Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 874
Filter
1.
Gene ; 932: 148901, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39209181

ABSTRACT

A previous study on ovarian and hypothalami transcriptome analysis in white Muscovy duck revealed that MAP3K8 gene participated in MAPK signaling pathway that influence egg production. Additionally, MAP3K8 was predicted as a target gene of miRNA-509-3p that promotes the secretion of oestradiol which is an important hormone in egg ovulation. This suggested that MAP3K8 might have a functional role in the reproductive performance "egg production" of white Muscovy ducks. Herein, we focused on expression level of MAP3K8 in reproductive and non-reproductive tissues of highest (HP) and lowest (LP) egg producing white Muscovy ducks and identified the polymorphism in MAP3K8 and its association with three egg production traits; Age at first egg (AFE), number of eggs at 300 days (N300D) and 59 weeks (N59W). The results of expression level indicated that mRNA of MAP3K8 was significantly (p < 0.01) expressed in the oviduct than in the ovary and hypothalamus. Seven synonymous SNPs were detected, and association analysis showed that g.148303340 G>A and g.148290065 A>G were significantly (p < 0.05) associated with N300D and N59W. The results of this study might serve as molecular marker for marker-assisted selection of white Muscovy ducks for egg production.


Subject(s)
Ducks , Gene Expression Profiling , MAP Kinase Kinase Kinases , Ovary , Polymorphism, Single Nucleotide , Animals , Ducks/genetics , Female , Ovary/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Hypothalamus/metabolism , Oviducts/metabolism
2.
Fa Yi Xue Za Zhi ; 40(3): 254-260, 2024 Jun 25.
Article in English, Chinese | MEDLINE | ID: mdl-39166306

ABSTRACT

OBJECTIVES: To establish a rapid, accurate, and sensitive multiplex PCR detection method for the simultaneous identification of the six common edible meats (beef, lamp, chicken, pork, goose, duck), and to evaluate its application value in meat adulteration identification. METHODS: Based on complete mitochondrial genomic sequences of six species in the GenBank database, DNA sequences (cattle:16S rRNA; sheep:COX-1; chickens:Cytb; pig:COX-1; goose:NADH2; duck:16S rRNA) with intra-species conservation and inter-species specificity were screened, and species-specific primers were designed to construct a multiplex PCR detection system that can simultaneously detect the meat of six common species. The species specificity, sensitivity and reproducibility of the system were studied, and the simulated mixture sample detection was performed. RESULTS: This study successfully constructed a multiplex PCR detection system that can detect the meats of six common species simultaneously. The system was not effective in DNA amplification of non-target species. When the DNA template sizes were 0.062 5-2 ng/µL, the amplified products of all six species could be detected. The duck component was still detected when the mixing ratio of duck and beef was as low as 0.5%. CONCLUSIONS: This study constructs and establishes a multiplex PCR detection system with strong specificity, high sensitivity, and good reproducibility. It can accurately identify the components of animal origin in common edible meats and provide a simple and practical method for identifying adulteration of common edible meats and meat products in China.


Subject(s)
Chickens , DNA Primers , Ducks , Geese , Meat , Multiplex Polymerase Chain Reaction , Sensitivity and Specificity , Species Specificity , Animals , Multiplex Polymerase Chain Reaction/methods , Ducks/genetics , Reproducibility of Results , Meat/analysis , Sheep , Swine , Cattle , RNA, Ribosomal, 16S/genetics , Food Contamination/analysis
3.
Anim Biotechnol ; 35(1): 2390940, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39137276

ABSTRACT

Blood composition is indicative of health-related traits such as immunity and metabolism. The use of molecular genetics to investigate alterations in these attributes in laying ducks is a novel approach. Our objective was to employ genome - wide association studies (GWAS) and haplotype - sharing analysis to identify genomic regions and potential genes associated with 11 blood components in Shaoxing ducks. Our findings revealed 35 SNPs and 1 SNP associated with low-density lipoprotein cholesterol (LDL) and globulin (GLB), respectively. We identified 36 putative candidate genes for the LDL trait in close proximity to major QTLs and key loci. Based on their biochemical and physiological properties, TRA2A, NPY, ARHGEF26, DHX36, and AADAC are the strongest putative candidate genes. Through linkage disequilibrium analysis and haplotype sharing analysis, we identified three haplotypes and one haplotype, respectively, that were significantly linked with LDL and GLB. These haplotypes could be selected as potential candidate haplotypes for molecular breeding of Shaoxing ducks. Additionally, we utilized a bootstrap test to verify the reliability of GWAS with small experimental samples. The test can be accessed at https://github.com/xuwenwu24/Bootstrap-test.


