Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.577
Filter
1.
Sci Rep ; 14(1): 12780, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834599

ABSTRACT

Danshen, a prominent herb in traditional Chinese medicine (TCM), is known for its potential to enhance physiological functions such as blood circulation, immune response, and resolve blood stasis. Despite the effectiveness of COVID-19 vaccination efforts, some individuals still face severe complications post-infection, including pulmonary fibrosis, myocarditis arrhythmias and stroke. This study employs a network pharmacology and molecular docking approach to investigate the potential mechanisms underlying the therapeutic effects of candidate components and targets from Danshen in the treatment of complications in COVID-19. Candidate components and targets from Danshen were extracted from the TCMSP Database, while COVID-19-related targets were obtained from Genecards. Venn diagram analysis identified common targets. A Protein-Protein interaction (PPI) network and gene enrichment analysis elucidated potential therapeutic mechanisms. Molecular docking evaluated interactions between core targets and candidate components, followed by molecular dynamics simulations to assess stability. We identified 59 potential candidate components and 123 targets in Danshen for COVID-19 treatment. PPI analysis revealed 12 core targets, and gene enrichment analysis highlighted modulated pathways. Molecular docking showed favorable interactions, with molecular dynamics simulations indicating high stability of key complexes. Receiver operating characteristic (ROC) curves validated the docking protocol. Our study unveils candidate compounds, core targets, and molecular mechanisms of Danshen in COVID-19 treatment. These findings provide a scientific foundation for further research and potential development of therapeutic drugs.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , SARS-CoV-2 , Salvia miltiorrhiza , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Salvia miltiorrhiza/chemistry , Humans , Protein Interaction Maps/drug effects , SARS-CoV-2/drug effects , Molecular Dynamics Simulation , COVID-19/virology , Medicine, Chinese Traditional
2.
Rapid Commun Mass Spectrom ; 38(16): e9833, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38837482

ABSTRACT

RATIONALE: This study developed a method for the rapid classification and identification of the chemical composition of Qingyan dropping pills (QDP) to provide the theoretical basis and data foundation for further in-depth research on the pharmacological substance basis of the formula and the selection of quality control indexes. METHODS: Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and data postprocessing technology were used to analyze the chemical composition of QDP. The fragmentation information on possible characteristic fragments and related neutral losses was summarized based on the literature and was compared with the MS data obtained from the assay, and thus a rapid classification and identification of chemical components in QDP could be achieved. RESULTS: A total of 73 compounds were identified, namely 24 flavonoids, 14 terpenoids, 30 organic acids and their esters, 3 alkaloids, and 2 phenylpropanoids. CONCLUSIONS: In this study, UHPLC-Q-TOF-MS and data postprocessing technology were used to realize the rapid classification and identification of the chemical constituents of QDP, which provided a comprehensive, efficient, and fast qualitative analysis method, a basis for further quality control and safe medication of QDP.


Subject(s)
Drugs, Chinese Herbal , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Mass Spectrometry/methods , Flavonoids/analysis , Flavonoids/chemistry , Alkaloids/analysis , Alkaloids/chemistry , Terpenes/analysis , Terpenes/chemistry
3.
Rapid Commun Mass Spectrom ; 38(16): e9831, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38837506

ABSTRACT

RATIONALE: Childhood precocious puberty (CPP) is a common pediatric endocrine disorder with significant associated risks. Zhibai Dihuang pill (ZBDHP), a classic recipe of the Qing dynasty with its efficacy of nourishing yin and clearing heat, can downregulate the expression of ESR1 in the uterus and ovaries, thereby inhibiting CPP. However, as of now, the main active ingredients and pharmacological mechanisms of ZBDHP remain unclear. METHODS: A comprehensive approach was proposed using ultra-high-performance liquid chromatography coupled with quadrupole-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS) and network pharmacology to explore the potentially active constituents of ZBDHP and reveal the underlying mechanisms against CPP. Molecular docking was used to verify the possible mechanisms. RESULTS: A total of 214 constituents derived were identified via UHPLC-Q-Exactive Orbitrap-MS, and 12 of them were definitely characterized using reference standards. Subsequently, compounds tetrahydropalmatine, alisol C, 25-anhydroalisol A 11-acetate, hispidone, cavidine, alisol E, melianone, neogitogenin, denudatin B, and 16ß-hydroperoxyalisol B with related targets PIK3CA, HSD11B1, CYP19A1, AR, PTGS2, CDK2, NR3C1, MMP2, MMP1, and MAPK1 were regarded as key components and targets for ZBDHP treating CPP using the compound-target-pathway network. Besides, the results revealed that the pathways conduced obviously to therapeutic efficacy, including pathways in cancer, neuroactive ligand-receptor interaction, and cyclic adenosine monophosphate(cAMP) signaling pathways. Molecular docking indicated that PIK3CA, HSD11B1, and CYP19A1 exhibited high affinities to corresponding compounds. Overall, the study determined the multicomponent, multitarget, and multipathway mechanisms of ZBDHP against CPP. CONCLUSIONS: This study provided a new method for exploring the chemical constituents and pharmacology mechanism of traditional Chinese medicine.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Puberty, Precocious , Puberty, Precocious/drug therapy , Puberty, Precocious/metabolism , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Humans , Female , Mass Spectrometry/methods , Child
4.
Drug Des Devel Ther ; 18: 1875-1890, 2024.
Article in English | MEDLINE | ID: mdl-38831869

