Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.259
Filter
1.
Physiol Behav ; 281: 114563, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723388

ABSTRACT

Parkinson's Disease (PD) is a neurodegenerative movement disorder characterized by dopamine (DA) cell loss in the substantia nigra pars compacta (SNc). As PD progresses, patients display disruptions in gait such as changes in posture, bradykinesia, and shortened stride. DA replacement via L-DOPA alleviates many PD symptoms, though its effects on gait are not well demonstrated. This study aimed to assess the relationship between DA lesion, gait, and deficit-induced reversal with L-DOPA. To do so, Sprague-Dawley rats (N = 25, 14 males, 11 females) received unilateral medial forebrain bundle (MFB) DA lesions with 6-hydroxydopamine (6-OHDA). An automated gait analysis system assessed spatiotemporal gait parameters pre- and post-lesion, and after various doses of L-DOPA (0, 3, or 6 mg/kg; s.c.). The forepaw adjusting steps (FAS) test was implemented to evaluate lesion efficacy while the abnormal involuntary movements (AIMs) scale monitored the emergence of L-DOPA-induced dyskinesia (LID). High performance liquid chromatography (HPLC) assessed changes in brain monoamines on account of lesion and treatment. Results revealed lesion-induced impairments in gait, inclusive of max-contact area and step-sequence alterations that were not reversible with L-DOPA. However, the emergence of AIMs were observed at higher doses. Post-mortem, 6-OHDA lesions induced a loss of striatal DA and norepinephrine (NE), while prefrontal cortex (PFC) displayed noticeable reduction in NE but not DA. Our findings indicate that hemiparkinsonian rats display measurable gait disturbances similar to PD patients that are not rescued by DA replacement. Furthermore, non-DA mechanisms such as attention-related NE in PFC may contribute to altered gait and may constitute a novel target for its treatment.


Subject(s)
Gait Disorders, Neurologic , Levodopa , Oxidopamine , Rats, Sprague-Dawley , Animals , Levodopa/pharmacology , Levodopa/adverse effects , Male , Female , Rats , Gait Disorders, Neurologic/chemically induced , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Antiparkinson Agents/pharmacology , Disease Models, Animal , Medial Forebrain Bundle/drug effects , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/pathology , Dopamine/metabolism , Dose-Response Relationship, Drug , Functional Laterality/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Gait/drug effects , Dyskinesia, Drug-Induced
2.
Psychopharmacol Bull ; 54(2): 46-50, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38601835

ABSTRACT

Clozapine, amongst antipsychotics, has a unique composite mode of action that might translate into an expanded therapeutic potential on clinical grounds. Sorely, clozapine remains underutilized.


Subject(s)
Antipsychotic Agents , Clozapine , Dyskinesia, Drug-Induced , Schizophrenia , Humans , Clozapine/adverse effects , Schizophrenia/drug therapy , Dyskinesia, Drug-Induced/drug therapy , Antipsychotic Agents/pharmacology
3.
Eur J Pharmacol ; 973: 176573, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642669

ABSTRACT

Parkinson's disease (PD) is characterised by severe movement defects and the degeneration of dopaminergic neurones in the midbrain. The symptoms of PD can be managed with dopamine replacement therapy using L-3, 4-dihydroxyphenylalanine (L-dopa), which is the gold standard therapy for PD. However, long-term treatment with L-dopa can lead to motor complications. The central renin-angiotensin system (RAS) is associated with the development of neurodegenerative diseases in the brain. However, the role of the RAS in dopamine replacement therapy for PD remains unclear. Here, we tested the co-treatment of the angiotensin-converting enzyme inhibitor (ACEI) with L-dopa altered L-dopa-induced dyskinesia (LID) in a 6-hydroxydopamine (6-OHDA)-lesioned mouse model of PD. Perindopril, captopril, and enalapril were used as ACEIs. The co-treatment of ACEI with L-dopa significantly decreased LID development in 6-OHDA-lesioned mice. In addition, the astrocyte and microglial transcripts involving Ccl2, C3, Cd44, and Iigp1 were reduced by co-treatment with ACEI and L-dopa in the 6-OHDA-lesioned striatum. In conclusion, co-treatment with ACEIs and L-dopa, such as perindopril, captopril, and enalapril, may mitigate the severity of L-DOPA-induced dyskinesia in a mouse model of PD.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Disease Models, Animal , Dyskinesia, Drug-Induced , Levodopa , Oxidopamine , Animals , Male , Mice , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antiparkinson Agents/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Captopril/pharmacology , Captopril/therapeutic use , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/prevention & control , Enalapril/pharmacology , Enalapril/therapeutic use , Levodopa/toxicity , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Parkinson Disease/drug therapy , Perindopril/pharmacology , Perindopril/therapeutic use
4.
Behav Pharmacol ; 35(4): 185-192, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38563661