Subject(s)
Ducks , Genome-Wide Association Study , Haplotypes , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Ducks/genetics , Quantitative Trait Loci/genetics , Polymorphism, Single Nucleotide/genetics , Linkage Disequilibrium , Female , Cholesterol, LDL/blood , Cholesterol, LDL/genetics
4.
Genes (Basel) ; 15(8)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39202404

ABSTRACT

As a founding member of the Src family of kinases, Src has been confirmed to participate in the regulation of immune responses, integrin signaling, and motility. Ducks are usually asymptomatic carriers of RNA viruses such as Newcastle disease virus and avian influenza virus, which can be deadly to chickens. The beneficial role of Src in modulating the immune response remains largely unknown in ducks. Here, we characterized the duck Src and found that it contains a 192-base-pair 5' untranslated region, a 1602-base-pair coding region, and a 2541-base-pair 3' untranslated region, encoding 533 amino acid residues. Additionally, duSrc transcripts were significantly activated in duck tissues infected by Newcastle disease virus compared to controls. The duSrc transcripts were notably widespread in all tissues examined, and the expression level was higher in liver, blood, lung, pancreas, and thymus. Moreover, we found the expression levels of IFN-ß, NF-κB, IRF3, and Src were significantly increased in DEFs after infection with 5'ppp dsRNA, but there was no significant difference before and after treatment in DF1 cells. Furthermore, overexpression of duSrc followed by stimulation with 5'ppp dsRNA led to an elevation of IFN-ß levels. The SH3 and PTKc domains of duSrc contributed to promoting the activity of IFN-ß and NF-κB in DEFs stimulated by 5'ppp dsRNA.


Subject(s)
Cloning, Molecular , Ducks , Animals , Ducks/genetics , Ducks/immunology , Ducks/virology , src-Family Kinases/genetics , src-Family Kinases/metabolism , Newcastle disease virus/immunology , Newcastle disease virus/genetics , Avian Proteins/genetics , Avian Proteins/immunology , Avian Proteins/metabolism , Newcastle Disease/immunology , Newcastle Disease/virology , Newcastle Disease/genetics , Interferon-beta/genetics , Interferon-beta/immunology , Interferon-beta/metabolism , Tissue Distribution , Poultry Diseases/immunology , Poultry Diseases/virology , Poultry Diseases/genetics
5.
Poult Sci ; 103(9): 104005, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053372

ABSTRACT

Annexin A2 (ANXA2) is a multifaceted protein implicated in various stages of viral infections, particularly in envelope virus replication through mechanisms such as endocytosis and exocytosis. This study delves into the characterization and functional dynamics of duck ANXA2 (duANXA2). We successfully cloned the full-length coding sequence of duANXA2 and conducted a detailed structural analysis. The open reading frame (ORF) of duANXA2 is 1020 bp, encoding 339 amino acids and featuring 4 conserved domains. Phylogenetic tree analysis indicates that duANXA2 is most closely related to Gallus gallus, with significantly lesser homology to fish species. We evaluated the tissue-specific expression of duANXA2 in healthy ducks, noting its ubiquitous presence but varying expression levels across different organs, with notably high expression in the esophagus and immune organs. Upon infecting duck embryo fibroblast (DEF) cells with the duck Tembusu virus (DTMUV), a flavivirus causing ducks substantial mortality and a dramatic decline in egg production, we observed a pronounced upregulation of duANXA2. Functional assays demonstrated that overexpression of duANXA2 in DEF cells augments DTMUV replication, while its interference markedly reduces DTMUV replication. These findings underscore the role of duANXA2 as a facilitator of DTMUV replication, presenting it as a potential target for therapeutic intervention in managing DTMUV infections.


