Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Yakugaku Zasshi ; 142(2): 91-100, 2022.
Article in Japanese | MEDLINE | ID: mdl-35110456

ABSTRACT

Among my recent work on the syntheses of complex natural products based on the development of a novel synthetic method for the heteroaromatic skeleton, this article primarily deals with the total syntheses of (+)-CC-1065, isobatzeline A/B, and batzeline A. These syntheses were accomplished via a novel indole synthesis utilizing a ring expansion reaction of benzocyclobutenone oxime sulfonate as the key step. The 1,2-dihydro-3H-pyrrolo[3,2-e]indole segments of (+)-CC-1065 were rapidly constructed via a two-directional double-ring expansion strategy. Highly substituted pyrrolidine-fused common 5-chloro-2-methylthioindoles of isobatzeline A/B and batzeline A were constructed using a ring expansion reaction of benzocyclobutenone oxime sulfonate with NaSMe and a benzyne-mediated cyclization/functionalization reaction.


Subject(s)
Biological Products , Chemistry, Organic , Duocarmycins , Indoles , Pyrroloiminoquinones , Quinolones , Biological Products/chemical synthesis , Chemistry, Organic/methods , Cyclization , Duocarmycins/chemical synthesis , Indoles/chemical synthesis , Oximes/chemistry , Pyrroloiminoquinones/chemical synthesis , Quinolones/chemical synthesis
2.
Bioorg Med Chem ; 40: 116167, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33932713

ABSTRACT

The duocarmycins belong to a class of agent which has great potential for use in cancer therapy. Their exquisite potency means they are too toxic for systemic use, and targeted approaches are required to unlock their clinical potential. In this study, we have explored seco-OH-chloromethylindoline (CI) duocarmycin-based bioprecursors for their potential for cytochrome P450 (CYP)-mediated cancer cell kill. We report on synthetic and biological explorations of racemic seco-CI-MI, where MI is a 5-methoxy indole motif, and dehydroxylated analogues. We show up to a 10-fold bioactivation of de-OH CI-MI and a fluoro bioprecursor analogue in CYP1A1-transfected cells. Using CYP bactosomes, we also demonstrate that CYP1A2 but not CYP1B1 or CYP3A4 has propensity for potentiating these compounds, indicating preference for CYP1A bioactivation.


Subject(s)
Antineoplastic Agents/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Duocarmycins/pharmacology , Indoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Duocarmycins/chemical synthesis , Duocarmycins/chemistry , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...