Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 716
Filter
1.
Anal Chem ; 96(24): 9975-9983, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38830231

ABSTRACT

The emergence of lipid droplets (LDs) has been recognized as cellular markers of ocular surface hyperosmosis, which is recognized as a fundamental mechanism driving dry eye disease (DED), while their dynamics during DED progression and therapy remains unlocked. For this purpose, an LD-specific fluorescent probe P1 is presented in this work that exhibits highly selective and sensitive emission enhancement in response to a decreased ambient polarity (Δf) from 0.209 to 0.021. The hydrophobic nature of P1 enables specific staining of LDs, facilitating visualization of changes in polarity within these cellular structures. Utilizing P1, we observe a decrease in polarity accompanied by an increase in the size and number of LDs in hyperosmotic human corneal epithelial cells (HCECs). Furthermore, interplays between LDs and cellular organelles such as mitochondria and the Golgi apparatus are visualized, suggesting the underlying pathogenesis in DED. Notably, the variations of LDs are observed after the inhibition of ferroptosis or activation of autophagy in hyperosmotic HCECs, implying the great potential of LDs as indicators for the design and efficacy evaluation of DED drugs regarding ferroptosis or autophagy as targets. Finally, LDs are confirmed to be overproduced in corneal tissues from DED mice, and the application of clinical eye drops effectively impedes these changes. This detailed exploration underscores the significant roles of LDs as an indicator for the deep insight into DED advancement and therapy.


Subject(s)
Dry Eye Syndromes , Fluorescent Dyes , Lipid Droplets , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/pathology , Lipid Droplets/metabolism , Lipid Droplets/chemistry , Humans , Animals , Mice , Fluorescent Dyes/chemistry , Autophagy , Fluorescence
2.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892258

ABSTRACT

Diabetic retinopathy (DR) remains the leading cause of blindness in the working-age population. Its progression causes gradual damage to corneal nerves, resulting in decreased corneal sensitivity (CS) and disruption of anterior-eye-surface homeostasis, which is clinically manifested by increased ocular discomfort and dry eye disease (DED). This study included 52 DR patients and 52 sex- and age-matched controls. Ocular Surface Disease Index (OSDI) survey, tear film-related parameters, CS, and in vivo corneal confocal microscopy (IVCM) of the subbasal plexus were performed. Furthermore, all patients underwent tear sampling for neurotrophin and cytokine analysis. OSDI scores were greater in DR patients than in controls (p = 0.00020). No differences in the Schirmer test score, noninvasive tear film-break-up time (NIBUT), tear meniscus or interferometry values, bulbar redness, severity of blepharitis or meibomian gland loss were found. In the DR group, both the CS (p < 0.001), and the scotopic pupil diameter (p = 0.00008) decreased. IVCM revealed reduced corneal nerve parameters in DR patients. The stage of DR was positively correlated with the OSDI (Rs = +0.51, 95% CI: + 0.35-+0.64, p < 0.001) and negatively correlated with IVCM corneal nerve parameters and scotopic pupillometry (Rs = -0.26, 95% CI: -0.44--0.06, p = 0.0097). We found negative correlations between the OSDI and IVCM corneal innervation parameters. The DR group showed lower tear film-brain-derived neurotrophic factor (BDNF) levels (p = 0.0001) and no differences in nerve growth factor (NGF)-ß, neurotrophin (NT)-4, vascular endothelial growth factor (VEGF), interleukin (IL)-1ß, IL-4, IL-5, IL-6, or IL-12 concentrations. Tumor necrosis factor (TNF)-α, IL-2, IL-8, IL-10, granulocyte macrophage colony-stimulating factor (GM-CSF), and interferon (IFN)-γ levels were decreased among patients with DR. Corneal innervation defects have a direct impact on patients' subjective feelings. The evolution of DR appears to be associated with corneal nerve alterations, emphasizing the importance of IVCM.


Subject(s)
Cornea , Diabetic Retinopathy , Dry Eye Syndromes , Tears , Humans , Male , Female , Cornea/innervation , Cornea/pathology , Cornea/metabolism , Middle Aged , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Tears/metabolism , Dry Eye Syndromes/etiology , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/pathology , Cytokines/metabolism , Severity of Illness Index , Adult , Case-Control Studies , Aged , Microscopy, Confocal
3.
Invest Ophthalmol Vis Sci ; 65(6): 1, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829671