Subject(s)
Annexin A2 , Avian Proteins , Ducks , Flavivirus , Phylogeny , Poultry Diseases , Virus Replication , Animals , Ducks/genetics , Annexin A2/genetics , Annexin A2/metabolism , Poultry Diseases/virology , Poultry Diseases/genetics , Flavivirus/physiology , Flavivirus/genetics , Avian Proteins/genetics , Avian Proteins/metabolism , Avian Proteins/chemistry , Cloning, Molecular , Flavivirus Infections/veterinary , Flavivirus Infections/virology , Flavivirus Infections/genetics , Amino Acid Sequence , Sequence Alignment/veterinary
6.
Poult Sci ; 103(9): 103985, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968866

ABSTRACT

The primary feathers of ducks have important economic value in the poultry industry. This study quantified the primary feather phenotype of Nonghua ducks, including the primary feathers' length, area, distribution of black spots, and feather symmetry. And genome-wide association analysis was used to screen candidate genes that affect the primary feather traits. The genome-wide association study (GWAS) results identified the genetic region related to feather length (FL) on chromosome 2. Through Linkage disequilibrium (LD) analysis, candidate regions (chr2: 115,246,393-116,501,448 bp) were identified and were further annotated to 5 genes: MRS2, GPLD1, ALDH5A1, KIAA0319, and ATP9B. Secondly, candidate regions related to feather black spots were identified on chromosome 21. Through LD analysis, the candidate regions (chr21: 163,552-2,183,853 bp) were screened and further annotated to 47 genes. Among them, STK4, CCN5, and YWHAB genes were related to melanin-related pathways or pigment deposition, which may be key genes affecting the distribution of black spots on feathers. In addition, we also screened 125 genes on multiple chromosomes that may be related to feather symmetry. Among them, significant SNPs on chromosome 1 were further identified as candidate regions (chr1: 142,118,209-142,223,605 bp) through LD analysis and annotated into 2 genes, TGFBRAP1 and LOC113839965. These results reported the genetic basis of the primary feather from multiple phenotypes, and offered valuable insights into the genetic basis for the growth and development of duck feathers and feather color pattern.


Subject(s)
Ducks , Feathers , Genome-Wide Association Study , Animals , Genome-Wide Association Study/veterinary , Ducks/genetics , Polymorphism, Single Nucleotide , Phenotype , Pigmentation/genetics , Linkage Disequilibrium
7.
Poult Sci ; 103(9): 104032, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39003796

ABSTRACT

Egg production is an important economic trait in layer ducks and understanding the genetics basis is important for their breeding. In this study, a genome-wide association study (GWAS) for egg production traits in 303 female Longyan Shan-ma ducks was performed based on a genotyping-by-sequencing strategy. Sixty-two single nucleotide polymorphisms (SNPs) associated with egg weight traits were identified (P < 9.48 × 10-5), including 8 SNPs at 5% linkage disequilibrium (LD)-based Bonferroni-corrected genome-wide significance level (P < 4.74 × 10-6). One hundred and nineteen SNPs were associated with egg number traits (P < 9.48 × 10-5), including 13 SNPs with 5% LD-based Bonferroni-corrected genome-wide significance (P < 4.74 × 10-6). These SNPs annotated 146 target genes which contained known candidate genes for egg production traits, such as prolactin and prolactin releasing hormone receptor. This study identified that these associated genes were significantly enriched in egg production-related pathways (P < 0.05), such as the oxytocin signaling, MAPK signaling, and calcium signaling pathways. It was notable that 18 genes were differentially expressed in ovarian tissues between higher and lower egg production in Shan-ma ducks. The identified potential candidate genes and pathways provide insight into the genetic basis underlying the egg production trait of layer ducks.


Subject(s)
Ducks , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Ducks/genetics , Ducks/physiology , Female , Genome-Wide Association Study/veterinary , Ovum/physiology
8.
Poult Sci ; 103(9): 104015, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39003797

ABSTRACT

High-laying ducks are often fed high-energy, nutritious feeds to maintain high productivity, which predisposes them to lipid metabolism disorders and the development of fatty liver syndrome (FLS), which seriously affects production performance and has a substantial economic impact on the poultry industry. Therefore, it is necessary to elucidate the mechanisms underlying the development of fatty liver syndrome. In this study, seven Shan Partridge ducks, each with fatty liver syndrome and normal laying ducks, were selected, and Hematoxylin Eosin staining (HE staining), Masson staining, and transcriptome sequencing were performed on liver tissue. In addition to exploring key genes and pathways using conventional analysis methods, we constructed the first Kyoto Encyclopedia of Genes and Genomes (KEGG) database-based predefined gene set containing 12,764 pathways and 16,836 genes and further performed gene set enrichment analysis (GSEA) on the liver transcriptome data. Finally, key nodes and biological processes were identified via the protein-protein interaction (PPI) network. The results showed that the liver in the FL group exhibited steatosis and fibrosis, and a total of 3,663 genes with upregulated expression versus 2,296 downregulated genes were screened by conventional analysis. GSEA analysis and PPI network analysis revealed that the liver in the FL group exhibited disruption of the mitochondrial electron transport chain, leading to decreased oxidative phosphorylation and the secretion of excessive proinflammatory factors amid the continuous accumulation of lipids. Under continuous chronic inflammation, cell cycle arrest triggers apoptosis, while fibrosis becomes more severe, and procarcinogenic genes are activated, leading to the continuous development and deterioration of the liver. In conclusion, the predefined gene set constructed in this study can be used for GSEA, and the identified hub genes provide useful reference data and a solid foundation for the study of the genetic regulatory mechanism of fatty liver syndrome in ducks.