ABSTRACT

LY-404,039 is an orthosteric agonist at metabotropic glutamate 2 and 3 (mGlu 2/3 ) receptors, with a possible additional agonist effect at dopamine D 2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously been tested in clinical trials for psychiatric indications and could therefore be repurposed if they were shown to be efficacious in other conditions. We have recently demonstrated that the mGlu 2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat without hampering the anti-parkinsonian action of L-DOPA. Here, we seek to take advantage of a possible additional D 2 -agonist effect of LY-404,039 and see if an anti-parkinsonian benefit might be achieved in addition to the antidyskinetic effect of mGlu 2/3 activation. To this end, we have administered LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg) to 6-OHDA-lesioned rats, after which the severity of axial, limbs and oro-lingual (ALO) AIMs was assessed. The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of ALO AIMs over 60-100 min (54%, P  < 0.05). In addition, LY-404,039 significantly enhanced the antiparkinsonian effect of L-DOPA, assessed through the cylinder test (76%, P  < 0.01). These results provide further evidence that mGlu 2/3 orthosteric stimulation may alleviate dyskinesia in PD and, in the specific case of LY-404,039, a possible D 2 -agonist effect might also make it attractive to address motor fluctuations. Because LY-404,039 and its pro-drug have been administered to humans, they could possibly be advanced to Phase IIa trials rapidly for the treatment of motor complications in PD.


Subject(s)
Dyskinesia, Drug-Induced , Parkinsonian Disorders , Receptors, Metabotropic Glutamate , Animals , Male , Rats , Amino Acids/pharmacology , Antiparkinson Agents/pharmacology , Bridged Bicyclo Compounds/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Dyskinesia, Drug-Induced/drug therapy , Excitatory Amino Acid Agonists/pharmacology , Levodopa/pharmacology , Oxidopamine , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/drug therapy , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/metabolism
5.
Parkinsonism Relat Disord ; 123: 106951, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583360

ABSTRACT

INTRODUCTION: Levodopa-induced dyskinesia is a common complication of long-term treatment of Parkinson's disease (PD), but its impact on daily activities is somewhat controversial. This study investigated the prevalence and severity of dyskinesia, particularly non-troublesome dyskinesia, to provide insights into its significance for long-term PD management. METHODS: We reviewed electronic medical records of 2571 PD patients, who had been followed up at Seoul National University Hospital and were seen between January 2016 and June 2017. Dyskinesia severity had been assessed during follow-up and was recorded with the highest score by considering its impact on functioning (0 = no dyskinesia, 1 = minimal with patient unaware, 2 = mild disability, 3 = moderate disability, 4 = severe disability). RESULTS: The prevalence of dyskinesia increased progressively with longer PD duration; 8.2% in the group with disease duration of 0-5 years, 40.7% for 6-10 years, 66.0% for 11-15 years, 74.6% for 16-20 years, and 83.2% for 21 years or more. The prevalence of dyskinesia scores ≥2 also increased with disease duration, with rates of 6.3% for 0-5 years, 31.9% for 6-10 years, 54.8% for 11-15 years, 62.9% for 16-20 years and 73.7% for 21 or more years. CONCLUSION: Despite the increasing prevalence and severity of dyskinesia with longer PD duration, the study found that less than non-troublesome dyskinesia remained at approximately 26.3% even after more than 21 years of disease duration. These findings suggest that dyskinesia may not be troublesome for many PD patients even in long-term.


Subject(s)
Antiparkinson Agents , Dyskinesia, Drug-Induced , Levodopa , Parkinson Disease , Humans , Parkinson Disease/epidemiology , Parkinson Disease/drug therapy , Male , Female , Middle Aged , Prevalence , Dyskinesia, Drug-Induced/epidemiology , Dyskinesia, Drug-Induced/etiology , Aged , Levodopa/adverse effects , Antiparkinson Agents/adverse effects , Severity of Illness Index , Retrospective Studies , Adult , Republic of Korea/epidemiology , Time Factors
6.
Cell Signal ; 118: 111125, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38432574

ABSTRACT

BACKGROUND: Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS: The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS: In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS: In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.


