Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.995
Filter
1.
BMC Genomics ; 25(1): 551, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824564

ABSTRACT

Because number of matured muscle fibers in poultry does not increase after birth, the meat yield is mainly determined during embryogenesis. We previously indicated breast muscle grew rapidly from 18th day after hatching (E18) to E27, and almost stopped from E27 to E34 of Jiaji ducks, while the mechanism is unclear. This study utilized RNA-seq to explore the related genes of muscle development and their relationship with small molecule metabolites at E18, E27 and E34 of Jiaji ducks. Several thousand differentially expressed genes (DEGs) were detected among E18, E27 and E34. DEGs expression profiles included 8 trend maps, among which trend 1 was opposite to and trend 6 was consistent with breast muscle development trend of Jiaji ducks. Through joint analysis between trend 1 of DEGs and trend 1 of differential metabolites (DEMs), protein digestion and absorption pathway stood out. The decrease of COL8A2 gene expression will lead to the decrease of arginine content, which will inhibit the development of breast muscle in embryonic Jiaji duck. Similarly, joint analysis between trend 6 of DEGs and trend 6 of DEMs indicated the increase of GAMT gene expression will cause the increase of proline content, and then promote the development of breast muscle of Jiaji duck in embryonic period. These results will be helpful for further understanding the mechanism of muscle yields of Jiaji ducks.


Subject(s)
Ducks , Metabolomics , Animals , Ducks/metabolism , Ducks/genetics , Ducks/embryology , Metabolomics/methods , Gene Expression Profiling , Transcriptome , Muscle, Skeletal/metabolism , Gene Expression Regulation, Developmental
2.
Proc Biol Sci ; 291(2023): 20240330, 2024 May.
Article in English | MEDLINE | ID: mdl-38772417

ABSTRACT

Identifying reliable bioindicators of population status is a central goal of conservation physiology. Physiological stress measures are often used as metrics of individual health and can assist in managing endangered species if linked to fitness traits. We analysed feather corticosterone, a cumulative physiological stress metric, of individuals from historical, translocated, and source populations of an endangered endemic Hawaiian bird, the Laysan duck (Anas laysanensis). We hypothesized that feather corticosterone would reflect the improved reproduction and survival rates observed in populations translocated to Midway and Kure Atolls from Laysan Island. We also predicted less physiological stress in historical Laysan birds collected before ecological conditions deteriorated and the population bottleneck. All hypotheses were supported: we found lower feather corticosterone in the translocated populations and historical samples than in those from recent Laysan samples. This suggests that current Laysan birds are experiencing greater physiological stress than historical Laysan and recently translocated birds. Our initial analysis suggests that feather corticosterone may be an indicator of population status and could be used as a non-invasive physiological monitoring tool for this species with further validation. Furthermore, these preliminary results, combined with published demographic data, suggest that current Laysan conditions may not be optimal for this species.


Subject(s)
Corticosterone , Ducks , Endangered Species , Feathers , Animals , Corticosterone/analysis , Feathers/chemistry , Hawaii , Stress, Physiological , Conservation of Natural Resources , Female , Male
3.
Vet Parasitol Reg Stud Reports ; 51: 101035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772641