Subject(s)
Ducks , Fatty Liver , Poultry Diseases , Transcriptome , Animals , Ducks/genetics , Poultry Diseases/genetics , Fatty Liver/veterinary , Fatty Liver/genetics , Female , Protein Interaction Maps , Gene Expression Profiling/veterinary
9.
Poult Sci ; 103(9): 103928, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39003794

ABSTRACT

Semen quality is an important indicator that can directly affect fertility. In mammals, miRNAs in seminal plasma extracellular vesicles (SPEVs) and sperms can regulate semen quality. However, relevant regulatory mechanism in duck sperms remains largely unclear. In this study, duck SPEVs were isolated and characterized by transmission electron microscopy (TEM), western blot (WB), and nanoparticle tracking analysis (NTA). To identify the important molecules affecting semen quality, we analysed the miRNA expression in sperms and SPEVs of male ducks in high semen quality group ((DHS, DHSE) and low semen quality group (DLS, DLSE). We identified 94 differentially expressed (DE) miRNAs in the comparison of DHS vs. DLS, and 21 DE miRNAs in DHSE vs. DLSE. Target genes of SPEVs DE miRNAs were enriched in ErbB signaling pathway, glycometabolism, and ECM-receptor interaction pathways (P < 0.05), while the target genes of sperm DE miRNAs were enriched in ribosome (P < 0.05). The miRNA-target-pathway interaction network analyses indicated that 5 DE miRNAs (miR-34c-5p, miR-34b-3p, miR-449a, miR-31-5p, and miR-128-1-5p) targeted the largest number of target genes enriched in MAPK, Wnt and calcium signaling pathways, of which FZD9 and ANAPC11 were involved in multiple biological processes related to sperm functions, indicating their regulatory effects on sperm quality. The comparison of DE miRNAs of SPEVs and sperms found that mir-31-5p and novel-273 could potentially serve as biomarkers for semen quality detection. Our findings enhance the insight into the crucial role of SPEV and sperm miRNAs in regulating semen quality and provide a new perspective for subsequent studies.


Subject(s)
Ducks , Extracellular Vesicles , MicroRNAs , Semen Analysis , Semen , Spermatozoa , Animals , Male , Ducks/physiology , Ducks/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Semen Analysis/veterinary , Extracellular Vesicles/metabolism , Semen/physiology , Semen/chemistry , Spermatozoa/physiology
10.
Animal ; 18(8): 101234, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39059119

ABSTRACT

The mule duck accounts for over 90% of French foie gras production, a sector where feed represents two-thirds of production costs. This study focuses on analysing the feeding behaviours of the mule duck and its parental populations (Pekin and Muscovy) using automated feeders. To assess feed efficiency, feed conversion ratio and residual feed intake were analysed, along with six traits derived at the daily and meal levels. Genetic parameters were estimated separately in purebred populations, as well as with a joint crossbred model that estimated the parental contributions to the hybrid crossbred performances. In relation to higher feed intakes and much-reduced feeding times (P < 0.001), the feeding rate in the Pekin population was twice as high as in the Muscovy population (19 g/min vs 9 g/min), while the mule duck exhibited a large heterosis for this trait (29 g/min). Feeding traits exhibited moderate (0.38 ± 0.11) to high (0.65 ± 0.11) heritabilities. Similar correlation patterns were observed between feeding traits in the two parental populations. In the Pekin line, the feed conversion ratio did not significantly correlate with feeding traits except for daily feed intake. However, in the Muscovy population, it was negatively correlated with the number of meals (-0.51 ± 0.21) and positively with meal feed intake and meal duration (+0.79 ± 0.17 and + 0.71 ± 0.26, respectively). The contributions of the two parental species to the hybrid's performance differed, with the Pekin contributing more to feeding and meat traits compared to the Muscovy. They were similar only for liver weight. Additionally, unfavourable correlations between meat traits and liver traits were estimated in both pathways. Genetic relationships between feeding traits and slaughter traits varied by parental origin, suggesting different strategies for improving hybrid performance in the two parental species. However, in both pathways, genetic correlations between feed conversion ratio and meat traits (breast muscle and thigh weights) were favourable (<-0.42 ± 0.18), whereas they were unfavourable (>0.41 ± 0.20) for fatty liver weight. Altogether, improving liver traits and feed efficiency in the hybrid through selection in the parental populations could be enhanced by considering feeding traits recorded with electronic feeders, provided that adverse correlations are properly accounted for in a multitrait index.