ABSTRACT

Background: In China, Shen'ge formula (SGF), a Traditional Chinese Medicine blend crafted from ginseng and gecko, holds a revered place in the treatment of cardiovascular diseases. However, despite its prevalent use, the precise cardioprotective mechanisms of SGF remain largely uncharted. This study aims to fill this gap by delving deeper into SGF's therapeutic potential and underlying action mechanism, thus giving its traditional use a solid scientific grounding. Methods: In this study, rats were subjected to abdominal aortic constriction (AAC) to generate pressure overload. Following AAC, we administered SGF and bisoprolol intragastrically at specified doses for two distinct durations: 8 and 24 weeks. The cardiac function post-treatment was thoroughly analyzed using echocardiography and histological examinations, offering insights into SGF's influence on vital cardiovascular metrics, and signaling pathways central to cardiac health. Results: SGF exhibited promising results, significantly enhanced cardiac functions over both 8 and 24-week periods, evidenced by improved ejection fraction and fractional shortening while moderating left ventricular parameters. Noteworthy was SGF's role in the significant mitigation of myocardial hypertrophy and in fostering the expression of vital proteins essential for heart health by the 24-week mark. This intervention markedly altered the dynamics of the Akt/HIF-1α/p53 pathway, inhibiting detrimental processes while promoting protective mechanisms. Conclusion: Our research casts SGF in a promising light as a cardioprotective agent in heart failure conditions induced by pressure overload in rats. Central to this protective shield is the modulation of the Akt/HIF-1α/p53 pathway, pointing to a therapeutic trajectory that leverages HIF-1α promotion and p53 nuclear transport inhibition.


Subject(s)
Drugs, Chinese Herbal , Heart Failure , Rats, Sprague-Dawley , Animals , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Heart Failure/drug therapy , Male , Cardiotonic Agents/pharmacology , Cardiotonic Agents/administration & dosage , Drug Combinations , Disease Models, Animal , Medicine, Chinese Traditional
5.
J Sep Sci ; 47(9-10): e2300867, 2024 May.
Article in English | MEDLINE | ID: mdl-38726736

ABSTRACT

Shengxian decoction, a traditional Chinese medicinal prescription, has been shown to alleviate doxorubicin-induced chronic heart failure. This study established an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method to separate and characterize the complex chemical compositions of Shengxian decoction, and the absorbed compounds in the bio-samples of the cardiotoxicity rats with chronic heart failure after its oral delivery. Note that 116 chemical compounds were identified from Shengxian decoction in vitro, 81 more than previously detected. Based on the three-dimensional data of these compounds, 28 absorbed compounds were confirmed in vivo. Network pharmacology and molecular docking experiments indicated that timosaponin B-II, timosaponin A-III, gitogenin, and 7,8-didehydrocimigenol were recognized as the key effective compounds to exert effects against doxorubicin cardiotoxicity by acting on targets such as caspase 3, cyclin-dependent kinase 1, cyclin-dependent kinase 4, receptor tyrosine-protein kinase erbB-2, and mitogen-activated protein kinase 1 in p53 and phosphatidylinositol 3-kinase-Akt signaling pathways. This study developed the understanding of the composition of Shengxian decoction for the treatment of doxorubicin cardiotoxicity, as well as a feasible strategy to elucidate the effective constituents in traditional Chinese medicines.