ABSTRACT

Purpose: Loss of function of the lacrimal gland (LG), which produces the aqueous tear film, is implicated in age-related dry eye. To better understand this deterioration, we evaluated changes in lipid metabolism and inflammation in LGs from an aging model. Methods: LG sections from female C57BL/6J mice of different ages (young, 2-3 months; intermediate, 10-14 months; old,  ≥24 months) were stained with Oil Red-O or Toluidine blue to detect lipids. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and western blotting of LG lysates determined differences in the expression of genes and proteins related to lipid metabolism. A photobleaching protocol to quench age-related autofluorescence was used in LG sections to evaluate changes in immunofluorescence associated with NPC1, NPC2, CTSL, and macrophages (F4/80, CD11b) with age using confocal fluorescence microscopy. Results: Old LGs showed increased lipids prominent in basal aggregates in acinar cells and in extra-acinar sites. LG gene expression of Npc1, Npc2, Lipa, and Mcoln2, encoding proteins involved in lipid metabolism, was increased with age. NPC1 was also significantly increased in old LGs by western blotting. In photobleached LG sections, confocal fluorescence microscopy imaging of NPC1, NPC2, and CTSL immunofluorescence showed age-associated enrichment in macrophages labeled to detect F4/80. Although mononuclear macrophages were detectable in LG at all ages, this novel multinucleate macrophage population containing NPC1, NPC2, and CTSL and enriched in F4/80 and some CD11b was increased with age at extra-acinar sites. Conclusions: Lipid-metabolizing proteins enriched in F4/80-positive multinucleated macrophages are increased in old LGs adjacent to sites of lipid deposition in acini.


Subject(s)
Aging , Blotting, Western , Lacrimal Apparatus , Lipid Metabolism , Macrophages , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Animals , Female , Aging/physiology , Mice , Lipid Metabolism/physiology , Macrophages/metabolism , Lacrimal Apparatus/metabolism , Microscopy, Confocal , Disease Models, Animal , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/pathology
4.
Exp Biol Med (Maywood) ; 249: 10175, 2024.
Article in English | MEDLINE | ID: mdl-38756167

ABSTRACT

Diabetes mellitus is a prevalent disease that is often accompanied by ocular surface abnormalities including delayed epithelial wound healing and decreased corneal sensitivity. The impact of diabetes on the lacrimal functional unit (LFU) and the structures responsible for maintaining tear homeostasis, is not completely known. It has been shown that the Opioid Growth Factor Receptor (OGFr), and its ligand, Opioid Growth Factor (OGF), is dysregulated in the ocular surface of diabetic rats leading to overproduction of the inhibitory growth peptide OGF. The opioid antagonist naltrexone hydrochloride (NTX) blocks the OGF-OGFr pathway, and complete blockade following systemic or topical treatment with NTX restores the rate of re-epithelialization of corneal epithelial wounds, normalizes corneal sensitivity, and reverses dry eye in diabetic animal models. These effects occur rapidly and within days of initiating treatment. The present study was designed to understand mechanisms related to the fast reversal (<5 days) of dry eye by NTX in type 1 diabetes (T1D) by investigating dysregulation of the LFU. The approach involved examination of the morphology of the LFU before and after NTX treatment. Male and female adult Sprague-Dawley rats were rendered hyperglycemic with streptozotocin, and after 6 weeks rats were considered to be a T1D model. Rats received topical NTX twice daily to one eye for 10 days. During the period of treatment, tear production and corneal sensitivity were recorded. On day 11, animals were euthanized and orbital tissues including conjunctiva, eyelids, and lacrimal glands, were removed and processed for histologic examination including immunohistochemistry. Male and female T1D rats had significantly decreased tear production and corneal insensitivity, significantly decreased number and size of lacrimal gland acini, decreased expression of aquaporin-5 (AQP5) protein and decreased goblet cell size. Thus, 10 days of NTX treatment restored tear production and corneal sensitivity to normal values, increased AQP5 expression, and restored the surface area of goblet cells to normal. NTX had no effect on the number of lacrimal gland acini or the number of conjunctival goblet cells. In summary, blockade of the OGF-OGFr pathway with NTX reversed corneal and lacrimal gland complications and restored some components of tear homeostasis confirming the efficacy of topical NTX as a treatment for ocular defects in diabetes.