Subject(s)
Ducks , Feeding Behavior , Animals , Ducks/physiology , Ducks/genetics , Female , Male , Breeding , Hybrid Vigor , Animal Feed/analysis
11.
PLoS One ; 19(7): e0305914, 2024.
Article in English | MEDLINE | ID: mdl-38950038

ABSTRACT

Mule duck is vitally important to the production of global duck meat. Here, we present two high-quality haplotypes of a female mule duck (haplotype 1 (H1):1.28 Gb, haplotype 2 (H2): 1.40 Gb). The continuity (H1: contig N50 = 14.90 Mb, H2: contig N50 = 15.70 Mb) and completeness (BUSCO: H1 = 96.9%, H2 = 97.3%) are substantially better than those of other duck genomes. We detected the structural variations (SVs) in H1 and H2. We observed a positive correlation between autosome length and the number of SVs. Z chromosome was some deficient in deletions and insertions, but W chromosome was some excessive. A total of 1,451 genes were haplotype specific expression (HSEs). Among them, 737 specifically expressed in H1, and 714 specifically expressed in H2. We found that H1 and H2 HSEs tended to be involved in similar biological processes, such as myometrial relaxation and contraction pathways, muscle structure development and phosphorylation. Our haplotype-resolved genome assembly provides a powerful platform for future functional genomics, molecular breeding, and genome editing in mule duck.


Subject(s)
Ducks , Genome , Haplotypes , Animals , Ducks/genetics , Female , High-Throughput Nucleotide Sequencing/methods
12.
Poult Sci ; 103(8): 103899, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909509

ABSTRACT

The Jinling White duck represents a newly developed breed characterized by a rapid growth rate and a superior meat quality, offering significant economic value and research potential; however, the genetic basis underlying their body weight traits remains less understood. Here, we performed whole-genome resequencing for 201 diverse Jinling White male ducks and conducted population genomic analyses, suggesting a rich genetic diversity within the Jinling White duck population. Equipped with our genomic resources, we applied genome-wide association analysis for body weight on birth (BWB), body weight on 1 wk (BW1), body weight on 3 wk (BW3), body weight on 5 wk (BW5) and body weight on 7 wk (BW7) using 4 statistical models. Comparative studies indicated that factored spectrally transformed linear mixed models (FaST-LMM) demonstrated the most superior efficiency, yielding more results with the minimal false positives. We discovered that PUS7, FBXO11, FOXN2, MSH6, and SLC4A4 were associated with BWB. RAG2, and TMEFF2 were candidate genes for BW1, and STARD13, Klotho, ZAR1L are likely candidates for BW3 and BW5. PLXNC1, ATP1A1, CD58, FRYL, OCIAD1, and OCIAD2 were linked to BW7. These findings provide a genetic reference for the selection and breeding of Jinling White ducks, while also deepened our understanding of Growth and development phenotypic in ducks.


Subject(s)
Body Weight , Ducks , Genome-Wide Association Study , Animals , Ducks/genetics , Ducks/physiology , Ducks/growth & development , Genome-Wide Association Study/veterinary , Body Weight/genetics , Male , China , East Asian People
13.
BMC Genomics ; 25(1): 551, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824564