Subject(s)
Doxorubicin , Drugs, Chinese Herbal , Network Pharmacology , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/analysis , Animals , Rats , Chromatography, High Pressure Liquid , Male , Mass Spectrometry , Cardiotoxicity , Molecular Docking Simulation , Drug Combinations
6.
PLoS One ; 19(5): e0303199, 2024.
Article in English | MEDLINE | ID: mdl-38723048

ABSTRACT

This paper presents an optimized preparation process for external ointment using the Definitive Screening Design (DSD) method. The ointment is a Traditional Chinese Medicine (TCM) formula developed by Professor WYH, a renowned TCM practitioner in Jiangsu Province, China, known for its proven clinical efficacy. In this study, a stepwise regression model was employed to analyze the relationship between key process factors (such as mixing speed and time) and rheological parameters. Machine learning techniques, including Monte Carlo simulation, decision tree analysis, and Gaussian process, were used for parameter optimization. Through rigorous experimentation and verification, we have successfully identified the optimal preparation process for WYH ointment. The optimized parameters included drug ratio of 24.5%, mixing time of 8 min, mixing speed of 1175 rpm, petroleum dosage of 79 g, liquid paraffin dosage of 6.7 g. The final ointment formulation was prepared using method B. This research not only contributes to the optimization of the WYH ointment preparation process but also provides valuable insights and practical guidance for designing the preparation processes of other TCM ointments. This advanced DSD method enhances the screening approach for identifying the best preparation process, thereby improving the scientific rigor and quality of TCM ointment preparation processes.


Subject(s)
Machine Learning , Ointments , Rheology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Medicine, Chinese Traditional , Drug Compounding/methods , Sodium Dodecyl Sulfate/chemistry , Monte Carlo Method
7.
Rapid Commun Mass Spectrom ; 38(13): e9762, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38693787

ABSTRACT

RATIONALE: Perillae Fructus (PF) is a common traditional Chinese medicine (TCM) for the treatment of asthma. It has not been effectively characterized by rosmarinic acid (RosA), which is currently designed as the sole quality indicator in the Chinese Pharmacopoeia. METHODS: This study introduced a database-aided ultrahigh-performance liquid chromatography equipped with quadrupole-Exactive-Orbitrap mass spectrometry (UHPLC/Q-Exactive-Orbitrap MS/MS) technology to putatively identify the compounds in PF, followed by literature research, quantum chemical calculation, and molecular docking to screen potential quality markers (Q-markers) of PF. RESULTS: A total of 27 compounds were putatively identified, 16 of which had not been previously found from PF. In particular, matrine, scopolamine, and RosA showed relatively high levels of content, stability, and drug-likeness. They exhibited interactions with the asthma-related target and demonstrated the TCM properties of PF. CONCLUSIONS: The database-aided UHPLC/Q-Exactive-Orbitrap MS/MS can identify at least 27 compounds in PF. Of these, 16 compounds are unexpected, and three compounds (matrine, scopolamine, and RosA) should be considered anticounterfeiting pharmacopoeia Q-markers of PF.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Molecular Docking Simulation , Pharmacopoeias as Topic , Fruit/chemistry , Scopolamine/analysis , Depsides/analysis , Depsides/chemistry
8.
Sci Rep ; 14(1): 10286, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704482

ABSTRACT

Jinlida granule (JLD) is a Traditional Chinese Medicine (TCM) formula used for the treatment of type 2 diabetes mellitus (T2DM). However, the mechanism of JLD treatment for T2DM is not fully revealed. In this study, we explored the mechanism of JLD against T2DM by an integrative pharmacology strategy. Active components and corresponding targets were retrieved from Traditional Chinese Medicine System Pharmacology (TCMSP), SwissADME and Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine Database (BATMAN-TCM) database. T2DM-related targets were obtained from Drugbank and Genecards databases. The protein-protein interaction (PPI) network was constructed and analyzed with STRING (Search Toll for the Retrieval of Interacting Genes/proteins) and Cytoscape to get the key targets. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed with the Database for Annotation, Visualization and Integrated Discovery (DAVID). Lastly, the binding capacities and reliability between potential active components and the targets were verified with molecular docking and molecular dynamics simulation. In total, 185 active components and 337 targets of JLD were obtained. 317 targets overlapped with T2DM-related targets. RAC-alpha serine/threonine-protein kinase (AKT1), tumor necrosis factor (TNF), interleukin-6 (IL-6), cellular tumor antigen p53 (TP53), prostaglandin G/H synthase 2 (PTGS2), Caspase-3 (CASP3) and signal transducer and activator of transcription 3 (STAT3) were identified as seven key targets by the topological analysis of the PPI network. GO and KEGG enrichment analyses showed that the effects were primarily associated with gene expression, signal transduction, apoptosis and inflammation. The pathways were mainly enriched in PI3K-AKT signaling pathway and AGE-RAGE signaling pathway in diabetic complications. Molecular docking and molecular dynamics simulation verified the good binding affinity between the key components and targets. The predicted results may provide a theoretical basis for drug screening of JLD and a new insight for the therapeutic effect of JLD on T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Molecular Docking Simulation , Protein Interaction Maps , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Protein Interaction Maps/drug effects , Signal Transduction/drug effects , Medicine, Chinese Traditional/methods , Molecular Dynamics Simulation , Computational Biology/methods , Gene Ontology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry
9.
Rapid Commun Mass Spectrom ; 38(14): e9766, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38747108