ABSTRACT

The current investigation was carried out during the period from July 2022 to March 2023, aiming to investigate the prevalence of gastrointestinal helminths in domestic birds collected from traditional markets in Guilan province. One hundred forty-eight domestic birds, including chickens (Gallus gallus domesticus), domestic ducks (Anas platyrhynchos domesticus), greylag geese (Anser anser), and domestic turkeys (Meleagris gallopavo domesticus) were examined. Totally, 42.56% of the investigated birds were positive for helminthic parasites. Morphological analysis revealed varying infection rates among birds: Echinostoma revolutum (5.40%), Hypoderaeum conoideum (2.02%), Cloacotaenia megalops (0.67%), Hymenolepididae family (4.05%), Ascaridia galli (16.89%), and Heterakis gallinarum (4.72%). The investigation involved molecular analysis of the 18S and ITS1 + 5.8S + ITS2 rRNA gene regions. The findings indicated that the 18S region of nematode isolates exhibited a similarity of 92 to 100% with sequences in the GenBank, whereas trematode and cestode isolates showed a gene similarity ranging from 88 to 99%. The ITS regions of nematode, trematode, and cestode isolates exhibited genetic similarities ranging from 87 to 100%, 73-99%, and 75-99%, respectively. Furthermore, phylogenetic analysis confirmed the categorization of the identified species within the Ascaridiidae, Heterakidae, Hymenolepididae, and Echinostomatidae families, indicating their close affinity with previously documented species. Implementing precise control measures such as consistent monitoring, adequate sanitation protocols, and administering anthelmintic treatments is crucial for effectively managing parasitic infections in free-range and backyard poultry farms. Additionally, conducting further surveys is advisable to assess the impact of these parasites on the health and productivity of poultry in the investigated area.


Subject(s)
Helminthiasis, Animal , Animals , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology , Iran/epidemiology , One Health , Helminths/isolation & purification , Helminths/genetics , Helminths/classification , Prevalence , Poultry Diseases/parasitology , Poultry Diseases/epidemiology , Phylogeny , Bird Diseases/parasitology , Bird Diseases/epidemiology , Ducks/parasitology
4.
Vet Res ; 55(1): 63, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760810

ABSTRACT

The maintenance of viral protein homeostasis depends on the interaction between host cell proteins and viral proteins. As a molecular chaperone, heat shock protein 70 (HSP70) has been shown to play an important role in viral infection. Our results showed that HSP70 can affect translation, replication, assembly, and release during the life cycle of duck hepatitis A virus type 1 (DHAV-1). We demonstrated that HSP70 can regulate viral translation by interacting with the DHAV-1 internal ribosome entry site (IRES). In addition, HSP70 interacts with the viral capsid proteins VP1 and VP3 and promotes their stability by inhibiting proteasomal degradation, thereby facilitating the assembly of DHAV-1 virions. This study demonstrates the specific role of HSP70 in regulating DHAV-1 replication, which are helpful for understanding the pathogenesis of DHAV-1 infection and provide additional information about the role of HSP70 in infection by different kinds of picornaviruses, as well as the interaction between picornaviruses and host cells.


Subject(s)
HSP70 Heat-Shock Proteins , Hepatitis Virus, Duck , Internal Ribosome Entry Sites , Virus Replication , Hepatitis Virus, Duck/physiology , Hepatitis Virus, Duck/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Animals , Viral Structural Proteins/metabolism , Viral Structural Proteins/genetics , Ducks , Poultry Diseases/virology , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Picornaviridae Infections/metabolism , Capsid Proteins/metabolism , Capsid Proteins/genetics , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/metabolism , Protein Biosynthesis
5.
Arch Virol ; 169(6): 120, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753261

ABSTRACT

Gyroviruses are small single-stranded DNA (ssDNA) viruses that are largely associated with birds. Chicken anemia virus is the most extensively studied gyrovirus due to its disease impact on the poultry industry. However, we know much less about gyroviruses infecting other avian species. To investigate gyroviruses infecting waterfowl, we determined six complete genome sequences that fall into three gyrovirus groups, referred to as waterfowl gyrovirus 1 (n = 3), 2 (n = 2), and 3 (n = 1), in organs from hunter-harvested waterfowl from Arizona (USA). The waterfowl gyrovirus 1 variants were identified in multiple organs of a single American wigeon and represent a tentative new species. The waterfowl gyrovirus 2 variants were identified in the livers of two American wigeons and share >70% VP1 nucleotide sequence identity with gyrovirus 9, previously identified in the spleen of a Brazilian Pekin duck (MT318123) and a human fecal sample (KP742975). Waterfowl gyrovirus 3 was identified in a northern pintail spleen sample, and it shares >73% VP1 nucleotide sequence identity with two gyrovirus 13 sequences previously identified in Brazilian Pekin duck spleens (MT318125 and MT318127). These gyroviruses are the first to be identified in waterfowl in North America, as well as in American wigeons and northern pintails.