ABSTRACT

Because number of matured muscle fibers in poultry does not increase after birth, the meat yield is mainly determined during embryogenesis. We previously indicated breast muscle grew rapidly from 18th day after hatching (E18) to E27, and almost stopped from E27 to E34 of Jiaji ducks, while the mechanism is unclear. This study utilized RNA-seq to explore the related genes of muscle development and their relationship with small molecule metabolites at E18, E27 and E34 of Jiaji ducks. Several thousand differentially expressed genes (DEGs) were detected among E18, E27 and E34. DEGs expression profiles included 8 trend maps, among which trend 1 was opposite to and trend 6 was consistent with breast muscle development trend of Jiaji ducks. Through joint analysis between trend 1 of DEGs and trend 1 of differential metabolites (DEMs), protein digestion and absorption pathway stood out. The decrease of COL8A2 gene expression will lead to the decrease of arginine content, which will inhibit the development of breast muscle in embryonic Jiaji duck. Similarly, joint analysis between trend 6 of DEGs and trend 6 of DEMs indicated the increase of GAMT gene expression will cause the increase of proline content, and then promote the development of breast muscle of Jiaji duck in embryonic period. These results will be helpful for further understanding the mechanism of muscle yields of Jiaji ducks.


Subject(s)
Ducks , Metabolomics , Animals , Ducks/metabolism , Ducks/genetics , Ducks/embryology , Metabolomics/methods , Gene Expression Profiling , Transcriptome , Muscle, Skeletal/metabolism , Gene Expression Regulation, Developmental
14.
Genes (Basel) ; 15(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38927587

ABSTRACT

Landscapes are consistently under pressure from human-induced ecological change, often resulting in shifting species distributions. For some species, changing the geographical breadth of their niche space results in matching range shifts to regions other than those in which they are formally found. In this study, we employ a population genomics approach to assess potential conservation issues arising from purported range expansions into the south Texas Brush Country of two sister species of ducks: mottled (Anas fulvigula) and Mexican (Anas diazi) ducks. Specifically, despite being non-migratory, both species are increasingly being recorded outside their formal ranges, with the northeastward and westward expansions of Mexican and mottled ducks, respectively, perhaps resulting in secondary contact today. We assessed genetic ancestry using thousands of autosomal loci across the ranges of both species, as well as sampled Mexican- and mottled-like ducks from across overlapping regions of south Texas. First, we confirm that both species are indeed expanding their ranges, with genetically pure Western Gulf Coast mottled ducks confirmed as far west as La Salle county, Texas, while Mexican ducks recorded across Texas counties near the USA-Mexico border. Importantly, the first confirmed Mexican × mottled duck hybrids were found in between these regions, which likely represents a recently established contact zone that is, on average, ~100 km wide. We posit that climate- and land use-associated changes, including coastal habitat degradation coupled with increases in artificial habitats in the interior regions of Texas, are facilitating these range expansions. Consequently, continued monitoring of this recent contact event can serve to understand species' responses in the Anthropocene, but it can also be used to revise operational survey areas for mottled ducks.


Subject(s)
Ducks , Hybridization, Genetic , Animals , Ducks/genetics , Texas , Humans , Mexico
15.
Br Poult Sci ; 65(4): 378-386, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38738932

ABSTRACT

1. The Kaijiang duck is a native Chinese breed known for its excellent egg laying performance, killing-out percentage (88.57%), and disease resistance. The assessment of population genetic structure is the basis for understanding the genetics of indigenous breeds and for their protection and management.2. In this study, whole-genome sequencing was performed on 60 Kaijiang ducks to identify genetic variations and investigate the population structure. Homozygosity (ROH) analysis was conducted to assess inbreeding levels in the population.3. The study revealed a moderate level of inbreeding, indicated by an average inbreeding coefficient of 0.1043. This may impact the overall genetic diversity.4. Genomic Regions of Interest identified included 168 genomic regions exhibiting high levels of autozygosity. These regions were associated with processes including muscle growth, pigmentation, neuromodulation, and growth and reproduction.5. The significance of these pathways indicated their potential role in shaping the desirable traits of the Kaijiang duck. These findings provide insights into the genetic basis of the Kaijiang duck's desirable traits and can inform future breeding and conservation efforts.


Subject(s)
Ducks , Animals , Ducks/genetics , Ducks/physiology , Genetic Variation , Inbreeding , Whole Genome Sequencing/veterinary , Conservation of Natural Resources , Female , Male , China , Genome , Breeding
16.
Poult Sci ; 103(7): 103787, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743967

