7%), irrespective of group, followed by genotypes D (20/113; 17.7%), F (8/113; 7.1%) and E (1/113; 0.9%). Clinically relevant mutations in polymerase (tL180M/M204V) and in the Major Hydrophilic Region of HBsAg (sY100C, T118A/M, sM133T, sD144A and sG145R) were observed. Our findings, however, indicated that most polymorphic sites were located in the cytosolic loops (CYL1-2) and transmembrane domain 4 (TMD4) of HBsAg. Lower viral loads and higher HBV genetic diversity were observed in ENI and ENH groups (p < 0.001), suggesting that these groups are subjected to a higher selective pressure. Our results provide information on the molecular characteristics of HBV in a diverse clinical setting, and may guide future studies on the balance of HBV quasispecies at different stages of infection.


Subject(s)
Genetic Variation , Genotype , Hepatitis B Surface Antigens , Hepatitis B virus , Hepatitis B, Chronic , Humans , Hepatitis B virus/genetics , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/genetics , Brazil/epidemiology , Male , Adult , Female , Middle Aged , Hepatitis B Surface Antigens/genetics , Mutation , Drug Resistance, Viral/genetics , DNA, Viral/genetics , Young Adult , Phylogeny , Hepatitis B e Antigens/genetics
6.
Sci Rep ; 14(1): 12099, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802662

ABSTRACT

HIV-1 drug resistance genotypic tests have primarily been performed by Sanger sequencing of gene segments encoding different drug target proteins. Since the number of targets has increased with the addition of a new class of antiretroviral drugs, a simple high-throughput system for assessing nucleotide sequences throughout the HIV-1 genome is required. Here, we developed a new solution using nanopore sequencing of viral pangenomes amplified by PCR. Benchmark tests using HIV-1 molecular clones demonstrated an accuracy of up to 99.9%. In addition, validation tests of our protocol in 106 clinical samples demonstrated high concordance of drug resistance and tropism genotypes (92.5% and 98.1%, respectively) between the nanopore sequencing-based results and archived clinical determinations made based on Sanger sequencing data. These results suggest that our new approach will be a powerful solution for the comprehensive survey of HIV-1 drug resistance mutations in clinical settings.


Subject(s)
Drug Resistance, Viral , Genome, Viral , HIV Infections , HIV-1 , Mutation , Nanopore Sequencing , HIV-1/genetics , HIV-1/drug effects , Drug Resistance, Viral/genetics , Nanopore Sequencing/methods , Humans , HIV Infections/virology , HIV Infections/drug therapy , Genotype , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , High-Throughput Nucleotide Sequencing/methods
7.
Viruses ; 16(5)2024 04 28.
Article in English | MEDLINE | ID: mdl-38793578

ABSTRACT

The Vietnam Ministry of Health (MOH) has intensified efforts in its aim to eliminate AIDS by 2030. Expanding the program for prevention of mother-to-child transmission (PMTCT) is a significant step towards achieving this goal. However, there are still HIV-exposed children who do not have access to PMTCT services, and some who have participated in the program but still contracted HIV. This study focused on assessing the prevalence and profile of HIV mutations among children under 18 months of age who had recently tested positive for HIV, while gaining insights into the implementation of early infant diagnostic (EID) tests. Between 2017 and 2021, 3.43% of 5854 collected dry blood spot (DBS) specimens from Vietnam's Central and Southern regions showed positive EID results. This study identified a high prevalence of resistance mutations in children, totaling 62.9% (95% CI: 53.5-72.3). The highest prevalence of mutations was observed for NNRTIs, with 57.1% (95% CI: 47.5-66.8). Common mutations included Y181C and K103N (NNRTI resistance), M184I/V (NRTI resistance), and no major mutations for PI. The percentage of children with any resistance mutation was significantly higher among those who received PMTCT interventions (69.2%; 95% CI: 50.5-92.6%) compared with those without PMTCT (45.0%; 95% CI: 26.7-71.1%) with χ2 = 6.06, p = 0.0138, and OR = 2.75 (95% CI: 1.13-6.74). Mutation profiles revealed that polymorphic mutations could be present regardless of whether PMTCT interventions were implemented or not. However, non-polymorphic drug resistance mutations were predominantly observed in children who received PMTCT measures. Regarding PMTCT program characteristics, this study highlights the issue of late access to HIV testing for both mothers and their infected children. Statistical differences were observed between PMTCT and non-PMTCT children. The proportion of late detection of HIV infection and breastfeeding rates were significantly higher among non-PMTCT children (p < 0.05). Comparative analysis between children with low viral load (≤200 copies/mL) and high viral load (>200 copies/mL) showed significant differences between the mothers' current ART regimens (p = 0.029) and the ARV prophylaxis regimen for children (p = 0.016). These findings emphasize the need for comprehensive surveillance to assess the effectiveness of the PMTCT program, including potential transmission of HIV drug-resistance mutations from mothers to children in Vietnam.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , Infectious Disease Transmission, Vertical , Mutation , Humans , HIV Infections/transmission , HIV Infections/epidemiology , HIV Infections/virology , HIV Infections/prevention & control , Infectious Disease Transmission, Vertical/prevention & control , Vietnam/epidemiology , Drug Resistance, Viral/genetics , HIV-1/genetics , HIV-1/drug effects , Female , Infant , Male , Anti-HIV Agents/therapeutic use , Prevalence , Infant, Newborn , Pregnancy
8.
Viruses ; 16(5)2024 04 30.
Article in English | MEDLINE | ID: mdl-38793600