Subject(s)
Bird Diseases , Circoviridae Infections , Genome, Viral , Gyrovirus , Phylogeny , Animals , Arizona , Genome, Viral/genetics , Gyrovirus/genetics , Gyrovirus/classification , Gyrovirus/isolation & purification , Bird Diseases/virology , Circoviridae Infections/virology , Circoviridae Infections/veterinary , Anseriformes/virology , Ducks/virology , DNA, Viral/genetics
6.
Vet Q ; 44(1): 1-12, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726839

ABSTRACT

Duck plague (DP) is an acute, contagious and fatal disease, caused by duck enteritis virus (DEV), with worldwide distribution causing several outbreaks and posing severe economic losses. The present study was carried out with a goal of development of a live attenuated cell culture based DP vaccine using an Indian strain of DEV and evaluation of its safety, efficacy along with complete genome analysis. The live attenuated DP vaccine (DPvac/IVRI-19) was developed by serial propagation of a virulent isolate of DEV (DEV/India/IVRI-2016) in the chicken embryo fibroblast (CEF) primary cell culture. Adaptation of DEV in CEF cell culture was indicated by more rapid appearance of cytopathic effects (CPE) and gradual increase of virus titre, which reached up to 107.5 TCID50/mL after 41 passages. The safety, immunogenicity and efficacy of the vaccine were determined by immunization trials in ducklings. The DPvac/IVRI-19 was found to be avirulent and completely safe in the ducklings. Further, the vaccine induced both humoral and cell mediated immune responses and afforded 100% protection against the virulent DEV challenge. A comparison of the whole genome of DPvac/IVRI-19 (MZ911871) and DEV/India/IVRI-2016 (MZ824102) revealed significant number of mutations, which might be associated with viral attenuation. Phylogenetic tree of DEV/India/IVRI-2016 revealed its evolutionary relationship with other DEV isolates, but it formed a separate cluster with certain unique mutations. Thus, with the proven safety and 100% efficacy, the DPvac/IVRI-19 is suitable for large scale production with precisely pure form of vaccine and has potential utility at national and global levels.


Subject(s)
Ducks , Fibroblasts , Mardivirus , Poultry Diseases , Vaccines, Attenuated , Viral Vaccines , Animals , Vaccines, Attenuated/immunology , Ducks/virology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Fibroblasts/virology , Chick Embryo , Viral Vaccines/immunology , Mardivirus/immunology , Mardivirus/pathogenicity , Herpesviridae Infections/veterinary , Herpesviridae Infections/prevention & control , Herpesviridae Infections/virology , India
7.
Genet Sel Evol ; 56(1): 37, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741064

ABSTRACT

Anas, is a genus of dabbling ducks and encompasses a considerable number of species, among which some are the progenitors of domestic ducks. However, the taxonomic position of the Anas genus remains uncertain because several of its species, initially categorized as Anas based on morphological characteristics, were subsequently reclassified and grouped with the South American genus Tachyeres, primarily based on analysis of their mitochondrial gene sequences. Here, we constructed a phylogenetic tree using nine of our recently assembled Anas genomes, two Tachyeres genomes, and one Cairina genome that are publicly available. The results showed that the Northern shoveler (Anas clypeata) and Baikal teal (Anas formosa) clustered with the other Anas species at the whole-genome level rather than with the Steamer ducks (genus Tachyeres). Therefore, we propose to restore the original classification of the Anas genus, which includes the Northern shoveler and Baikal teal species, 47 species in total. Moreover, our study unveiled extensive incomplete lineage sorting and an ancient introgression event from Tachyeres to Anas, which has led to notable phylogenetic incongruence within the Anas genome. This ancient introgression event not only supports the theory that Anas originated in South America but also that it played a significant role in shaping the evolutionary trajectory of Anas, including the domestic duck.