ABSTRACT

Sexual dimorphism in poultry, especially in Muscovy ducks, is a proven phenomenon characterized by significant differences in body weight, growth patterns, and gene expression between male and female individuals. However, there is a dearth of research on the candidate genes and mechanisms underlying these weight differences. We selected 301 Muscovy ducks and recorded their weekly body weights from birth. We utilized 3 non-linear growth models (Logistic, Bertalanffy, and Gompertz) to fit the growth curve of Muscovy ducks, it was found that the logistic model was the most suitable model for describing the growth curve of Muscovy ducks. The results from the logistic model showed that the inflection point of male Muscovy ducks occurred at a later age, and they had a heavier mature body weight than female Muscovy ducks. At 10 wk of age, we collected Muscovy duck breast muscle tissues for transcriptome sequencing (RNA-seq). To exclude the impact of weight difference, 185 differentially expressed genes (DEGs), such as PPAR, FABP3, PLIN1, and FOXO1, were screened. These DEGs were predominantly enriched in terms related to mitochondria, lipids, and nucleic acids. In addition, the gut microbiota has the ability to influence host physiology through the regulation of multiple processes, including playing a crucial role in host muscle growth and development. We randomly selected male and female Muscovy ducks for 16S rRNA sequencing analysis of their cecal microbiota. The results showed that there were significant differences in the composition of cecal microbiota between male and female Muscovy ducks. At the genus level, the relative abundance of Enterenecus and CAG_269 were lower in males compared to females, while Lawsonibacter, Parabacteroides_B, Streptococcus, UBA2658, Caccousia, and Butyricimonas were higher in males than in females. In summary, this study provides a scientific theoretical basis for revealing the different growth patterns of male and female Muscovy ducks, and offers explanations from both the molecular level and microbiological perspectives.


Subject(s)
Body Weight , Ducks , Sex Characteristics , Animals , Ducks/genetics , Ducks/growth & development , Ducks/physiology , Male , Female , Transcriptome , Sex Factors , Gastrointestinal Microbiome , Multiomics
17.
Poult Sci ; 103(7): 103832, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781766

ABSTRACT

The assessment of animal genetic structure had significant importance for the preservation and breeding of animal germplasm resources. Selection signals are genotype markers generated during the process of biological evolution, and the detection of selection signals could reveal the direction of species evolution. The aim of this study was to generate a whole-genome resequencing data from Jinding duck, Shanma duck, Youxian Partridge duck, and Taiwan Brown tsaiya duck to reveal their population structure and selection signals. The population structure analysis revealed significant genetic differences among the 4 indigenous laying ducks, indicating their independent lineage. Specifically, Shanma duck and Youxian partridge duck were closely and likely originated from a common ancestor. In addition, selection sweep analysis was performed using the population genetic differentiation coefficient (Fst) and nucleotide diversity ratio (π ratio). The top 5% was used as the threshold for the Fst and π ratio, and the 2 thresholds were combined to identify selected genomic regions. In the selected regions of the 3 comparison groups, 136, 143, and 268 candidate genes were detected. Further screening of all candidate genes revealed that 35 candidate genes appeared simultaneously in 3 comparative groups, with 16 genes annotated. The 16 genes were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The results revealed 5 functional genes (AQP3, PIK3C3, NOL6, RPP25, and DCTN3) that may be related to important economic traits in laying ducks and involved mainly invasopressin-regulated water reabsorption, ribosome biogenesis, and the PI3K signaling pathway. The results provide insights into the protection and exploitation of genetic resources of Chinese indigenous laying ducks.


Subject(s)
Ducks , Whole Genome Sequencing , Animals , Female , China , Ducks/genetics , Ducks/physiology , Genetic Variation , Selection, Genetic , Whole Genome Sequencing/veterinary
18.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38789099

ABSTRACT

The Muscovy duck (Cairina moschata) is a waterfowl indigenous to the neotropical regions of Central and South America. It has low demand for concentrated feed and strong adaptability to different rearing conditions. After introduced to China through Eurasian commercial trade, Muscovy ducks have a domestication history of around 300 years in the Fujian Province of China. In the 1990s, the commodity Muscovy duck breed "Crimo," cultivated in Europe, entered the Chinese market for consumption and breeding purposes. Due to the different selective breeding processes, Muscovy ducks have various populational traits and lack transparency of their genetic background. To remove this burden in the Muscovy duck breeding process, we analyzed genomic data from 8 populations totaling 83 individuals. We identify 11.24 million single nucleotide polymorphisms (SNPs) and categorized these individuals into the Fujian-bred and the Crimo populations according to phylogenetic analyses. We then delved deeper into their evolutionary relationships through assessing population structure, calculating fixation index (FST) values, and measuring genetic distances. Our exploration of runs of homozygosity (ROHs) and homozygous-by-descent (HBD) uncovered genomic regions enriched for genes implicated in fatty acid metabolism, development, and immunity pathways. Selective sweep analyses further indicated strong selective pressures exerted on genes including TECR, STAT2, and TRAF5. These findings provide insights into genetic variations of Muscovy ducks, thus offering valuable information regarding genetic diversity, population conservation, and genome associated with the breeding of Muscovy ducks.