ABSTRACT

Although the coronavirus disease 2019 (COVID-19) pandemic is coming to an end, it still poses a threat to the immunocompromised and others with underlying diseases. Especially in cases of persistent COVID-19, new mutations conferring resistance to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) therapies have considerable clinical implications. We present a patient who independently acquired a T21I mutation in the 3CL protease after nirmatrelvir exposure. The T21I mutation in the 3CL protease is one of the most frequent mutations responsible for nirmatrelvir resistance. However, limited reports exist on actual cases of SARS-CoV-2 with T21I and other mutations in the 3CL protease. The patient, a 55 year-old male, had COVID-19 during chemotherapy for multiple myeloma. He was treated with nirmatrelvir early in the course of the disease but relapsed, and SARS-CoV-2 with a T21I mutation in the 3CL protease was detected in nasopharyngeal swab fluid. The patient had temporary respiratory failure but later recovered well. During treatment with remdesivir and dexamethasone, viruses with the T21I mutation in the 3CL protease showed a decreasing trend during disease progression while increasing during improvement. The impact of drug-resistant SARS-CoV-2 on the clinical course, including its severity, remains unknown. Our study is important for examining the clinical impact of nirmatrelvir resistance in COVID-19.


Subject(s)
Antiviral Agents , COVID-19 , Drug Resistance, Viral , Immunocompromised Host , SARS-CoV-2 , Humans , Middle Aged , Male , SARS-CoV-2/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Drug Resistance, Viral/genetics , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Mutation , Multiple Myeloma/drug therapy , Coronavirus 3C Proteases/genetics , COVID-19 Drug Treatment , Alanine/analogs & derivatives , Alanine/therapeutic use
9.
Bioinformatics ; 40(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38775719

ABSTRACT

MOTIVATION: In predicting HIV therapy outcomes, a critical clinical question is whether using historical information can enhance predictive capabilities compared with current or latest available data analysis. This study analyses whether historical knowledge, which includes viral mutations detected in all genotypic tests before therapy, their temporal occurrence, and concomitant viral load measurements, can bring improvements. We introduce a method to weigh mutations, considering the previously enumerated factors and the reference mutation-drug Stanford resistance tables. We compare a model encompassing history (H) with one not using this information (NH). RESULTS: The H-model demonstrates superior discriminative ability, with a higher ROC-AUC score (76.34%) than the NH-model (74.98%). Wilcoxon test results confirm significant improvement of predictive accuracy for treatment outcomes through incorporating historical information. The increased performance of the H-model might be attributed to its consideration of latent HIV reservoirs, probably obtained when leveraging historical information. The findings emphasize the importance of temporal dynamics in acquiring mutations. However, our result also shows that prediction accuracy remains relatively high even when no historical information is available. AVAILABILITY AND IMPLEMENTATION: This analysis was conducted using the Euresist Integrated DataBase (EIDB). For further validation, we encourage reproducing this study with the latest release of the EIDB, which can be accessed upon request through the Euresist Network.