Subject(s)
Ducks , Phylogeny , Animals , Ducks/genetics , Ducks/classification , Whole Genome Sequencing/methods , Genome
8.
Res Vet Sci ; 173: 105279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704977

ABSTRACT

Emerging pathogens can threaten human and animal health, necessitating reliable surveillance schemes to enable preparedness. We evaluated the repeatability and reproducibility of a method developed previously during a single year at one study site. Hunter-harvested ducks and geese were sampled for avian influenza virus at three discrete locations in the UK. H5N1 highly pathogenic avian influenza (HPAIV) was detected in four species (mallard [Anas platyrhynchos], Eurasian teal [Anas crecca], Eurasian wigeon [Mareca penelope] and pink-footed goose [Anser brachyrhynchus]) across all three locations and two non-HPAIV H5N1, influenza A positive detections were made from a mallard and Eurasian wigeon at two locations. Virus was detected within 1-to-4 days of sampling at every location. Application of rapid diagnostic methods to samples collected from hunter-harvested waterfowl offers potential as an early warning system for the surveillance and monitoring of emerging and existing strains of avian influenza A viruses in key avian species.


Subject(s)
Ducks , Geese , Influenza in Birds , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , United Kingdom/epidemiology , Ducks/virology , Reproducibility of Results , Geese/virology , Influenza A Virus, H5N1 Subtype/isolation & purification
9.
Virology ; 595: 110084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692132

ABSTRACT

Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. The genome of DTMUV is translated into a polyprotein, which is further cleaved into several protein by viral NS2B3 protease and host proteases. Crucially, the cleavage of the NS2A/2B precursor during this process is essential for the formation of replication complexes and viral packaging. Previous research has demonstrated that alanine mutations in NS2A/2B (P1P1' (AA)) result in an attenuated strain (rDTMUV-NS2A/2B-P1P1' (AA)) by disrupting NS2A/2B cleavage. In this study, we investigate the effects of the P1P1' (AA) mutation on the viral life cycle and explore compensatory mutations in rDTMUV-NS2A/2B-P1P1' (AA). Infected ducklings exhibit similar body weight gain and viral tissue loads to DTMUV-WT. Compensatory mutations E-M349E and P1(T) emerge, restoring proliferation levels to those of rDTMUV-WT. Specifically, E-M349E enhances viral packaging, while P1(T) reinstates NS2A/2B proteolysis in vitro. Thus, our findings reveal novel compensatory sites capable of restoring the attenuated DTMUV during polyprotein cleavage and packaging.


Subject(s)
Ducks , Flavivirus , Poultry Diseases , Viral Nonstructural Proteins , Virus Assembly , Virus Replication , Animals , Ducks/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Flavivirus/genetics , Flavivirus/physiology , Poultry Diseases/virology , Flavivirus Infections/virology , Mutation
10.
World J Microbiol Biotechnol ; 40(6): 194, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713319

ABSTRACT

The development and utilization of probiotics have many environmental benefits when they are used to replace antibiotics in animal production. In this study, intestinal lactic acid bacteria were isolated from the intestines of Cherry Valley ducks. Probiotic lactic acid bacterial strains were screened for antibacterial activity and tolerance to produce a Lactobacillus spp. mixture. The effects of the compound on the growth performance and intestinal flora of Cherry Valley ducks were studied. Based on the results of the antibacterial activity and tolerance tests, the highly active strains Lactobacillus casei 1.2435, L. salivarius L621, and L. salivarius L4 from the intestines of Cherry Valley ducks were selected. The optimum ratio of L. casei 1.2435, L. salivarius L621, and L. salivarius L4 was 1:1:2, the amount of inoculum used was 1%, and the fermentation time was 14 h. In vivo experiments showed that compared with the control group, the relative abundances of intestinal Lactobacillus and Blautia were significantly increased in the experimental group fed the lactobacilli compound (P < 0.05); the relative abundances of Parabacteroides, [Ruminococcus]_torques_group, and Enterococcus were significantly reduced (P < 0.05), and the growth and development of the dominant intestinal flora were promoted in the Cherry Valley ducks. This study will provide more opportunities for Cherry Valley ducks to choose microecological agents for green and healthy breeding.