Subject(s)
Dyskinesia, Drug-Induced , Metformin , Humans , Rats , Animals , Levodopa/pharmacology , Levodopa/therapeutic use , Antiparkinson Agents/pharmacology , AMP-Activated Protein Kinases , HEK293 Cells , Quality of Life , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Oxidopamine/therapeutic use , Autophagy , Chloroquine/pharmacology , Chloroquine/therapeutic use , Metformin/pharmacology , Disease Models, Animal
7.
J Parkinsons Dis ; 14(2): 245-259, 2024.
Article in English | MEDLINE | ID: mdl-38427500

ABSTRACT

Background: Increased activity across corticostriatal glutamatergic synapses may contribute to L-DOPA-induced dyskinesia in Parkinson's disease. Given the weak efficacy and side-effect profile of amantadine, alternative strategies to reduce glutamate transmission are being investigated. Metabotropic glutamate receptor 4 (mGlu4) is a promising target since its activation would reduce glutamate release. Objective: We hypothesized that two mGlu4 positive allosteric modulators, Lu AF21934 ((1 S,2 R)-N1-(3,4-dichlorophenyl)cyclohexane-1,2-dicarboxamide) and ADX88178 (5-Methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine), would provide relief in rat and primate models of L-DOPA-induced dyskinesia. Methods: The ability of Lu AF21934 or ADX88178 to reverse pre-established dyskinesia was examined in L-DOPA-primed 6-hydroxydopamine-lesioned rats expressing abnormal involuntary movements (AIMs) or in 1-methyl-4-phenyl,1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets expressing L-DOPA-induced dyskinesia. Additionally, the ability of Lu AF21934 to prevent the development of de novo L-DOPA-induced AIMs was explored in the 6-hydroxydopamine-lesioned rats. Results: Neither Lu AF21934 (10 or 30 mg/kg p.o.) nor ADX88178 (10 or 30 mg/kg p.o.) reduced pre-established AIMs in 6-hydroxydopamine-lesioned rats. Similarly, in L-DOPA-primed common marmosets, no reduction in established dyskinesia was observed with Lu AF21934 (3 or 10 mg/kg p.o.). Conversely, amantadine significantly reduced (>40%) the expression of dyskinesia in both models. Lu AF21934 also failed to suppress the development of AIMs in 6-hydroxydopamine-lesioned rats. Conclusions: This study found no benefit of mGlu4 positive allosteric modulators in tackling L-DOPA-induced dyskinesia. These findings are concordant with the recent failure of foliglurax in phase II clinical trials supporting the predictive validity of these pre-clinical dyskinesia models, while raising further doubt on the anti-dyskinetic potential of mGlu4 positive allosteric modulators.


Subject(s)
Anilides , Cyclohexanecarboxylic Acids , Dyskinesia, Drug-Induced , Parkinson Disease , Pyrimidines , Receptors, Metabotropic Glutamate , Thiazoles , Rats , Animals , Levodopa/therapeutic use , Callithrix , Parkinson Disease/drug therapy , Oxidopamine , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/etiology , Dyskinesia, Drug-Induced/metabolism , Antiparkinson Agents/therapeutic use , Amantadine/pharmacology , Amantadine/therapeutic use , Glutamates/therapeutic use , Disease Models, Animal
8.
J Neurosci Res ; 102(3): e25302, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38515319

ABSTRACT

Levodopa-induced dyskinesia (LID) is a common complication in patients with advanced Parkinson's disease (PD) undergoing treatment with levodopa. Glutamate receptor antagonists can suppress LID; however, the underlying mechanisms remain unclear. Here, we aimed to evaluate the effect of 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP), a metabotropic glutamate receptor 5 (mGluR5) antagonist, on dyskinesia. We recorded the neuronal activity of the entopeduncular nucleus and examined responses to cortical electric stimulation in the control group (n = 6) and three groups of rats (male PD model). Saline was intraperitoneally administered to dopamine lesioned (DL) rats (n = 6), levodopa/benserazide (L/B) was administered to LID rats (n = 8), and L/B combined with MTEP was administered to MTEP rats (n = 6) twice daily for 14 days. We administered L/B to LID and MTEP rats 48 h after the final administration of MTEP to examine the chronic effect of MTEP. The control and DL groups did not have LID. The MTEP group had less LID than the LID group (p < .01) on day 1 and day 18. The control group had a typical triphasic pattern consisting of early excitation (early-Ex), inhibition, and late excitation (late-Ex). However, the inhibition phase disappeared, was partially observed, and was fully suppressed in the DL, LID, and MTEP groups, respectively. The cortico-striato-entopeduncular pathway is important in the pathophysiology of LID. mGluR5 antagonism suppresses LID progression by preventing physiological changes in the cortico-striato-entopeduncular pathway. Future studies are required to validate these results.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Humans , Rats , Male , Animals , Levodopa/adverse effects , Parkinson Disease/drug therapy , Receptor, Metabotropic Glutamate 5 , Antiparkinson Agents/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/prevention & control , Dyskinesia, Drug-Induced/metabolism , Oxidopamine
9.
Neurosci Lett ; 825: 137706, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38431040