Subject(s)
HIV Infections , HIV-1 , Mutation , HIV-1/genetics , Humans , HIV Infections/drug therapy , HIV Infections/virology , Drug Resistance, Viral/genetics , Viral Load , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology , Treatment Outcome
10.
Expert Opin Pharmacother ; 25(6): 685-694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38717943

ABSTRACT

INTRODUCTION: Cytomegalovirus (CMV) remains a serious opportunistic infection in hematopoietic cell transplant (HCT) and solid-organ transplant (SOT) recipients. Traditional anti-CMV drugs are limited by toxicities and the development of resistance. Letermovir and maribavir are newly approved antivirals for the prevention and treatment of CMV. AREAS COVERED: Prior reviews have discussed use of letermovir for prevention of CMV after HCT and maribavir for resistant or refractory (R/R) CMV post HCT or SOT. Subsequent data have expanded their use including letermovir for primary CMV prophylaxis in high-risk renal transplant recipients and new recommendations for extending prophylaxis through day + 200 in certain HCT patients. Data on the use of maribavir for first asymptomatic CMV infection post-HCT has also been published. This review compares the pharmacology of anti-CMV agents and discusses the updated literature of these new drugs in the prevention and treatment of CMV. EXPERT OPINION: Letermovir and maribavir are much needed tools that spare toxicities of ganciclovir, foscarnet, and cidofovir. High cost is a challenge preventing their integration into clinical practice in resource-limited countries. Transplant centers need to exercise restraint in overuse to avoid resistance, particularly in the setting of high viral loads.


Subject(s)
Acetates , Antiviral Agents , Cytomegalovirus Infections , Drug Resistance, Viral , Hematopoietic Stem Cell Transplantation , Organ Transplantation , Quinazolines , Ribonucleosides , Humans , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/prevention & control , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Hematopoietic Stem Cell Transplantation/adverse effects , Organ Transplantation/adverse effects , Quinazolines/therapeutic use , Quinazolines/pharmacology , Ribonucleosides/therapeutic use , Ribonucleosides/pharmacology , Acetates/therapeutic use , Acetates/adverse effects , Acetates/pharmacology , Benzimidazoles/therapeutic use , Benzimidazoles/adverse effects , Opportunistic Infections/prevention & control , Opportunistic Infections/drug therapy , Opportunistic Infections/virology , Viral Load/drug effects , Dichlororibofuranosylbenzimidazole/analogs & derivatives
11.
PLoS One ; 19(4): e0300456, 2024.
Article in English | MEDLINE | ID: mdl-38626183

ABSTRACT

INTRODUCTION: Pretreatment drug resistance (PDR) could occur in antiretroviral treatment (ART) naïve individuals, those previously exposed to ART, or individuals re-initiating ARV after a long period of interruption. Few studies have shown its association with virological outcomes, although inconsistent. The objective of this review was to provide a synthesis of the association between PDR and virological outcomes (virological failure or suppression). METHODS: This report is presented following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The method was subdivided into three main phases: record identification, screening, and report inclusion. Record identification consisted of an initial search with search term "HIV pretreatment drug resistance". Another search was done using terms "Pretreatment drug resistance OR pre-treatment drug resistance OR Pretreatment drug resist* OR pre-treatment drug resist* OR pretreatment antiretroviral resistance OR pretreatment medic* OR pretreatment medic* resist*" and a list of all the countries in sub-Saharan Africa. After the electronic search, studies were screened from full list based on their title and abstract and then full articles retrieved and studies were assessed based on set criteria. Inclusion criteria involved observational studies that report the association between PDR and virological failure. Data from trials that reported the association were also included. Published articles like modelling studies and reviews, and studies with data that had been previously included in the review were excluded. The Mantel Haenszel method with odds ratios was used for synthesis (meta-analyses) with the weights of each study which depends on the number of events and totals. RESULTS: A total of 733 records(studies) were obtained from all database search of which 74 reported on PDR, virological outcomes in sub-Saharan Africa (SSA). Out of the 74 articles, 11 were excluded and 26 did not explicitly report data needed, and 5 did not meet the inclusion criteria. Of the remaining 32 studies, 19 studies that had complete data on the number of participants with PDR and no PDR according to virological failure (VF) were included in the metanalyses. The pooled results from eleven (13) of these studies showed those with PDR had higher odds of virological failure compared to those without PDR OR 3.64[95% CI 2.93, 4.52]. The result was similar when stratified in adults and in children. In six (6) studies that had Virological suppression (VS) as outcome, there was a reduction in the odds of VS in those with PDR compared to those without PDR, OR 0.42 (95% CI 0.30, 0.58). CONCLUSION: In conclusion, this systematic review indicates that PDR increases the risk of virological failure in sub-Saharan Africa. The risk could be reduced by PDR monitoring for NNRTIs and INSTIs.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Adult , Child , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , Anti-Retroviral Agents/therapeutic use , Africa South of the Sahara/epidemiology , Drug Resistance, Viral , Viral Load
12.
Proc Natl Acad Sci U S A ; 121(15): e2316662121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557187