Subject(s)
Ducks , Gastrointestinal Microbiome , Intestines , Lactobacillus , Probiotics , Animals , Probiotics/pharmacology , Ducks/microbiology , Gastrointestinal Microbiome/drug effects , Lactobacillus/isolation & purification , Intestines/microbiology , Fermentation , Animal Feed , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology
11.
Food Res Int ; 187: 114424, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763675

ABSTRACT

This study aimed to investigate the changes in flavor quality of roasted duck during repetitive freeze-thawing (FT, -20 ℃ for 24 h, then at 4 ℃ for 24 h for five cycles) of raw duck preforms. HS-SPME/GC-MS analysis showed that more than thirty volatile flavor compounds identified in roasted ducks fluctuated with freeze-thawing of raw duck preforms, while hexanal, nonanal, 1-octen-3-ol, and acetone could as potential flavor markers. Compared with the unfrozen raw duck preforms (FT-0), repetitive freeze-thawing increased the protein/lipid oxidation and cross-linking of raw duck preforms by maintaining the higher carbonyl contents (1.40 âˆ¼ 3.30 nmol/mg), 2-thiobarbituric acid reactive substances (0.25 âˆ¼ 0.51 mg/kg), schiff bases and disulfide bond (19.65 âˆ¼ 30.65 µmol/g), but lower total sulfhydryl (73.37 âˆ¼ 88.94 µmol/g) and tryptophan fluorescence intensity. Moreover, A lower protein band intensity and a transformation from α-helixes to ß-sheets and random coils were observed in FT-3 âˆ¼ FT-5. The obtained results indicated that multiple freeze-thawing (more than two cycles) of raw duck preforms could be detrimental to the flavor quality of the roasted duck due to excessive oxidation and degradation.


Subject(s)
Cooking , Ducks , Freezing , Gas Chromatography-Mass Spectrometry , Taste , Volatile Organic Compounds , Animals , Volatile Organic Compounds/analysis , Food Handling/methods , Oxidation-Reduction , Food Quality , Thiobarbituric Acid Reactive Substances/analysis
12.
BMC Genomics ; 25(1): 486, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755558

ABSTRACT

BACKGROUND: Amino acids are the basic components of protein and an important index to evaluate meat quality. With the rapid development of genomics, candidate regions and genes affecting amino acid content in livestock and poultry have been gradually revealed. Hence, genome-wide association study (GWAS) can be used to screen candidate loci associated with amino acid content in duck meat. RESULT: In the current study, the content of 16 amino acids was detected in 358 duck breast muscles. The proportion of Glu to the total amino acid content was relatively high, and the proportion was 0.14. However, the proportion of Met content was relatively low, at just 0.03. By comparative analysis, significant differences were found between males and females in 3 amino acids, including Ser, Met, and Phe. In addition, 12 SNPs were significantly correlated with Pro content by GWAS analysis, and these SNPs were annotated by 7 protein-coding genes; 8 significant SNPs were associated with Tyr content, and these SNPs were annotated by 6 protein-coding genes. At the same time, linkage disequilibrium (LD) analysis was performed on these regions with significant signals. The results showed that three SNPs in the 55-56 Mbp region of chromosome 3 were highly correlated with the leader SNP (chr3:55526954) that affected Pro content (r2 > 0.6). Similarly, LD analysis showed that there were three SNPs in the 21.2-21.6 Mbp region of chromosome 13, which were highly correlated with leader SNP (chr13:21421661) (r2 > 0.6). Moreover, Through functional enrichment analysis of all candidate genes. The results of GO enrichment analysis showed that several significant GO items were associated with amino acid transport function, including amino acid transmembrane transport and glutamine transport. The results further indicate that these candidate genes are closely associated with amino acid transport. Among them, key candidate genes include SLC38A1. For KEGG enrichment analysis, CACNA2D3 and CACNA1D genes were covered by significant pathways. CONCLUSION: In this study, GWAS analysis found a total of 28 significant SNPs affecting amino acid content. Through gene annotation, a total of 20 candidate genes were screened. In addition, Through LD analysis and enrichment analysis, we considered that SERAC1, CACNA2D3 and SLC38A1 genes are important candidate genes affecting amino acid content in duck breast muscle.