ABSTRACT

INTRODUCTION: Levodopa-induced dyskinesia (LID) is a debilitating motor feature in a subset of patients with Parkinson's disease (PD) after prolonged therapeutic administration of levodopa. Preliminary animal and human studies are suggestive of a key role of dopamine type 3 (D3) receptor polymorphism (Ser9Gly; rs6280) in LID. Its contribution to development of LID among Indian PD patients has remained relatively unexplored and merits further investigation. METHODS AND MATERIALS: 200 well-characterised PD patients (100 without LID and 100 with LID) and 100 age-matched healthy controls were recruited from the outpatient department of Institute of Neurosciences Kolkata. MDS-UPDRS (Unified Parkinson's Disease Rating Scale from International Movement Disorder Society) Part III and AIMS (abnormal involuntary movement scale) were performed for estimation of severity of motor features and LID respectively in the ON state of the disease. Participants were analysed for the presence of Ser9Gly single nucleotide variant (SNV) (rs6280) by polymerase chain reaction followed by restriction fragment length polymorphism techniques. RESULTS: The frequency of AA genotype (serine type) was more frequently present in PD patients with LID compared to PD patients without LID (50 % vs 28 %; P = 0.002; OR = 2.57, 95 % CI: 1.43 - 4.62). The abnormal involuntary movement scale score was significantly higher in PD patients with AA genotype compared to carriers of glycine allele (AG + GG) (4.08 ± 3.35; P = 0.002). CONCLUSION: We observed a significant association of serine type SNV (rs6280) in D3 receptor gene in a cohort of PD patients with LID from India. More severe motor severity was found in patients with glycine substitution of the same SNV. The current study emphasised the role of D3 receptor in the pathogenesis of LID.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Animals , Humans , Antiparkinson Agents/therapeutic use , Dyskinesia, Drug-Induced/genetics , Dyskinesia, Drug-Induced/drug therapy , Glycine , Levodopa/adverse effects , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Receptors, Dopamine D3/genetics , Serine/genetics
10.
Neuropharmacology ; 251: 109926, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38554815

ABSTRACT

We tested the efficacy of 4'-fluorocannabidiol (4'-F-CBD), a semisynthetic cannabidiol derivative, and HU-910, a cannabinoid receptor 2 (CB2) agonist in resolving l-DOPA-induced dyskinesia (LID). Specifically, we were interested in studying whether these compounds could restrain striatal inflammatory responses and rescue glutamatergic disturbances characteristic of the dyskinetic state. C57BL/6 mice were rendered hemiparkinsonian by unilateral striatal lesioning with 6-OHDA. Abnormal involuntary movements were then induced by repeated i.p. injections of l-DOPA + benserazide. After LID was installed, the effects of a 3-day treatment with 4'-F-CBD or HU-910 in combination or not with the TRPV1 antagonist capsazepine (CPZ) or CB2 agonists HU-308 and JWH015 were assessed. Immunostaining was conducted to investigate the impacts of 4'-F-CBD and HU-910 (with CPZ) on inflammation and glutamatergic synapses. Our results showed that the combination of 4'-F-CBD + CPZ, but not when administered alone, decreased LID. Neither HU-910 alone nor HU-910+CPZ were effective. The CB2 agonists HU-308 and JWH015 were also ineffective in decreasing LID. Both combination treatments efficiently reduced microglial and astrocyte activation in the dorsal striatum of dyskinetic mice. However, only 4'-F-CBD + CPZ normalized the density of glutamate vesicular transporter-1 (vGluT1) puncta colocalized with the postsynaptic density marker PSD95. These findings suggest that 4'-F-CBD + CPZ normalizes dysregulated cortico-striatal glutamatergic inputs, which could be involved in their anti-dyskinetic effects. Although it is not possible to rule out the involvement of anti-inflammatory mechanisms, the decrease in striatal neuroinflammation markers by 4'-F-CBD and HU-910 without an associated reduction in LID indicates that they are insufficient per se to prevent LID manifestations.