ABSTRACT

Drug resistance in HIV type 1 (HIV-1) is a pervasive problem that affects the lives of millions of people worldwide. Although records of drug-resistant mutations (DRMs) have been extensively tabulated within public repositories, our understanding of the evolutionary kinetics of DRMs and how they evolve together remains limited. Epistasis, the interaction between a DRM and other residues in HIV-1 protein sequences, is key to the temporal evolution of drug resistance. We use a Potts sequence-covariation statistical-energy model of HIV-1 protein fitness under drug selection pressure, which captures epistatic interactions between all positions, combined with kinetic Monte-Carlo simulations of sequence evolutionary trajectories, to explore the acquisition of DRMs as they arise in an ensemble of drug-naive patient protein sequences. We follow the time course of 52 DRMs in the enzymes protease, RT, and integrase, the primary targets of antiretroviral therapy. The rates at which DRMs emerge are highly correlated with their observed acquisition rates reported in the literature when drug pressure is applied. This result highlights the central role of epistasis in determining the kinetics governing DRM emergence. Whereas rapidly acquired DRMs begin to accumulate as soon as drug pressure is applied, slowly acquired DRMs are contingent on accessory mutations that appear only after prolonged drug pressure. We provide a foundation for using computational methods to determine the temporal evolution of drug resistance using Potts statistical potentials, which can be used to gain mechanistic insights into drug resistance pathways in HIV-1 and other infectious agents.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Drug Resistance, Viral/genetics , Genotype , HIV Infections/drug therapy , HIV Infections/genetics , Mutation , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use
13.
PLoS Pathog ; 20(4): e1011680, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635853

ABSTRACT

To mitigate the loss of lives during the COVID-19 pandemic, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with variants susceptible to mAb therapy. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response antiviral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection.


Subject(s)
Antibodies, Monoclonal , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Drug Resistance, Viral/immunology , Viral Load/drug effects , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use
14.
Viruses ; 16(4)2024 03 31.
Article in English | MEDLINE | ID: mdl-38675889

ABSTRACT

Remdesivir (RDV) is a broad-spectrum nucleotide analog prodrug approved for the treatment of COVID-19 in hospitalized and non-hospitalized patients with clinical benefit demonstrated in multiple Phase 3 trials. Here we present SARS-CoV-2 resistance analyses from the Phase 3 SIMPLE clinical studies evaluating RDV in hospitalized participants with severe or moderate COVID-19 disease. The severe and moderate studies enrolled participants with radiologic evidence of pneumonia and a room-air oxygen saturation of ≤94% or >94%, respectively. Virology sample collection was optional in the study protocols. Sequencing and related viral load data were obtained retrospectively from participants at a subset of study sites with local sequencing capabilities (10 of 183 sites) at timepoints with detectable viral load. Among participants with both baseline and post-baseline sequencing data treated with RDV, emergent Nsp12 substitutions were observed in 4 of 19 (21%) participants in the severe study and none of the 2 participants in the moderate study. The following 5 substitutions emerged: T76I, A526V, A554V, E665K, and C697F. The substitutions T76I, A526V, A554V, and C697F had an EC50 fold change of ≤1.5 relative to the wildtype reference using a SARS-CoV-2 subgenomic replicon system, indicating no significant change in the susceptibility to RDV. The phenotyping of E665K could not be determined due to a lack of replication. These data reveal no evidence of relevant resistance emergence and further confirm the established efficacy profile of RDV with a high resistance barrier in COVID-19 patients.