Subject(s)
Amino Acids , Ducks , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Ducks/genetics , Ducks/metabolism , Amino Acids/metabolism , Quantitative Trait Loci , Linkage Disequilibrium , Female , Male , Genetic Loci
13.
BMC Genomics ; 25(1): 522, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802792

ABSTRACT

Assessing the genetic structure of local varieties and understanding their genetic data are crucial for effective management and preservation. However, the genetic differences among local breeds require further explanation. To enhance our understanding of their population structure and genetic diversity, we conducted a genome-wide comparative study of Chaohu and Ji'an Red ducks using genome sequence and restriction site-associated DNA sequencing technology. Our analysis revealed a distinct genetic distinction between the two breeds, leading to divided groups. The phylogenetic tree for Chaohu duck displayed two branches, potentially indicating minimal impact from artificial selection. Additionally, our ROH (runs of homozygosity) analysis revealed that Chaohu ducks had a lower average inbreeding coefficient than Ji'an Red ducks. We identified several genomic regions with high genetic similarity in these indigenous duck breeds. By conducting a selective sweep analysis, we identified 574 candidate genes associated with muscle growth (BMP2, ITGA8, MYLK, and PTCH1), fat deposits (ELOVL1 and HACD2), and pigmentation (ASIP and LOC101797494). These results offer valuable insights for the further enhancement and conservation of Chinese indigenous duck breeds.


Subject(s)
Ducks , Genome , Selection, Genetic , Animals , Ducks/genetics , Phylogeny , Genomics/methods , Genetic Variation , Polymorphism, Single Nucleotide , Breeding
14.
Emerg Infect Dis ; 30(6): 1223-1227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703023

ABSTRACT

Highly pathogenic avian influenza H5N6 and H5N1 viruses of clade 2.3.4.4b were simultaneously introduced into South Korea at the end of 2023. An outbreak at a broiler duck farm consisted of concurrent infection by both viruses. Sharing genetic information and international surveillance of such viruses in wild birds and poultry is critical.


Subject(s)
Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Influenza in Birds/virology , Influenza in Birds/epidemiology , Republic of Korea/epidemiology , Animals , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Ducks/virology , Influenza A virus/genetics , Influenza A virus/classification , Coinfection/virology , Coinfection/epidemiology , History, 21st Century , Poultry Diseases/virology , Poultry Diseases/epidemiology
15.
Sci Total Environ ; 933: 173032, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38734099

ABSTRACT

Ferroptosis is frequently observed in fibrosis and diseases related to iron metabolism disorders in various mammalian organs. However, research regarding the damage mechanism of ferroptosis in the female reproductive system of avian species remains unclear. In this study, Muscovy female ducks were divided into three groups which were given purified water, 1 mg/L polyvinyl chloride microplastics (PVC-MPs) and 10 mg/L PVC-MPs for two months respectively, to investigate the ferroptosis induced by PVC-MPs caused ovarian tissue fibrosis that lead to premature ovarian failure. The results showed that the high accumulation of PVC-MPs in ovarian tissue affected the morphology and functional activity of ovarian granulosa cells (GCs) and subsequently caused the follicular development disorders and down-regulated the immunosignaling of ovarian steroidogenesis proteins 3ß-hydroxysteroid dehydrogenase (3ß-HSD), 17ß-hydroxysteroid dehydrogenase (17ß-HSD), CYP11A1 cytochrome (P450-11A1) and CYP17A1 cytochrome (P450-17A1) suggested impaired ovarian function. In addition, PVC-MPs significantly up-regulated positive expression of collagen fibers, significantly increased lipid peroxidation and malondialdehyde (MDA) level, along with encouraged overload of iron contents in the ovarian tissue were the characteristics of ferroptosis. Further, immunohistochemistry results confirmed that immunosignaling of ferroptosis related proteins Acyl-CoA synthetase (ACSL4), Cyclooxygenase 2 (COX2) and ferritin heavy chain 1 (FTH1) were significantly increased, but solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase (GPX4) were decreased by PVC-MPs in the ovarian tissue. In conclusion, our study demonstrates that PVC-MPs induced ferroptosis in the ovarian GCs, leading to follicle development disorders and ovarian tissue fibrosis, and ultimately contributing to various female reproductive disorders through regulating the proteins expression of ferroptosis.