Subject(s)
Aquaporin 5 , Diabetes Mellitus, Experimental , Lacrimal Apparatus , Naltrexone , Rats, Sprague-Dawley , Tears , Animals , Lacrimal Apparatus/metabolism , Lacrimal Apparatus/drug effects , Lacrimal Apparatus/pathology , Tears/metabolism , Tears/drug effects , Naltrexone/pharmacology , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Rats , Aquaporin 5/metabolism , Administration, Topical , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/pathology , Dry Eye Syndromes/metabolism
5.
ACS Appl Mater Interfaces ; 16(21): 27040-27054, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743443

ABSTRACT

Strong precorneal clearance mechanisms including reflex blink, constant tear drainage, and rapid mucus turnover constitute great challenges for eye drops for effective drug delivery to the ocular epithelium. In this study, cyclosporine A (CsA) for the treatment of dry eye disease (DED) was selected as the model drug. Two strategies, PEGylation for mucus penetration and cationization for potent cellular uptake, were combined to construct a novel CsA nanosuspension (NS@lipid-PEG/CKC) by coating nanoscale drug particles with a mixture of lipids, DSPE-PEG2000, and a cationic surfactant, cetalkonium chloride (CKC). NS@lipid-PEG/CKC with the mean size ∼173 nm and positive zeta potential ∼+40 mV showed promoted mucus penetration, good cytocompatibility, more cellular uptake, and prolonged precorneal retention without obvious ocular irritation. More importantly, NS@lipid-PEG/CKC recovered tear production and goblet cell density more efficiently than the commercial cationic nanoemulsion on a dry eye disease rat model. All results indicated that a combination of PEGylation and cationization might provide a promising strategy to coordinate mucus penetration and cellular uptake for enhanced drug delivery to the ocular epithelium for nanomedicine-based eye drops.


Subject(s)
Cyclosporine , Dry Eye Syndromes , Phospholipids , Polyethylene Glycols , Animals , Cyclosporine/chemistry , Cyclosporine/pharmacology , Cyclosporine/pharmacokinetics , Cyclosporine/administration & dosage , Polyethylene Glycols/chemistry , Rats , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/pathology , Phospholipids/chemistry , Rats, Sprague-Dawley , Nanoparticles/chemistry , Drug Delivery Systems , Cations/chemistry , Ophthalmic Solutions/chemistry , Ophthalmic Solutions/pharmacology , Humans , Male , Cornea/metabolism , Cornea/drug effects
6.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 111-118, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814228

ABSTRACT

Bioinformatics analysis was performed to reveal the underlying pathogenesis of type 2 diabetes (T2DM) dry eye(DE) and to predict the core targets and potential pathways for electroacupuncture (EA) treatment of T2DM DE, in which key targets such as Toll-likereceptor4 (TLR4), NF-κB and Tumor necrosis factor-α (TNF-α) may be involved. Next, streptozotocin and a high-fat diet were used to generate T2DM-DE rats. Randomly picked EA, fluorometholone, model, and sham EA groups were created from successfully modelled T2DM DE rats. Six more rats were chosen as the blank group from among the normal rats. The results of DE index showed that EA improved the ocular surface symptoms.HE staining showed that EA attenuated the pathological changes in the cornea, conjunctiva and lacrimal gland of T2DM DE rats. EA decreased the expression of TLR4, MyD88, P-NF-κB P65, and TNF-α in the cornea, conjunctiva, and lacrimal gland, in accordance with immunofluorescence and Western blot data. Thus, EA reduced ocular surface symptoms and improved pathological changes of cornea, conjunctiva, and lacrimal gland induced by T2DM DE inT2DM DE rats, and the mechanism may be related to the inhibition of overactivation of the TLR4/NF-κB signaling pathway by EA and thus attenuating ocular surface inflammation.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Dry Eye Syndromes , Electroacupuncture , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Tumor Necrosis Factor-alpha , Animals , Toll-Like Receptor 4/metabolism , Electroacupuncture/methods , NF-kappa B/metabolism , Dry Eye Syndromes/therapy , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Male , Tumor Necrosis Factor-alpha/metabolism , Inflammation/pathology , Inflammation/metabolism , Rats, Sprague-Dawley , Rats , Lacrimal Apparatus/metabolism , Lacrimal Apparatus/pathology , Conjunctiva/metabolism , Conjunctiva/pathology , Cornea/pathology , Cornea/metabolism , Myeloid Differentiation Factor 88/metabolism
7.
ACS Nano ; 18(17): 11084-11102, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38632691

ABSTRACT

Dry eye disease (DED) affects a substantial worldwide population with increasing frequency. Current single-targeting DED management is severely hindered by the existence of an oxidative stress-inflammation vicious cycle and complicated intercellular crosstalk within the ocular microenvironment. Here, a nanozyme-based eye drop, namely nanoceria loading cyclosporin A (Cs@P/CeO2), is developed, which possesses long-term antioxidative and anti-inflammatory capacities due to its regenerative antioxidative activity and sustained release of cyclosporin A (CsA). In vitro studies showed that the dual-functional Cs@P/CeO2 not only inhibits cellular reactive oxygen species production, sequentially maintaining mitochondrial integrity, but also downregulates inflammatory processes and repolarizes macrophages. Moreover, using flow cytometric and single-cell sequencing data, the in vivo therapeutic effect of Cs@P/CeO2 was systemically demonstrated, which rebalances the immune-epithelial communication in the corneal microenvironment with less inflammatory macrophage polarization, restrained oxidative stress, and enhanced epithelium regeneration. Collectively, our data proved that the antioxidative and anti-inflammatory Cs@P/CeO2 may provide therapeutic insights into DED management.