Subject(s)
Bridged Bicyclo Compounds , Cannabidiol/analogs & derivatives , Cannabinoids , Capsaicin/analogs & derivatives , Dyskinesia, Drug-Induced , Levodopa , Rats , Mice , Animals , Levodopa/therapeutic use , Antiparkinson Agents/pharmacology , Rats, Sprague-Dawley , Dyskinesia, Drug-Induced/drug therapy , Mice, Inbred C57BL , Corpus Striatum , Oxidopamine/pharmacology , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal
11.
Mol Med ; 30(1): 33, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429661

ABSTRACT

BACKGROUND: Loss of dopaminergic neurons underlies the motor symptoms of Parkinson's disease (PD). However stereotypical PD symptoms only manifest after approximately 80% of dopamine neurons have died making dopamine-related motor phenotypes unreliable markers of the earlier stages of the disease. There are other non-motor symptoms, such as depression, that may present decades before motor symptoms. METHODS: Because serotonin is implicated in depression, here we use niche, fast electrochemistry paired with mathematical modelling and machine learning to, for the first time, robustly evaluate serotonin neurochemistry in vivo in real time in a toxicological model of Parkinsonism, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). RESULTS: Mice treated with acute MPTP had lower concentrations of in vivo, evoked and ambient serotonin in the hippocampus, consistent with the clinical comorbidity of depression with PD. These mice did not chemically respond to SSRI, as strongly as control animals did, following the clinical literature showing that antidepressant success during PD is highly variable. Following L-DOPA administration, using a novel machine learning analysis tool, we observed a dynamic shift from evoked serotonin release in the hippocampus to dopamine release. We hypothesize that this finding shows, in real time, that serotonergic neurons uptake L-DOPA and produce dopamine at the expense of serotonin, supporting the significant clinical correlation between L-DOPA and depression. Finally, we found that this post L-DOPA dopamine release was less regulated, staying in the synapse for longer. This finding is perhaps due to lack of autoreceptor control and may provide a ground from which to study L-DOPA induced dyskinesia. CONCLUSIONS: These results validate key prior hypotheses about the roles of serotonin during PD and open an avenue to study to potentially improve therapeutics for levodopa-induced dyskinesia and depression.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Parkinsonian Disorders , Mice , Animals , Levodopa/adverse effects , Dopamine , Serotonin , Antiparkinson Agents/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/etiology , Parkinson Disease/etiology , Parkinson Disease/drug therapy , Biomarkers
12.
Brain Res Bull ; 209: 110906, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395109

ABSTRACT

OBJECTIVE: To investigate the role of the striatal extracellular signal-regulated kinase (Erk1/2) and its phosphorylation (p-Erk1/2) in aerobic training to alleviate the development of the L-DOPA induced dyskinesia (LID) in PD mice. METHODS: Forty-eight male C57BL/6 N mice were randomly divided into the 6-OHDA surgery group (6-OHDA, n=42) and the sham surgery group (Sham, n=6). A two-point injection of 6-OHDA into the right striatum was used to establish a lateralized injury PD model. PD mice were randomly divided into a PD control group (PD, n=13) and a PD exercise group (PDE, n=16), this is followed by 4 weeks of L-DOPA treatment, and PDE mice received concurrent running table training (18 m/min, 40 min/day, 5 times/week). AIM scores were performed weekly, and mice were assessed for motor function after 4 weeks using the rotarod, open field, and gait tests. Immunohistochemistry was used to test nigrostriatal TH expression, Western blot was used to determine Erk1/2 and p-Erk1/2 protein expression, and immunofluorescence double-labeling technique was used to detect Erk1/2 and p-Erk1/2 co-expression with prodynorphin (PDYN). RESULTS: (1) All AIM scores of PD and PDE mice increased significantly (P < 0.05) with the prolongation of L-DOPA treatment. Compared with PD, all AIM scores were significantly lower in PDE mice (P < 0.05). (2) After 4 weeks, the motor function of PD mice was significantly reduced compared with Sham (P < 0.05 or P < 0.01); compared with PD, the motor function of PDE mice was significantly increased (P < 0.05). (3) Compared with Sham, the expression of Erk1/2 protein, the number of positive cells of Erk1/2 and p-Erk1/2 and the number of positive cells co-expressed with PDYN were significantly increased in PD mice (P < 0.05); compared with PD, Erk1/2 protein expression was significantly decreased in PDE mice (P < 0.05), and the number of Erk1/2 and p-Erk1/2 positive cells was significantly reduced (P < 0.05). CONCLUSION: 4 weeks of aerobic exercise can effectively alleviate the development of L-DOPA-induced dyskinesia and improve motor function in PD mice. The related mechanism may be related to the inhibition of striatal Erk/MAPK signaling pathway overactivation by aerobic exercise, but this change did not occur selectively in D1-MSNs.