Subject(s)
Ducks , Ferroptosis , Microplastics , Ovary , Polyvinyl Chloride , Animals , Female , Ferroptosis/drug effects , Polyvinyl Chloride/toxicity , Ovary/drug effects , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Granulosa Cells/drug effects , Granulosa Cells/metabolism
16.
Ecotoxicol Environ Saf ; 278: 116430, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718729

ABSTRACT

Copper (Cu) serves as an essential cofactor in all organisms, yet excessive Cu exposure is widely recognized for its role in inducing liver inflammation. However, the precise mechanism by which Cu triggers liver inflammation in ducks, particularly in relation to the interplay in gut microbiota regulation, has remained elusive. In this investigation, we sought to elucidate the impact of Cu exposure on liver inflammation through gut-liver axis in ducks. Our findings revealed that Cu exposure markedly elevated liver AST and ALT levels and induced liver inflammation through upregulating pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and triggering the LPS/TLR4/NF-κB signaling pathway. Simultaneously, Cu exposure induced alterations in the composition of intestinal flora communities, notably increasing the relative abundance of Sphingobacterium, Campylobacter, Acinetobacter and reducing the relative abundance of Lactobacillus. Cu exposure significantly decreased the protein expression related to intestinal barrier (Occludin, Claudin-1 and ZO-1) and promoted the secretion of intestinal pro-inflammatory cytokines. Furthermore, correlation analysis was observed that intestinal microbiome and gut barrier induced by Cu were closely related to liver inflammation. Fecal microbiota transplantation (FMT) experiments further demonstrated the microbiota-depleted ducks transplanting fecal samples from Cu-exposed ducks disturbed the intestinal dysfunction, which lead to impaire liver function and activate the liver inflammation. Our study provided insights into the mechanism by which Cu exposure induced liver inflammation in ducks through the regulation of gut-liver axis. These results enhanced our comprehension of the potential mechanisms driving Cu-induced hepatotoxicity in avian species.


Subject(s)
Copper , Ducks , Gastrointestinal Microbiome , Lipopolysaccharides , Liver , Signal Transduction , Toll-Like Receptor 4 , Animals , Gastrointestinal Microbiome/drug effects , Toll-Like Receptor 4/metabolism , Signal Transduction/drug effects , Liver/drug effects , Lipopolysaccharides/toxicity , Copper/toxicity , Cytokines/metabolism , Inflammation/chemically induced , Inflammation/pathology , Chemical and Drug Induced Liver Injury/pathology
17.
Viruses ; 16(5)2024 05 20.
Article in English | MEDLINE | ID: mdl-38793692

ABSTRACT

Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.


Subject(s)
Ducks , Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Ducks/virology , Flavivirus/pathogenicity , Flavivirus/immunology , Flavivirus/genetics , Flavivirus Infections/veterinary , Flavivirus Infections/virology , Flavivirus Infections/transmission , Genome, Viral , Poultry Diseases/virology , Poultry Diseases/transmission , Viral Vaccines/immunology , Farmers , Antibodies, Viral/blood , Humans
18.
Sci Total Environ ; 927: 172395, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608882

ABSTRACT

PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.