Subject(s)
Cerium , Cyclosporine , Dry Eye Syndromes , Cerium/chemistry , Cerium/pharmacology , Cyclosporine/pharmacology , Cyclosporine/administration & dosage , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/pathology , Animals , Mice , Humans , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Nanoparticles/chemistry , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Mice, Inbred C57BL , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Drug Delivery Systems
8.
Exp Eye Res ; 241: 109854, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453037

ABSTRACT

Mucosal chemokines have antimicrobial properties and play an important role in mucosal immunity. However, little is known about their expression on the ocular surface. This study aimed to analyze the expression of the mucosal chemokines CCL28, CXCL14 and CXCL17 in corneal and conjunctival epithelial cells under in vitro dry eye (DE) conditions, and in conjunctival samples from healthy subjects and DE patients. Human corneal epithelial cells (HCE) and immortalized human conjunctival epithelial cells (IM-HConEpiC) were incubated under hyperosmolar (400-500 mOsM) or inflammatory (TNF-α 25 ng/mL) conditions for 6 h and 24 h to measure CCL28, CXCL14, and CXCL17 gene expression by RT-PCR and their secretion by immunobead-based analysis (CCL28, CXCL14) and ELISA (CXCL17). Additionally, twenty-seven DE patients and 13 healthy subjects were included in this study. DE-related questionnaires (OSDI, mSIDEQ and NRS) evaluated symptomatology. Ocular surface integrity was assessed using vital staining. Tactile sensitivity was measured with Cochet-Bonnet esthesiometer, and mechanic and thermal (heat and cold) sensitivity using Belmonte's non-contact esthesiometer. Subbasal nerve plexus and dendritic cell density were analyzed by in vivo confocal microscopy. Conjunctival cells from participants were collected by impression cytology to measure mucosal chemokines gene expression by RT-PCR. Our results showed that HCE and IM-HConEpiC cells increased CCL28, CXCL14, and CXCL17 secretion under hyperosmolar conditions. The gene expression of CCL28 was significantly upregulated in conjunctival samples from DE patients. CCL28 expression correlated positively with symptomatology, corneal staining, heat sensitivity threshold, and dendritic cell density. CXCL14 expression correlated positively with age, ocular pain, conjunctival staining, tactile sensitivity, and image reflectivity. CXCL17 expression correlated positively with corneal staining. These results suggest that corneal and conjunctival epithelial cells could be a source of CCL28, CXCL14, and CXCL17 on the ocular surface and that CCL28 might be involved in DE pathogenesis.


Subject(s)
Dieldrin/analogs & derivatives , Dry Eye Syndromes , Humans , Dry Eye Syndromes/pathology , Chemokines/genetics , Cornea/pathology , Conjunctiva/pathology , Chemokines, CC , Chemokines, CXC
9.
Methods Mol Biol ; 2763: 251-257, 2024.
Article in English | MEDLINE | ID: mdl-38347416

ABSTRACT

The ocular surface is covered with a mucus layer. The mucin-associated genes expressed in the ocular surface cells include MUC1, MUC4, MUC5AC, and MUC16. Impression cytology is useful for collecting specimens from the ocular surface, their histological examination, and measuring mucin-associated gene expression levels. The expression of mucin-associated gene levels was assessed by quantitative polymerase chain reaction. The expression levels of these mucin-associated genes are potential biomarkers for ocular surface diseases, including dry eye disease.


Subject(s)
Dry Eye Syndromes , Mucins , Humans , Mucins/metabolism , Conjunctiva , Mucin-1/genetics , CA-125 Antigen , Dry Eye Syndromes/genetics , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/pathology , Gene Expression
10.
Biochem Biophys Res Commun ; 696: 149526, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38241812