Subject(s)
Dyskinesia, Drug-Induced , Exercise , Parkinson Disease , Animals , Male , Mice , Antiparkinson Agents/pharmacology , Corpus Striatum/metabolism , Disease Models, Animal , Dyskinesia, Drug-Induced/metabolism , Levodopa , MAP Kinase Signaling System , Mice, Inbred C57BL , Oxidopamine/pharmacology , Parkinson Disease/therapy , Parkinson Disease/metabolism , Humans
13.
Mov Disord ; 39(3): 613-618, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38314643

ABSTRACT

BACKGROUND: Preclinical evidence suggests that co-administration of the 5-HT1A agonist buspirone and the 5-HT1B/1D agonist zolmitriptan act synergistically to reduce dyskinesia to a greater extent than that achieved by either drug alone. OBJECTIVES: Assess the therapeutic potential of a fixed-dose buspirone and zolmitriptan combination in Parkinson's disease (PD) patients with levodopa-induced dyskinesia. METHODS: Single-center, randomized, placebo-controlled, two-way crossover study (NCT02439203) of a fixed-dose buspirone/zolmitriptan regimen (10/1.25 mg three times a day) in 30 patients with PD experiencing at least moderately disabling peak-effect dyskinesia. RESULTS: Seven days of treatment with buspirone/zolmitriptan added to levodopa significantly reduced dyskinesia as assessed by Abnormal Involuntary Movement Scale scores versus placebo (mean treatment effect vs. placebo: -4.2 [-6.1, -2.3]) without significantly worsening Unified Parkinson's Disease Rating Scale (UPDRS) Part III (ON) scores (mean treatment effect vs. placebo: 0.6 [-0.1, 1.3]). No serious adverse events were reported. CONCLUSIONS: In this proof-of-concept study, addition of buspirone/zolmitriptan to the patients' PD medication regimen significantly reduced dyskinesia severity without worsening motor function. © 2024 International Parkinson and Movement Disorder Society.


Subject(s)
Dyskinesia, Drug-Induced , Oxazolidinones , Parkinson Disease , Tryptamines , Humans , Levodopa/adverse effects , Antiparkinson Agents/therapeutic use , Buspirone/therapeutic use , Cross-Over Studies , Serotonin , Dyskinesia, Drug-Induced/drug therapy , Parkinson Disease/drug therapy , Double-Blind Method
14.
J Parkinsons Dis ; 14(2): 261-267, 2024.
Article in English | MEDLINE | ID: mdl-38339940

ABSTRACT

Alterations of serotonin type 4 receptor levels are linked to mood disorders and cognitive deficits in several conditions. However, few studies have investigated 5-HT4R alterations in movement disorders. We wondered whether striatal 5-HT4R expression is altered in experimental parkinsonism. We used a brain bank tissue from a rat and a macaque model of Parkinson's disease (PD). We then investigated its in vivo PET imaging regulation in a cohort of macaques. Dopaminergic depletion increases striatal 5-HT4R in the two models, further augmented after dyskinesia-inducing L-Dopa. Pending confirmation in PD patients, the 5-HT4R might offer a therapeutic target for dampening PD's symptoms.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Parkinsonian Disorders , Humans , Rats , Animals , Parkinson Disease/drug therapy , Receptors, Serotonin, 5-HT4/therapeutic use , Dyskinesia, Drug-Induced/diagnostic imaging , Dyskinesia, Drug-Induced/etiology , Dyskinesia, Drug-Induced/drug therapy , Parkinsonian Disorders/drug therapy , Levodopa/therapeutic use , Disease Models, Animal , Oxidopamine , Antiparkinson Agents/therapeutic use
15.
Neuropharmacology ; 248: 109880, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38412888