ABSTRACT

RATIONALE: Huahong tablet, a commonly used clinical Chinese patent medicine, shows good efficacy in treating pelvic inflammation and other gynaecological infectious diseases. However, the specific composition of Huahong tablets, which are complex herbal formulations, remains unclear. Therefore, this study aims to identify the active compounds and targets of Huahong tablets and investigate their mechanism of action in pelvic inflammatory diseases. METHODS: We utilised ultrahigh-performance liquid chromatography Q-Exactive-Orbitrap mass spectrometry and the relevant literature to identify the chemical components of Huahong tablets. The GNPS database was employed to further analyse and speculate on the components. Potential molecular targets of the active ingredients were predicted using the SwissTargetPrediction website. Protein-protein interaction analysis was conducted using the STRING database, with visualisation in Cytoscape 3.9.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. Additionally, a traditional Chinese medicine-ingredient-target-pathway network was constructed using Cytoscape 3.10.1. Molecular docking validation was carried out to investigate the interaction between core target and specific active ingredient. RESULTS: A total of 66 chemical components were identified, and 41 compounds were selected as potential active components based on the literature and the TCMSP database. Moreover, 38 core targets were identified as key targets in the treatment of pelvic inflammatory diseases with Huahong tablets. GO and KEGG enrichment analysis revealed 986 different biological functions and 167 signalling pathways. CONCLUSION: The active ingredients in Huahong tablets exert therapeutic effects on pelvic inflammatory diseases by acting on multiple targets and utilising different pathways. Molecular docking confirmed the high affinity between the specific active ingredients and disease targets.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Pelvic Inflammatory Disease , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Chromatography, High Pressure Liquid/methods , Pelvic Inflammatory Disease/drug therapy , Humans , Mass Spectrometry/methods , Female , Protein Interaction Maps/drug effects , Tablets/chemistry , Molecular Docking Simulation
10.
Pak J Pharm Sci ; 37(1(Special)): 205-213, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747271

ABSTRACT

In this study, a sensitive high-performance liquid chromatography detector was established and validated for the simultaneous determination of geniposide, ellagic acid, piperine, costunolide and dehydrocostuslactone in Liuwei Muxiang Capsules. The analysis was achieved on CHANIN 100-5-C18-H column (5µm, 250 mm×4.6 mm) with the temperature of 30oC. Gradient elution was applied using 0.1% phosphoric acid solution-methanol-acetonitrile (50:50) as mobile phase at the flow rate of 1.0 mL/min. The determination was performed at the wavelength of 225 nm (detecting geniposide), 254 nm (detecting ellagic acid), 343 nm (detecting piperine) and 225 nm (detecting costunolide and dehydrocostuslactone) along with the sample volume of 10µL. The linear ranges of geniposide, ellagic acid, piperine, costunolide and dehydrocostuslactone demonstrated good linear relationships within their respective determination ranges. The average recoveries were 100.04%, 99.86%, 99.79%, 100.17% and 100.41%, respectively. RSD% was 1.3%, 1.2%, 1.2%, 1.2%, 1.5%, respectively. The developed method was proved to be simple, accurate and sensitive, which can provide a quantitative analysis method for the content determination of geniposide, ellagic acid, piperine, costunolide and dehydrocostuslactone in Liuwei Muxiang capsules.


Subject(s)
Alkaloids , Benzodioxoles , Capsules , Drugs, Chinese Herbal , Ellagic Acid , Iridoids , Lactones , Piperidines , Polyunsaturated Alkamides , Chromatography, High Pressure Liquid/methods , Benzodioxoles/analysis , Polyunsaturated Alkamides/analysis , Piperidines/analysis , Piperidines/chemistry , Alkaloids/analysis , Lactones/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Iridoids/analysis , Ellagic Acid/analysis , Reproducibility of Results , Sesquiterpenes/analysis
11.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731553

ABSTRACT

One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.