ABSTRACT

PURPOSE: To investigated the role of estrogen receptor-1 (ER-1) in maintaining homeostasis in ocular surface. METHODS: ER-1-knockout (ER-1KO) mice were studied at 4 months of age. The ocular surface was examined using a slit lamp. Histological alterations in the meibomian gland (MG) and lacrimal gland (LG) were observed with H&E staining. Protein levels of P-ERK, peroxisome proliferator-activated receptor gamma (PPAR-γ), p-NFκB-P65, IL-1ß, aquaporin 5 (AQP-5), fatty acid-binding protein 5 (Fabp5) and K10 were determined by immunofluorescence and Western blotting. Gene expressions of APO-F, APO-E, K10, ELOVL4, PPAR-γ, SCD-1, and SREBP1 were quantified by qPCR. Conjunctival (CJ) goblet cell alterations were detected by PAS staining. Lipid metabolism in MG and LG was assessed using LipidTox. Apoptosis in MG and LG was analyzed through the TUNEL assay. RESULTS: Both male and female ER-1KO mice demonstrated increased corneal fluorescence staining scores. MG showed abnormal lipid metabolism and ductal dilation. LG displayed lipid deposition and reduced AQP-5 expression. CJ experienced goblet cell loss. MG, LG exhibited signs of inflammation and apoptosis. CONCLUSION: ER1 is pivotal for ocular surface homeostasis in both genders of mice. ER1 deficiency induces inflammation and lipid deposition to MG and LG, culminating in dry eye-like manifestations on the ocular surface.


Subject(s)
Dry Eye Syndromes , Lacrimal Apparatus , Female , Male , Mice , Animals , Lacrimal Apparatus/metabolism , Lacrimal Apparatus/pathology , Meibomian Glands/metabolism , Meibomian Glands/pathology , Peroxisome Proliferator-Activated Receptors/metabolism , Dry Eye Syndromes/genetics , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/pathology , Inflammation/pathology , Tears/metabolism
11.
Ocul Immunol Inflamm ; 32(1): 62-70, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36637982

ABSTRACT

PURPOSE: To evaluate ocular surface involvement, tear cytokine levels, and histopathological changes in pemphigus and pemphigoid patients. METHODS: A total of 22 patients (15 pemphigus and 7 pemphigoids) and 21 non-diseased controls were enrolled in our study. All participants underwent ocular surface evaluation, which included ocular surface disease index test, slit lamp observation, dry eye-related examination, tear multicytokine analysis, and conjunctival impression cytology. RESULTS: Pemphigus and pemphigoid patients presented much more severe conjunctivochalasis, corneal epithelial defects, corneal opacity, symblepharon   and dry eye. Severe ocular surface squamous metaplasia and a significant increase of tear macrophage inflammatory protein-1beta, tumor necrosis factor-alpha, interleukin (IL)-1ß, IL -6, and IL-8 occurred in pemphigus and pemphigoid patients. CONCLUSIONS: Our results revealed that ocular surface inflammation and dry eye persist in most pemphigus and pemphigoid patients, and do not occur in parallel with the systemic course. Regular ophthalmological examinations and local anti-inflammatory should be provided for pemphigus and pemphigoid patients.


Subject(s)
Conjunctival Diseases , Dry Eye Syndromes , Pemphigoid, Bullous , Pemphigus , Humans , Pemphigoid, Bullous/complications , Pemphigoid, Bullous/diagnosis , Pemphigus/complications , Pemphigus/diagnosis , Dry Eye Syndromes/diagnosis , Dry Eye Syndromes/etiology , Dry Eye Syndromes/pathology , Conjunctival Diseases/diagnosis , Conjunctival Diseases/etiology , Conjunctiva/pathology , Tears , Interleukin-1beta , Inflammation/diagnosis , Inflammation/pathology
12.
Ocul Surf ; 32: 1-12, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38103731

ABSTRACT

PURPOSE: The study investigated effectiveness of a novel PEDF peptide mimetic to alleviate dry eye-like pathologies in a Type I diabetic mouse model established using streptozotocin. METHODS: Mice were treated topically for 3-6 weeks with Ppx (a 17-mer PEDF mimetic) 2x/day or vehicle. Corneal sensitivity, tear film, epithelial and endothelial injury were measured using Cochet-Bonnet esthesiometer, phenol red cotton thread wetting, fluorescein sodium staining, and ZO1 expression, respectively. Inflammatory and parasympathetic nerve markers and activation of the MAPK/JNK pathways in the lacrimal glands were measured. RESULTS: Diabetic mice exhibited features of dry eye including reduced corneal sensation and tear secretion and increased corneal epithelium injury, nerve degeneration, and edema. Ppx reversed these pathologies and restored ZO1 expression and morphological integrity of the endothelium. Upregulation of IL-1ß and TNFα, increased activation of P-38, JNK, and ERK, and higher levels of M3ACHR in diabetic lacrimal glands were also reversed by the peptide treatment. CONCLUSION: The study demonstrates that topical application of a synthetic PEDF mimetic effectively alleviates diabetes-induced dry eye by restoring corneal sensitivity, tear secretion, and endothelial barrier and lacrimal gland function. These findings have significant implications for the potential treatment of dry eye using a cost-effective and reproducible approach with minimal invasiveness and no obvious side effects.