Subject(s)
Ducks , Genetic Variation , Genome , Genomics , Polymorphism, Single Nucleotide , Animals , Ducks/genetics , Genomics/methods , Phylogeny , Genetics, Population , Selection, Genetic
19.
Genet Sel Evol ; 56(1): 37, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741064

ABSTRACT

Anas, is a genus of dabbling ducks and encompasses a considerable number of species, among which some are the progenitors of domestic ducks. However, the taxonomic position of the Anas genus remains uncertain because several of its species, initially categorized as Anas based on morphological characteristics, were subsequently reclassified and grouped with the South American genus Tachyeres, primarily based on analysis of their mitochondrial gene sequences. Here, we constructed a phylogenetic tree using nine of our recently assembled Anas genomes, two Tachyeres genomes, and one Cairina genome that are publicly available. The results showed that the Northern shoveler (Anas clypeata) and Baikal teal (Anas formosa) clustered with the other Anas species at the whole-genome level rather than with the Steamer ducks (genus Tachyeres). Therefore, we propose to restore the original classification of the Anas genus, which includes the Northern shoveler and Baikal teal species, 47 species in total. Moreover, our study unveiled extensive incomplete lineage sorting and an ancient introgression event from Tachyeres to Anas, which has led to notable phylogenetic incongruence within the Anas genome. This ancient introgression event not only supports the theory that Anas originated in South America but also that it played a significant role in shaping the evolutionary trajectory of Anas, including the domestic duck.


Subject(s)
Ducks , Phylogeny , Animals , Ducks/genetics , Ducks/classification , Whole Genome Sequencing/methods , Genome
20.
BMC Genomics ; 25(1): 486, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755558

ABSTRACT

BACKGROUND: Amino acids are the basic components of protein and an important index to evaluate meat quality. With the rapid development of genomics, candidate regions and genes affecting amino acid content in livestock and poultry have been gradually revealed. Hence, genome-wide association study (GWAS) can be used to screen candidate loci associated with amino acid content in duck meat. RESULT: In the current study, the content of 16 amino acids was detected in 358 duck breast muscles. The proportion of Glu to the total amino acid content was relatively high, and the proportion was 0.14. However, the proportion of Met content was relatively low, at just 0.03. By comparative analysis, significant differences were found between males and females in 3 amino acids, including Ser, Met, and Phe. In addition, 12 SNPs were significantly correlated with Pro content by GWAS analysis, and these SNPs were annotated by 7 protein-coding genes; 8 significant SNPs were associated with Tyr content, and these SNPs were annotated by 6 protein-coding genes. At the same time, linkage disequilibrium (LD) analysis was performed on these regions with significant signals. The results showed that three SNPs in the 55-56 Mbp region of chromosome 3 were highly correlated with the leader SNP (chr3:55526954) that affected Pro content (r2 > 0.6). Similarly, LD analysis showed that there were three SNPs in the 21.2-21.6 Mbp region of chromosome 13, which were highly correlated with leader SNP (chr13:21421661) (r2 > 0.6). Moreover, Through functional enrichment analysis of all candidate genes. The results of GO enrichment analysis showed that several significant GO items were associated with amino acid transport function, including amino acid transmembrane transport and glutamine transport. The results further indicate that these candidate genes are closely associated with amino acid transport. Among them, key candidate genes include SLC38A1. For KEGG enrichment analysis, CACNA2D3 and CACNA1D genes were covered by significant pathways. CONCLUSION: In this study, GWAS analysis found a total of 28 significant SNPs affecting amino acid content. Through gene annotation, a total of 20 candidate genes were screened. In addition, Through LD analysis and enrichment analysis, we considered that SERAC1, CACNA2D3 and SLC38A1 genes are important candidate genes affecting amino acid content in duck breast muscle.


Subject(s)
Amino Acids , Ducks , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Ducks/genetics , Ducks/metabolism , Amino Acids/metabolism , Quantitative Trait Loci , Linkage Disequilibrium , Female , Male , Genetic Loci
SELECTION OF CITATIONS
SEARCH DETAIL