Subject(s)
Charcoal , Drugs, Chinese Herbal , Norfloxacin , Water Pollutants, Chemical , Norfloxacin/chemistry , Charcoal/chemistry , Adsorption , Drugs, Chinese Herbal/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Kinetics , Thermodynamics , Water Purification/methods , Hydrogen-Ion Concentration
12.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731650

ABSTRACT

The present study investigates the chemical composition variances among Pinelliae Rhizoma, a widely used Chinese herbal medicine, and its common adulterants including Typhonium flagelliforme, Arisaema erubescens, and Pinellia pedatisecta. Utilizing the non-targeted metabolomics technique of employing UHPLC-Q-Orbitrap HRMS, this research aims to comprehensively delineate the metabolic profiles of Pinelliae Rhizoma and its adulterants. Multivariate statistical methods including PCA and OPLS-DA are employed for the identification of differential metabolites. Volcano plot analysis is utilized to discern upregulated and downregulated compounds. KEGG pathway analysis is conducted to elucidate the differences in metabolic pathways associated with these compounds, and significant pathway enrichment analysis is performed. A total of 769 compounds are identified through metabolomics analysis, with alkaloids being predominant, followed by lipids and lipid molecules. Significant differential metabolites were screened out based on VIP > 1 and p-value < 0.05 criteria, followed by KEGG enrichment analysis of these differential metabolites. Differential metabolites between Pinelliae Rhizoma and Typhonium flagelliforme, as well as between Pinelliae Rhizoma and Pinellia pedatisecta, are significantly enriched in the biosynthesis of amino acids and protein digestion and absorption pathways. Differential metabolites between Pinelliae Rhizoma and Arisaema erubescens are mainly enriched in tyrosine metabolism and phenylalanine metabolism pathways. These findings aim to provide valuable data support and theoretical references for further research on the pharmacological substances, resource development and utilization, and quality control of Pinelliae Rhizoma.


Subject(s)
Metabolomics , Pinellia , Rhizome , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Pinellia/metabolism , Pinellia/chemistry , Rhizome/metabolism , Rhizome/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Mass Spectrometry/methods , Drug Contamination , Metabolome , Metabolic Networks and Pathways
13.
J Cell Mol Med ; 28(9): e18319, 2024 May.
Article in English | MEDLINE | ID: mdl-38742846

ABSTRACT

Knee osteoarthritis (KOA), a major health and economic problem facing older adults worldwide, is a degenerative joint disease. Glycyrrhiza uralensis Fisch. (GC) plays an integral role in many classic Chinese medicine prescriptions for treating knee osteoarthritis. Still, the role of GC in treating KOA is unclear. To explore the pharmacological mechanism of GC against KOA, UPLC-Q-TOF/MS was conducted to detect the main compounds in GC. The therapeutic effect of GC on DMM-induced osteoarthritic mice was assessed by histomorphology, µCT, behavioural tests, and immunohistochemical staining. Network pharmacology and molecular docking were used to predict the potential targets of GC against KOA. The predicted results were verified by immunohistochemical staining Animal experiments showed that GC had a protective effect on DMM-induced KOA, mainly in the improvement of movement disorders, subchondral bone sclerosis and cartilage damage. A variety of flavonoids and triterpenoids were detected in GC via UPLC-Q-TOF/MS, such as Naringenin. Seven core targets (JUN, MAPK3, MAPK1, AKT1, TP53, RELA and STAT3) and three main pathways (IL-17, NF-κB and TNF signalling pathways) were discovered through network pharmacology analysis that closely related to inflammatory response. Interestingly, molecular docking results showed that the active ingredient Naringenin had a good binding effect on anti-inflammatory-related proteins. In the verification experiment, after the intervention of GC, the expression levels of pp65 and F4/80 inflammatory indicators in the knee joint of KOA model mice were significantly downregulated. GC could improve the inflammatory environment in DMM-induced osteoarthritic mice thus alleviating the physiological structure and dysfunction of the knee joint. GC might play an important role in the treatment of knee osteoarthritis.


Subject(s)
Glycyrrhiza uralensis , Molecular Docking Simulation , Network Pharmacology , Osteoarthritis, Knee , Animals , Glycyrrhiza uralensis/chemistry , Mice , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Male , Disease Models, Animal , Signal Transduction/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice, Inbred C57BL
14.
Sci Rep ; 14(1): 11240, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755191