Subject(s)
Cornea , Diabetes Mellitus, Experimental , Dry Eye Syndromes , Eye Proteins , Lacrimal Apparatus , Nerve Growth Factors , Serpins , Tears , Animals , Mice , Eye Proteins/metabolism , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/pathology , Serpins/pharmacology , Serpins/therapeutic use , Serpins/administration & dosage , Nerve Growth Factors/pharmacology , Nerve Growth Factors/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Tears/metabolism , Tears/drug effects , Cornea/drug effects , Cornea/pathology , Cornea/metabolism , Lacrimal Apparatus/drug effects , Lacrimal Apparatus/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Male
13.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139321

ABSTRACT

Dry eye disease is a common condition in patients of all ages, causing discomfort and potential visual problems. Current treatments, including artificial tears and anti-inflammatory drugs, have certain limitations, encouraging research into alternative therapies. We investigated the therapeutic potential of multi-wavelength light-emitting diode (LED) irradiation of mice with dry eye. First, we showed that multi-wavelength LED irradiation was non-toxic to human corneal epithelial cells and improved cell viability. We then used a scopolamine-induced mouse model of dry eye to assess the effects of multi-wavelength LED irradiation on various clinical parameters. This treatment increased the tear volume and reduced corneal irregularity, thus improving dry eye. Histological analysis revealed that multi-wavelength LED irradiation protected against corneal epithelial damage and the associated reduction in epithelial thickness and would thus improve the corneal health of dry eye patients. Multi-wavelength LED irradiation significantly reduced the corneal levels of pro-inflammatory cytokines IL-6, IL-1ß, and TNF-α; the treatment was thus anti-inflammatory. Our results suggest that multi-wavelength LED irradiation may serve as a safe and effective treatment for dry eye, alleviating symptoms, reducing inflammation, and promoting corneal health.


Subject(s)
Corneal Injuries , Dry Eye Syndromes , Humans , Mice , Animals , Scopolamine/adverse effects , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/pathology , Tears , Cornea/pathology , Disease Models, Animal , Anti-Inflammatory Agents/adverse effects , Corneal Injuries/pathology
14.
Croat Med J ; 64(5): 307-319, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37927184

ABSTRACT

AIM: To assess sex-related differences in the pathohistological features of the human lacrimal gland and to investigate age-related and sex-related differences in stereologically measured volume density of the secretory tissue, connective tissue, and fat. METHODS: We performed an observational analysis of acinar atrophy, periacinar fibrosis, periductal fibrosis, ductal dilation, ductal proliferation, fatty infiltration, and lymphocyte infiltration of hematoxylin and eosin-stained lacrimal gland samples from 81 cornea donors. Stereological analysis of the volume density of the secretory tissue, connective tissue, and fat was performed on samples from 66 donors. RESULTS: Up to 69% of all samples showed degenerative changes. Female samples had a higher frequency of all observed degenerative changes, except ductal dilation. While acinar atrophy was significantly more prevalent in women, ductal dilation was significantly more prevalent in men. Stereological analysis indicated lower portions of acini and higher portions of connective tissue and fat, as well as a more pronounced age-related progression of degenerative changes in female samples. CONCLUSION: Female lacrimal glands are more susceptible to degeneration, and this susceptibility could play an important role in the higher incidence of dry eye disease in older women. A further stereological analysis using more samples from younger age groups is needed to elucidate age-related and sex-related differences in the structure of the human lacrimal gland and their impact on dry eye disease.


Subject(s)
Dry Eye Syndromes , Lacrimal Apparatus , Aged , Female , Humans , Male , Aging , Atrophy/complications , Atrophy/pathology , Dry Eye Syndromes/epidemiology , Dry Eye Syndromes/etiology , Dry Eye Syndromes/pathology , Fibrosis , Lacrimal Apparatus/pathology
15.
Biomed Pharmacother ; 169: 115862, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37979379

ABSTRACT

The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.