Subject(s)
Adenosine Monophosphate , Adenosine Monophosphate/analogs & derivatives , Alanine , Alanine/analogs & derivatives , Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Drug Resistance, Viral , SARS-CoV-2 , Viral Load , Humans , Alanine/therapeutic use , Alanine/pharmacology , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Viral Load/drug effects , COVID-19/virology , Male , Female , Retrospective Studies , Middle Aged , Severity of Illness Index
15.
Viruses ; 16(4)2024 04 11.
Article in English | MEDLINE | ID: mdl-38675933

ABSTRACT

(1) Background: We aimed to determine the prevalence of hepatitis B virus (HBV) resistance-associated mutations (RAMs) in people with HBV and human immunodeficiency virus (HBV/HIV) in Botswana. (2) Methods: We sequenced HBV deoxyribonucleic acid (DNA) from participants with HBV/HIV from the Botswana Combination Prevention Project study (2013-2018) using the Oxford Nanopore GridION platform. Consensus sequences were analyzed for genotypic and mutational profiles. (3) Results: Overall, 98 HBV sequences had evaluable reverse transcriptase region coverage. The median participant age was 43 years (IQR: 37, 49) and 66/98 (67.4%) were female. Most participants, i.e., 86/98 (87.8%) had suppressed HIV viral load (VL). HBV RAMs were identified in 61/98 (62.2%) participants. Most RAMs were in positions 204 (60.3%), 180 (50.5%), and 173 (33.3%), mostly associated with lamivudine resistance. The triple mutations rtM204V/L180M/V173L were the most predominant (17/61 [27.9%]). Most participants (96.7%) with RAMs were on antiretroviral therapy for a median duration of 7.5 years (IQR: 4.8, 10.5). Approximately 27.9% (17/61) of participants with RAMs had undetectable HBV VL, 50.8% (31/61) had VL < 2000 IU/mL, and 13/61 (21.3%) had VL ≥ 2000 IU/mL. (4) Conclusions: The high prevalence of lamivudine RAMs discourages the use of ART regimens with 3TC as the only HBV-active drug in people with HIV/HBV.


Subject(s)
Coinfection , Drug Resistance, Viral , HIV Infections , Hepatitis B virus , Hepatitis B , Lamivudine , Mutation , Humans , Hepatitis B virus/genetics , Hepatitis B virus/drug effects , HIV Infections/virology , HIV Infections/drug therapy , HIV Infections/epidemiology , Female , Drug Resistance, Viral/genetics , Male , Botswana/epidemiology , Lamivudine/therapeutic use , Lamivudine/pharmacology , Adult , Middle Aged , Prevalence , Coinfection/virology , Coinfection/epidemiology , Coinfection/drug therapy , Hepatitis B/virology , Hepatitis B/epidemiology , Hepatitis B/drug therapy , Rural Population , Viral Load , Genotype , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
16.
Viruses ; 16(4)2024 04 17.
Article in English | MEDLINE | ID: mdl-38675962