Subject(s)
Cadmium , Ducks , Microplastics , Oxidative Stress , Pancreas , Animals , Cadmium/toxicity , Oxidative Stress/drug effects , Pancreas/drug effects , Microplastics/toxicity , Fibrosis , Polyvinyl Chloride/toxicity , Water Pollutants, Chemical/toxicity
19.
Open Vet J ; 14(1): 553-563, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633170

ABSTRACT

Background: Bacterial infections causing digestive problems are among the most serious threats to Egypt's duck industry, owing to their effects on feed utilization and body weight gain. Aim: As a result, the goal of this study was to identify bacterial pathogens causing enteritis in ducks as well as testing their antimicrobials resistance capabilities. Methods: Forty-two duck flocks from different localities at four Egyptian Governorates (El-Sharkia, El-Gharbia, El-Dakahlia, and El-Qaliobia) have been subjected to clinical and postmortem examination as well as bacterial isolation and identification. The liver samples have been collected aseptically from freshly euthanized ducks for bacterial isolation followed by identification using conventional biochemical tests, VITEK 2 system, and confirmatory polymerase chain reaction (PCR) for detection of the uid A gene (beta-glucuronidase enzyme) of Escherichia coli. In addition, antimicrobial sensitivity testing for the isolates against different antimicrobials by the VITEK 2 system was used. Results: Forty-six positive bacterial isolates were identified using conventional methods and the VITEK 2 system including Staphylococcus spp. (52.17%), E. coli (41.30%), and 2.17% for each of Enterococcus casseli lavus, Salmonella enterica subspecies arizonae, and Enterobacter cloacae. PCR was positive for E. coli uid A gene at 556 bp. The antibiogram patterns of isolated pathogens from naturally infected ducks in our work demonstrated 87% multidrug resistance with varying results against different antimicrobial drugs tested. Such findings supported the fact of the upgrading multidrug resistance of Staphylococci and Enterobacteriacae. Conclusion: The most prevalent bacterial pathogens associated with duck enteritis were Staphylococcus spp. and E. coli with the first report of S. enterica subspecies arizonae causing duck enteritis in Egypt.


Subject(s)
Salmonella enterica , Animals , Salmonella arizonae , Ducks , Egypt , Escherichia coli , Anti-Bacterial Agents/pharmacology , Staphylococcus , Drug Resistance, Multiple
20.
Anim Sci J ; 95(1): e13946, 2024.
Article in English | MEDLINE | ID: mdl-38651265

ABSTRACT

This study explored the effects of a Bacillus subtilis and Lactobacillus acidophilus mixture containing the co-fermented products of the two probiotics on growth performance, serum immunity and cecal microbiota of Cherry Valley ducks. This study included 480 one-day-old Cherry Valley ducks divided into four feeding groups: basal diet (control group) and basal diet supplemented with 300, 500, or 700 mg/kg of the probiotic powder; the ducks were raised for 42 days. Compared with the control group, body weight on day 42 and the average daily gain on days 15-42 significantly increased (p < 0.05), and the feed conversion rate significantly decreased (p < 0.05) in the experimental groups. Furthermore, the serum immunoglobulin (Ig) A, IgG, IgM, and interleukin (IL)-4 levels increased significantly (p < 0.05), and IL-1ß, IL-2, and tumor necrosis factor-α decreased significantly (p < 0.05) in the experimental groups. Finally, Sellimonas, Prevotellaceae NK3B31 group, Lachnospiraceae NK4A136 group and Butyricoccus played an important role in the cecal microbiota of the experimental group. Thus, the probiotic powder has impacts on the growth performance, serum immunity and cecal microbiota of Cherry Valley Ducks.


Subject(s)
Bacillus subtilis , Cecum , Ducks , Lactobacillus acidophilus , Probiotics , Animals , Probiotics/administration & dosage , Cecum/microbiology , Ducks/growth & development , Ducks/microbiology , Ducks/immunology , Ducks/blood , Gastrointestinal Microbiome , Diet/veterinary , Animal Feed , Immunoglobulins/blood , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL
...