Subject(s)
Corneal Diseases , Dry Eye Syndromes , Humans , Corneal Diseases/pathology , Cornea , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/therapeutic use , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/pathology
16.
Invest Ophthalmol Vis Sci ; 64(13): 43, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37883092

ABSTRACT

Purpose: This study aimed to establish an image-based classification that can reveal the clinical characteristics of patients with dry eye using unsupervised learning methods. Methods: In this study, we analyzed 82,236 meibography images from 20,559 subjects. Using the SimCLR neural network, the images were categorized. Data for each patient were averaged and subjected to mini-batch k-means clustering, and validated through consensus clustering. Statistical metrics determined optimal category numbers. Using a UNet model, images were segmented to identify meibomian gland (MG) areas. Clinical features were assessed, including tear breakup time (BUT), tear meniscus height (TMH), and gland atrophy. A thorough ocular surface evaluation was conducted on 280 cooperative patients. Results: SimCLR neural network achieved clustering patients with dry eye into six image-based subtypes. Patients in different subtypes harbored significantly different noninvasive BUT, significantly correlated with TMH. Subtypes 1 and 5 had the most severe MG atrophy. Subtype 2 had the highest corneal fluorescent staining (CFS). Subtype 4 had the lowest TMH, whereas subtype 5 had the highest. Subtypes 3 and 6 had the largest MG areas, and the upper MG areas of a person's bilateral eyes were highly correlated. Image-based subtypes are related to meibum quality, CFS, and morphological characteristics of MG. Conclusions: In this study, we developed an unsupervised neural network model to cluster patients with dry eye into image-based subtypes using meibography images. We annotated these subtypes with functional and morphological clinical characteristics.


Subject(s)
Dry Eye Syndromes , Unsupervised Machine Learning , Humans , Dry Eye Syndromes/diagnostic imaging , Dry Eye Syndromes/pathology , Meibomian Glands/pathology , Tears , Atrophy/pathology
17.
Int J Mol Sci ; 24(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37895134

ABSTRACT

This study aimed at analyzing the corneal neural regeneration in ankylosing spondylitis patients using in vivo corneal confocal microscopy in correlation with Langerhans cell density, morphology, and dry eye parameters. Approximately 24 ankylosing spondylitis subjects and 35 age- and gender-matched control subjects were enrolled. Data analysis showed that all corneal nerve-fiber descriptives were lower in the ankylosing spondylitis group, implicating disrupted neural regeneration. Peripheral Langerhans cell density showed a negative correlation with nerve fiber descriptions. A negative correlation between tear film break-up time and corneal nerve fiber total branch density was detected. The potential role of somatosensory terminal Piezo2 channelopathy in the pathogenesis of dry eye disease and ankylosing spondylitis is highlighted in our study, exposing the neuroimmunological link between these diseases. We hypothesized earlier that spinal neuroimmune-induced sensitization due to this somatosensory terminal primary damage could lead to Langerhans cell activation in the cornea, in association with downregulated Piezo1 channels on these cells. This activation could lead to a Th17/Treg imbalance in dry eye secondary to ankylosing spondylitis. Hence, the corneal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk could explain the disrupted neural regeneration. Moreover, the translation of our findings highlights the link between Piezo2 channelopathy-induced gateway to pathophysiology and the gateway reflex, not to mention the potential role of spinal wide dynamic range neurons in the evolution of neuropathic pain and the flare-ups in ankylosing spondylitis and dry eye disease.


Subject(s)
Channelopathies , Dry Eye Syndromes , Spondylitis, Ankylosing , Humans , Channelopathies/complications , Cornea/pathology , Dry Eye Syndromes/pathology , Nerve Fibers/pathology , Reflex , Spondylitis, Ankylosing/pathology
18.
J Fr Ophtalmol ; 46(10): 1161-1168, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37758548

ABSTRACT

INTRODUCTION: Dry eye disease (DED) is an important health problem affecting hundreds of millions of people worldwide. In vivo confocal microscopy (IVCM) is a non-invasive imaging tool that can visualize ocular surface diseases. In this study, we aimed to evaluate corneal structures and inflammatory cells with IVCM in DED patients. MATERIAL AND METHODS: The patients were divided into three subgroups: group 1, consisting of 22 patients with aqueous tear insufficiency; group 2, consisting of 21 patients with evaporative type DED; and group 3, consisting of 20 healthy patients. Imaging was performed with IVCM. The corneal epithelium, nerves, stroma, endothelial and inflammatory cells were compared between groups. RESULTS: There was a significant decrease in corneal epithelial cell density in cases with DED, and there was a significant increase in corneal basal epithelial cell density in the aqueous-deficient type. Keratocyte density was significantly increased in the aqueous-deficient type. A significant decrease in the number and density of sub-basal nerves was found in aqueous-deficient cases, and an increase was found in neural pilling and folding. Dendritic cell density, size, number and area were significantly increased in the aqueous-deficient type. There was also decreased corneal endothelial cell density in DED. CONCLUSION: We evaluated pathological changes in DED on the corneal surface by IVCM. This methodology is valuable in terms of objectively evaluating how the corneal surface is affected in accordance with disease severity and in predicting poor response to treatment.