ABSTRACT

BACKGROUND: The global scale-up of antiretroviral treatment (ART) offers significant health benefits by suppressing HIV-1 replication and increasing CD4 cell counts. However, incomplete viral suppression poses a potential threat for the emergence of drug resistance mutations (DRMs), limiting ART options, and increasing HIV transmission. OBJECTIVE: We investigated the patterns of transmitted drug resistance (TDR) and acquired drug resistance (ADR) among HIV-1 patients in Portugal. METHODS: Data were obtained from 1050 HIV-1 patient samples submitted for HIV drug resistance (HIVDR) testing from January 2022 to June 2023. Evaluation of DRM affecting viral susceptibility to nucleoside/tide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), and integrase strand transfer inhibitors (INSTIs) was performed using an NGS technology, the Vela Diagnostics Sentosa SQ HIV-1 Genotyping Assay. RESULTS: About 71% of patients were ART naïve and 29% were experienced. Overall, 20% presented with any DRM. The prevalence of TDR and ADR was 12.6% and 41.1%, respectively. M184V, T215S, and M41L mutations for NRTI, K103N for NNRTI, and M46I/L for PIs were frequent in naïve and treated patients. E138K and R263K mutations against INSTIs were more frequent in naïve than treated patients. TDR and ADR to INSTIs were 0.3% and 7%, respectively. Patients aged 50 or over (OR: 1.81, p = 0.015), originating from Portuguese-speaking African countries (PALOPs) (OR: 1.55, p = 0.050), HIV-1 subtype G (OR: 1.78, p = 0.010), and with CD4 < 200 cells/mm3 (OR: 1.70, p = 0.043) were more likely to present with DRMs, while the males (OR: 0.63, p = 0.003) with a viral load between 4.1 to 5.0 Log10 (OR: 0.55, p = 0.003) or greater than 5.0 Log10 (OR: 0.52, p < 0.001), had lower chances of presenting with DRMs. CONCLUSIONS: We present the first evidence on TDR and ADR to INSTI regimens in followed up patients presenting for healthcare in Portugal. We observed low levels of TDR to INSTIs among ART-naïve and moderate levels in ART-exposed patients. Regimens containing PIs could be an alternative second line in patients with intermediate or high-level drug resistance, especially against second-generation INSTIs (dolutegravir, bictegravir, and cabotegravir).


Subject(s)
Anti-HIV Agents , Drug Resistance, Viral , HIV Infections , HIV-1 , High-Throughput Nucleotide Sequencing , Mutation , Humans , HIV-1/genetics , HIV-1/drug effects , Portugal/epidemiology , HIV Infections/virology , HIV Infections/drug therapy , HIV Infections/epidemiology , Drug Resistance, Viral/genetics , Male , Female , Middle Aged , Adult , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Genotype , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Young Adult , Aged
18.
Nat Commun ; 15(1): 3644, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684655

ABSTRACT

Despite expanded antiretroviral therapy (ART) in South Africa, HIV-1 transmission persists. Integrase strand transfer inhibitors (INSTI) and long-acting injectables offer potential for superior viral suppression, but pre-existing drug resistance could threaten their effectiveness. In a community-based study in rural KwaZulu-Natal, prior to widespread INSTI usage, we enroled 18,025 individuals to characterise HIV-1 drug resistance and transmission networks to inform public health strategies. HIV testing and reflex viral load quantification were performed, with deep sequencing (20% variant threshold) used to detect resistance mutations. Phylogenetic and geospatial analyses characterised transmission clusters. One-third of participants were HIV-positive, with 21.7% having detectable viral loads; 62.1% of those with detectable viral loads were ART-naïve. Resistance to older reverse transcriptase (RT)-targeting drugs was found, but INSTI resistance remained low (<1%). Non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance, particularly to rilpivirine (RPV) even in ART-naïve individuals, was concerning. Twenty percent of sequenced individuals belonged to transmission clusters, with geographic analysis highlighting higher clustering in peripheral and rural areas. Our findings suggest promise for INSTI-based strategies in this setting but underscore the need for RPV resistance screening before implementing long-acting cabotegravir (CAB) + RPV. The significant clustering emphasises the importance of geographically targeted interventions to effectively curb HIV-1 transmission.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , Phylogeny , Rural Population , Viral Load , Humans , HIV Infections/transmission , HIV Infections/drug therapy , HIV Infections/virology , HIV Infections/epidemiology , Drug Resistance, Viral/genetics , South Africa/epidemiology , HIV-1/genetics , HIV-1/drug effects , Female , Male , Adult , Middle Aged , Viral Load/drug effects , Young Adult , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Adolescent , Mutation , Reverse Transcriptase Inhibitors/therapeutic use , Reverse Transcriptase Inhibitors/pharmacology , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use
19.
J Med Virol ; 96(4): e29609, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38647051