ABSTRACT

Nao-an Dropping Pill (NADP) is a Chinese patent medicine which commonly used in clinic for ischemic stroke (IS). However, the material basis and mechanism of its prevention or treatment of IS are unclear, then we carried out this study. 52 incoming blood components were resolved by UHPLC-MS/MS from rat serum, including 45 prototype components. The potential active prototype components hydroxysafflor yellow A, ginsenoside F1, quercetin, ferulic acid and caffeic acid screened by network pharmacology showed strongly binding ability with PIK3CA, AKT1, NOS3, NFE2L2 and HMOX1 by molecular docking. In vitro oxygen-glucose deprivation/reperfusion (OGD/R) experimental results showed that NADP protected HA1800 cells from OGD/R-induced apoptosis by affecting the release of LDH, production of NO, and content of SOD and MDA. Meanwhile, NADP could improve behavioral of middle cerebral artery occlusion/reperfusion (MCAO/R) rats, reduce ischemic area of cerebral cortex, decrease brain water and glutamate (Glu) content, and improve oxidative stress response. Immunohistochemical results showed that NADP significantly regulated the expression of PI3K, Akt, p-Akt, eNOS, p-eNOS, Nrf2 and HO-1 in cerebral ischemic tissues. The results suggested that NADP protects brain tissues and ameliorates oxidative stress damage to brain tissues from IS by regulating PI3K/Akt/eNOS and Nrf2/HO-1 signaling pathways.


Subject(s)
Ischemic Stroke , NF-E2-Related Factor 2 , Nitric Oxide Synthase Type III , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/prevention & control , Rats , Phosphatidylinositol 3-Kinases/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction/drug effects , Male , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Apoptosis/drug effects , Humans , Molecular Docking Simulation
15.
Medicine (Baltimore) ; 103(20): e38204, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758858

ABSTRACT

To explore the potential mechanism of Chai Gui Zexie Decoction for non-small cell lung cancer (NSCLC) treatment using network pharmacology, bioinformatics, and molecular docking. The active ingredients of Chai Gui Zexie Decoction and the associated predicted targets were screened using the TCMSP database. NSCLC-related targets were obtained from GeneCards and OMIM. Potential action targets, which are intersecting drug-predicted targets and disease targets, were obtained from Venny 2.1. The protein-protein interaction network was constructed by importing potential action targets into the STRING database, and the core action targets and core ingredients were obtained via topological analysis. The core action targets were entered into the Metascape database, and Gene Ontology annotation analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed. Differentially expressed genes were screened using the Gene Expression Omnibus, and the key targets were obtained by validating the core action targets. The key targets were input into The Tumor IMmune Estimation Resource for immune cell infiltration analysis. Finally, the molecular docking of key targets and core ingredients was performed. We obtained 60 active ingredients, 251 drug prediction targets, and 2133 NSCLC-related targets. Meanwhile, 147 potential action targets were obtained, and 47 core action targets and 40 core ingredients were obtained via topological analysis. We detected 175 pathways related to NSCLC pharmaceutical therapy. In total, 1249 Gene Ontology items were evaluated. Additionally, 3102 differential genes were screened, and tumor protein P53, Jun proto-oncogene, interleukin-6, and mitogen-activated protein kinase 3 were identified as the key targets. The expression of these key targets in NSCLC was correlated with macrophage, CD4+ T, CD8+ T, dendritic cell, and neutrophil infiltration. The molecular docking results revealed that the core ingredients have a potent affinity for the key targets. Chai Gui Zexie Decoction might exert its therapeutic effect on NSCLC through multiple ingredients, targets, and signaling pathways.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Computational Biology , Drugs, Chinese Herbal , Lung Neoplasms , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Computational Biology/methods , Proto-Oncogene Mas , Gene Ontology
16.
J Tradit Chin Med ; 44(3): 437-447, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767627

ABSTRACT

OBJECTIVE: To evaluate the analgesic effects of total flavonoids of Longxuejie (Resina Dracaenae Cochinchinensis) (TFDB) and explore the possible analgesic mechanism associated with transient receptor potential vanilloid 1 (TRPV1). METHODS: Whole-cell patch clamp technique was used to observe the effects of TFDB on capsaicin-induced TRPV1 currents. Rat experiments in vivo were used to observe the analgesic effects of TFDB. Western blot and immunofluorescence experiments were used to test the change of TRPV1 expression in DRG neurons induced by TFDB. RESULTS: Results showed that TFDB inhibited capsaicin-induced TRPV1 receptor currents in acutely isolated dorsal root ganglion (DRG) neurons of rats and the half inhibitory concentration was (16.7 ± 1.6) mg/L. TFDB (2-20 mg/kg) showed analgesic activity in the phase Ⅱ of formalin test and (0.02-2 mg per paw) reduced capsaicin-induced licking times of rats. TFDB (20 mg/kg) was fully efficacious on complete Freund's adjuvant (CFA)-induced inflammatory thermal hyperalgesia and capsaicin could weaken the analgesic effects. The level of TRPV1 expressions of DRG neurons was also decreased in TFDB-treated CFA-inflammatory pain rats. CONCLUSION: All these results indicated that the analgesic effect of TFDB may contribute to their modulations on both function and expression of TRPV1 channels in DRG neurons.