Subject(s)
Dry Eye Syndromes , Epithelium, Corneal , Humans , Dendritic Cells/pathology , Cornea/pathology , Epithelium, Corneal/diagnostic imaging , Epithelium, Corneal/pathology , Dry Eye Syndromes/diagnosis , Dry Eye Syndromes/pathology , Microscopy, Confocal/methods
19.
J Biol Chem ; 299(11): 105239, 2023 11.
Article in English | MEDLINE | ID: mdl-37690686

ABSTRACT

Hyperosmolarity of the ocular surface triggers inflammation and pathological damage in dry eye disease (DED). In addition to a reduction in quality of life, DED causes vision loss and when severe, blindness. Mitochondrial dysfunction occurs as a consequence of hyperosmolar stress. We have previously reported on a role for the insulin-like growth factor binding protein-3 (IGFBP-3) in the regulation of mitochondrial ultrastructure and metabolism in mucosal surface epithelial cells; however, this appears to be context-specific. Due to the finding that IGFBP-3 expression is decreased in response to hyperosmolar stress in vitro and in an animal model of DED, we next sought to determine whether the hyperosmolar stress-mediated decrease in IGFBP-3 alters mitophagy, a key mitochondrial quality control mechanism. Here we show that hyperosmolar stress induces mitophagy through differential regulation of BNIP3L/NIX and PINK1-mediated pathways. In corneal epithelial cells, this was independent of p62. The addition of exogenous IGFBP-3 abrogated the increase in mitophagy. This occurred through regulation of mTOR, highlighting the existence of a new IGFBP-3-mTOR signaling pathway. Together, these findings support a novel role for IGFBP-3 in mediating mitochondrial quality control in DED and have broad implications for epithelial tissues subject to hyperosmolar stress and other mitochondrial diseases.


Subject(s)
Dry Eye Syndromes , Insulin-Like Growth Factor Binding Protein 3 , Mitophagy , Animals , Humans , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/pathology , Quality of Life , Sirolimus , TOR Serine-Threonine Kinases/genetics
20.
BMC Ophthalmol ; 23(1): 252, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37277716

ABSTRACT

BACKGROUND: Primary Sjögren's syndrome (pSS) is a chronic autoimmune disorder defined by xerostomia and keratoconjunctivitis sicca, and its etiology remains unknown. N6-methyladenosine (m6A) is the predominant posttranscriptional modification in eukaryotic mRNAs and is dynamically regulated by m6A regulators. Dysregulation of m6A modification is closely associated with several autoimmune disorders, but the role of m6A modification in pSS remains unknown. This study investigated the potential role of m6A and m6A-related regulators in pSS patients with dry eye. METHODS: This cross-sectional study included forty-eight pSS patients with dry eye and forty healthy controls (HCs). Peripheral blood mononuclear cells (PBMCs) were isolated, and the level of m6A in total RNA was measured. The expression of m6A regulators was determined utilizing real-time PCR and western blotting. The serological indicators detected included autoantibodies, immunoglobulins (Igs), complement factors (Cs), and inflammatory indicators. Dry eye symptoms and signs were measured, including the ocular surface disease index, Schirmer's test (ST), corneal fluorescein staining score (CFS), and tear break-up time. Spearman's correlation coefficient was employed to assess the associations of m6A and m6A-related regulator expression with clinical characteristics. RESULTS: The expression level of m6A was markedly increased in the PBMCs of pSS patients with dry eye compared to HCs (P value<0.001). The relative mRNA and protein expression levels of the m6A regulators methyltransferase-like 3 (METTL3) and YT521-B homology domains 1 were markedly elevated in pSS patients with dry eye (both P value<0.01). The m6A RNA level was found to be positively related to METTL3 expression in pSS patients (r = 0.793, P value<0.001). Both the m6A RNA level and METTL3 mRNA expression correlated with the anti-SSB antibody, IgG, ST, and CFS (all P values < 0.05). The m6A RNA level was associated with C4 (r = -0.432, P value = 0.002), while METTL3 mRNA expression was associated with C3 (r = -0.313, P value = 0.030). CONCLUSIONS: Our work revealed that the upregulation of m6A and METTL3 was associated with the performance of serological indicators and dry eye signs in pSS patients with dry eye. METTL3 may contribute to the pathogenesis of dry eye related to pSS.


Subject(s)
Dry Eye Syndromes , Sjogren's Syndrome , Humans , Sjogren's Syndrome/complications , Sjogren's Syndrome/genetics , Methylation , Cross-Sectional Studies , Leukocytes, Mononuclear/pathology , Dry Eye Syndromes/etiology , Dry Eye Syndromes/pathology , RNA/genetics , Methyltransferases
SELECTION OF CITATIONS
SEARCH DETAIL
...