ABSTRACT

This study evaluated the cost-effectiveness of maribavir versus investigator-assigned therapy (IAT; valganciclovir/ganciclovir, foscarnet, or cidofovir) for post-transplant refractory cytomegalovirus (CMV) infection with or without resistance. A two-stage Markov model was designed using data from the SOLSTICE trial (NCT02931539), real-world multinational observational studies, and published literature. Stage 1 (0-78 weeks) comprised clinically significant CMV (csCMV), non-clinically significant CMV (n-csCMV), and dead states; stage 2 (78 weeks-lifetime) comprised alive and dead states. Total costs (2022 USD) and quality-adjusted life years (QALYs) were estimated for the maribavir and IAT cohorts. An incremental cost-effectiveness ratio was calculated to determine cost-effectiveness against a willingness-to-pay threshold of $100 000/QALY. Compared with IAT, maribavir had lower costs ($139 751 vs $147 949) and greater QALYs (6.04 vs 5.83), making it cost-saving and more cost-effective. Maribavir had higher acquisition costs compared with IAT ($80 531 vs $65 285), but lower costs associated with administration/monitoring ($16 493 vs $27 563), adverse events (AEs) ($11 055 vs $16 114), hospitalization ($27 157 vs $33 905), and graft loss ($4516 vs $5081), thus making treatment with maribavir cost-saving. Maribavir-treated patients spent more time without CMV compared with IAT-treated patients (0.85 years vs 0.68 years), leading to lower retreatment costs for maribavir (cost savings: -$42 970.80). Compared with IAT, maribavir was more cost-effective for transplant recipients with refractory CMV, owing to better clinical efficacy and avoidance of high costs associated with administration, monitoring, AEs, and hospitalizations. These results can inform healthcare decision-makers on the most effective use of their resources for post-transplant refractory CMV treatment.


Subject(s)
Antiviral Agents , Benzimidazoles , Cost-Benefit Analysis , Cytomegalovirus Infections , Dichlororibofuranosylbenzimidazole/analogs & derivatives , Quality-Adjusted Life Years , Ribonucleosides , Humans , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/economics , Antiviral Agents/therapeutic use , Antiviral Agents/economics , Ribonucleosides/therapeutic use , Ribonucleosides/economics , Benzimidazoles/therapeutic use , Benzimidazoles/economics , United States , Cytomegalovirus/drug effects , Cytomegalovirus/genetics , Drug Resistance, Viral , Male , Female , Middle Aged , Adult , Genotype , Transplant Recipients
20.
Nat Commun ; 15(1): 3604, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684722

ABSTRACT

Numerous SARS-CoV-2 variant strains with altered characteristics have emerged since the onset of the COVID-19 pandemic. Remdesivir (RDV), a ribonucleotide analogue inhibitor of viral RNA polymerase, has become a valuable therapeutic agent. However, immunosuppressed hosts may respond inadequately to RDV and develop chronic persistent infections. A patient with respiratory failure caused by interstitial pneumonia, who had undergone transplantation of the left lung, developed COVID-19 caused by Omicron BA.5 strain with persistent chronic viral shedding, showing viral fusogenicity. Genome-wide sequencing analyses revealed the occurrence of several viral mutations after RDV treatment, followed by dynamic changes in the viral populations. The C799F mutation in nsp12 was found to play a pivotal role in conferring RDV resistance, preventing RDV-triphosphate from entering the active site of RNA-dependent RNA polymerase. The occurrence of diverse mutations is a characteristic of SARS-CoV-2, which mutates frequently. Herein, we describe the clinical case of an immunosuppressed host in whom inadequate treatment resulted in highly diverse SARS-CoV-2 mutations that threatened the patient's health due to the development of drug-resistant variants.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine , Alanine/analogs & derivatives , COVID-19 , Coronavirus RNA-Dependent RNA Polymerase , Lung Transplantation , Mutation , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/virology , Alanine/therapeutic use , Male , Antiviral Agents/therapeutic use , Immunocompromised Host , Adenosine Monophosphate/therapeutic use , Drug Resistance, Viral/genetics , Middle Aged , COVID-19 Drug Treatment , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...