Subject(s)
Analgesics , Flavonoids , Ganglia, Spinal , Rats, Sprague-Dawley , TRPV Cation Channels , Animals , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Rats , Flavonoids/pharmacology , Analgesics/pharmacology , Analgesics/chemistry , Male , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/cytology , Humans , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Neurons/drug effects , Neurons/metabolism , Pain/drug therapy , Pain/metabolism
17.
J Tradit Chin Med ; 44(3): 496-504, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767633

ABSTRACT

OBJECTIVE: To investigate the effects of Hippeastrum hybridum (HH) as a free radical scavenger, and an inhibitor of the two enzymes i-e Alpha-amylase (α-amylase) and acetylcholinesterase (AChE). METHODS: In this study, HH plant was preliminary analyzed for phytochemical screening and then tested for its antioxidant, anti-α-amylase, and anti-AChE efficiency via standard procedures. RESULTS: Phytochemical analysis shows the existence of different compounds; while Coumarins and quinones were absent. The total phenolic, flavonoid, and tannins content were found to be (78.52 ± 0.69) mg GAE/g, (2.01 ± 0.04) mg RUE/g, and (58.12 ± 0.23) mg TAE/g of plant extract respectively. 28.02% ± 0.02% alkaloid and 2.02% ± 0.05% saponins were present in the HH extract. The HH extract showed the anti-oxidant property with IC50 (50% inhibition) of (151.01 ± 0.13) (HH), (79.01 ± 0.04) (Ascorbic acid) for ferric reducing, (91.48 ± 0.13) (HH), (48.02 ± 0.11) (Ascorbic acid) against Ammonium molybdenum, (156.02 ± 0.31) (HH), (52.38 ± 0.21) (Ascorbic acid) against DPPH, 136.01 ± 0.21 (HH), 52.02± 0.31 (Ascorbic acid) against H2O2, and 154.12 ± 0.03 (HH), (40.05 ± 0.15) (Ascorbic acid) µg/mL against ABTS respectively. Statistical analysis indicated that HH caused a competitive type of inhibition of α-amylase (Vmax remained constant and Km increases from 10.65 to 84.37%) while Glucophage caused the un-competitive type of inhibition i-e both Km and Vmax decreased from 40.49 to 69.15% and 38.86 to 69.61% respectively. The Ki, (inhibition constant); KI, (dissociation constant), Km, (Michaelis-Menten constant), and IC50 were found to be 62, 364, 68.1, and 38.08 ± 0.22 for HH and 12, 101.05, 195, 34.01 ± 0.21 for Glucophage. Similarly, HH causes an anon-competitive type of inhibition of AChE i-e Km remains constant while Vmax decreases from 60.5% to 74.1%. The calculated Ki, KI, Km, and IC50 were found to be 32, 36.2, 0.05, and 18.117 ± 0.018. CONCLUSION: From the current results, it is concluded that HH extract contains bioactive compounds, and could be a good alternative to controlling oxidants, Alzheimer's and Type-II diabetic diseases.


Subject(s)
Acetylcholinesterase , Antioxidants , Cholinesterase Inhibitors , Plant Extracts , alpha-Amylases , Antioxidants/chemistry , Antioxidants/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Humans , Phytochemicals/chemistry , Phytochemicals/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology
18.
J Tradit Chin Med ; 44(3): 505-514, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767634

ABSTRACT

OBJECTIVE: To evaluate the quality of Moyao (Myrrh) in the identification of the geographical origin and processing of the products. METHODS: Raw Moyao (Myrrh) and two kinds of Moyao (Myrrh) processed with vinegar from three countries were identified using near-infrared (NIR) spectroscopy combined with chemometric techniques. Principal component analysis (PCA) was used to reduce the dimensionality of the data and visualize the clustering of samples from different categories. A classical chemometric algorithm (PLS-DA) and two machine learning algorithms [K-nearest neighbor (KNN) and support vector machine] were used to conduct a classification analysis of the near-infrared spectra of the Moyao (Myrrh) samples, and their discriminative performance was evaluated. RESULTS: Based on the accuracy, precision, recall rate, and F1 value in each model, the results showed that the classical chemometric algorithm and the machine learning algorithm obtained positive results. In all of the chemometric analyses, the NIR spectrum of Moyao (Myrrh) preprocessed by standard normal variation or Multivariate scattering correction combined with KNN achieved the highest accuracy in identifying the geographical origins, and the accuracy of identifying the processing technology established by the KNN method after first-order derivative pretreatment was the best. The best accuracy of geographical origin discrimination and processing technology discrimination were 0.9853 and 0.9706 respectively. CONCLUSIONS: NIR spectroscopy combined with chemometric technology can be an important tool for tracking the origin and processing technology of Moyao (Myrrh) and can also provide a reference for evaluations of its quality and the clinical use.


Subject(s)
Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Principal Component Analysis , Chemometrics/methods , Drugs, Chinese Herbal/chemistry , Geography , Algorithms , China
19.
Comb Chem High Throughput Screen ; 27(5): 786-796, 2024.
Article in English | MEDLINE | ID: mdl-38773797

ABSTRACT

OBJECTIVE: Diabetic osteoporosis (DOP) belongs to the group of diabetes-induced secondary osteoporosis and is the main cause of bone fragility and fractures in many patients with diabetes. The aim of this study was to determine whether Ziyin Bushen Fang (ZYBSF) can improve DOP by inhibiting autophagy and oxidative stress. METHODS: Type 1 diabetes mellitus (T1DM) was induced in rats using a high-fat high-sugar diet combined with streptozotocin. Micro-CT scanning was used to quantitatively observe changes in the bone microstructure in each group. Changes in the serum metabolites of DOP rats were analyzed using UHPLC-QTOF-MS. The DOP mouse embryonic osteoblast precursor cell model (MC3T3-E1) was induced using high glucose levels. RESULTS: After ZYBSF treatment, bone microstructure significantly improved. The bone mineral density, trabecular number, and trabecular thickness in the ZYBSF-M and ZYBSF-H groups significantly increased. After ZYBSF treatment, the femur structure of the rats was relatively intact, collagen fibers were significantly increased, and osteoporosis was significantly improved. A total of 1239 metabolites were upregulated and 1527 were downregulated in the serum of T1DM and ZYBSF-treated rats. A total of 20 metabolic pathways were identified. In cellular experiments, ZYBSF reduced ROS levels and inhibited the protein expression of LC3II / I, Beclin-1, and p-ERK. CONCLUSION: ZYBSF may improve DOP by inhibiting the ROS/ERK-induced autophagy signaling pathway.


Subject(s)
Autophagy , Drugs, Chinese Herbal , Osteoporosis , Oxidative Stress , Animals , Autophagy/drug effects , Oxidative Stress/drug effects , Osteoporosis/drug therapy , Osteoporosis/metabolism , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Diabetes Mellitus, Experimental/drug therapy , Male , Rats, Sprague-Dawley , Streptozocin , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/complications , Bone Density/drug effects
20.
J Cell Mol Med ; 28(10): e18331, 2024 May.
Article in English | MEDLINE | ID: mdl-38780500

ABSTRACT

Heart failure is a leading cause of death in the elderly. Traditional Chinese medicine, a verified alternative therapeutic regimen, has been used to treat heart failure, which is less expensive and has fewer adverse effects. In this study, a total of 15 active ingredients of Astragalus membranaceus (Huangqi, HQ) were obtained; among them, Isorhamnetin, Quercetin, Calycosin, Formononetin, and Kaempferol were found to be linked to heart failure. Ang II significantly enlarged the cell size of cardiomyocytes, which could be partially reduced by Quercetin, Isorhamnetin, Calycosin, Kaempferol, or Formononetin. Ang II significantly up-regulated ANP, BNP, ß-MHC, and CTGF expressions, whereas Quercetin, Isorhamnetin, Calycosin, Kaempferol or Formononetin treatment partially downregulated ANP, BNP, ß-MHC and CTGF expressions. Five active ingredients of HQ attenuated inflammation in Ang II-induced cardiomyocytes by inhibiting the levels of TNF-α, IL-1ß, IL-18 and IL-6. Molecular docking shows Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol can bind with its target protein ESR1 in a good bond by intermolecular force. Quercetin, Calycosin, Kaempferol or Formononetin treatment promoted the expression levels of ESR1 and phosphorylated ESR1 in Ang II-stimulated cardiomyocytes; however, Isorhamnetin treatment had no effect on ESR1 and phosphorylated ESR1 expression levels. In conclusion, our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of HQ against heart failure. Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol might be the primary active ingredients of HQ, dominating its cardioprotective effects against heart failure through regulating ESR1 expression, which provided a basis for the clinical application of HQ to regulate cardiac hypertrophy and heart failure.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Heart Failure , Molecular Docking Simulation , Myocytes, Cardiac , Network Pharmacology , Astragalus propinquus/chemistry , Heart Failure/drug therapy , Heart Failure/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/analogs & derivatives , Angiotensin II/metabolism , Kaempferols/pharmacology , Kaempferols/chemistry , Rats , Humans , Isoflavones/pharmacology , Isoflavones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...