ABSTRACT

Repurposing regulatory agency-approved molecules, with proven safety in humans, is an attractive option for developing new treatments for disease. We identified and assessed the efficacy of 3 drugs predicted by an in silico screen as having the potential to treat l-DOPA-induced dyskinesia (LID) in Parkinson's disease. We analysed ∼1.3 million Medline abstracts using natural language processing and ranked 3539 existing drugs based on predicted ability to reduce LID. 3 drugs from the top 5% of the 3539 candidates; lorcaserin, acamprosate and ganaxolone, were prioritized for preclinical testing based on i) having a novel mechanism of action, ii) having not been previously validated for the treatment of LID, iii) being blood-brain-barrier penetrant and orally bioavailable and iv) being clinical trial ready. We assessed the efficacy of acamprosate, ganaxolone and lorcaserin in a rodent model of l-DOPA-induced hyperactivity, with lorcaserin affording a 58% reduction in rotational asymmetry (P < 0.05) compared to vehicle. Acamprosate and ganaxolone failed to demonstrate efficacy. Lorcaserin, a 5HT2C agonist, was then further tested in MPTP lesioned dyskinetic macaques where it afforded an 82% reduction in LID (P < 0.05), unfortunately accompanied by a significant increase in parkinsonian disability. In conclusion, although our data do not support the repurposing of lorcaserin, acamprosate or ganaxolone per se for LID, we demonstrate value of an in silico approach to identify candidate molecules which, in combination with an in vivo screen, can facilitate clinical development decisions. The present study adds to a growing literature in support of this paradigm shifting approach in the repurposing pipeline.


Subject(s)
Dyskinesia, Drug-Induced , Levodopa , Humans , Animals , Levodopa/adverse effects , Artificial Intelligence , Drug Repositioning , Acamprosate/therapeutic use , Dyskinesia, Drug-Induced/drug therapy , Macaca , Antiparkinson Agents/adverse effects , Disease Models, Animal
16.
Curr Opin Neurobiol ; 84: 102833, 2024 02.
Article in English | MEDLINE | ID: mdl-38184982

ABSTRACT

L-DOPA-induced dyskinesia (LID) is the most common form of hyperkinetic movement disorder resulting from altered information processing in the cortico-basal ganglia network. We here review recent advances clarifying the altered interplay between striatal output pathways in this movement disorder. We also review studies revealing structural and synaptic changes to the striatal microcircuitry and altered cortico-striatal activity dynamics in LID. We furthermore highlight the recent progress made in understanding the involvement of cerebellar and brain stem nuclei. These recent developments illustrate that dyskinesia research continues to provide key insights into cellular and circuit-level plasticity within the cortico-basal ganglia network and its interconnected brain regions.


Subject(s)
Dyskinesia, Drug-Induced , Humans , Levodopa/adverse effects , Basal Ganglia , Corpus Striatum , Brain/metabolism
17.
Can J Neurol Sci ; 51(1): 104-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36660782

ABSTRACT

BACKGROUND: Pathophysiology of levodopa-induced dyskinesia (LID) remains obscure. Increased dopamine metabolism due to prolonged levodopa treatment can exacerbate oxidative damage and neuroinflammatory pathology in Parkinson's disease (PD). Association of novel peripheral markers with LID severity might provide insight into LID pathomechanisms. OBJECTIVE: We aimed to study specific peripheral blood inflammatory-oxidative markers in LID patients and investigate their association with clinical severity of LID. METHOD: Motor, non-motor and cognitive changes in PD with and without LID compared to healthy-matched controls were identified. Within the same cohort, inflammatory marker (sLAG3, TOLLIP, NLRP3 and IL-1ß) levels and antioxidant enzyme activities were determined by ELISA and spectrophotometric methods. RESULTS: LID patients showed distinctly upregulated TOLLIP, IL-1ß levels with significant diminution of antioxidant activity compared to controls. Significant negative association of cognitive markers with oxidative changes was also observed. CONCLUSION: To our understanding, this is the first study that indicates the involvement of toll-like receptor-mediated distinct and low-grade inflammatory activation in LID pathophysiology.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Humans , Levodopa/adverse effects , Parkinson Disease/drug therapy , Antiparkinson Agents/therapeutic use , Dyskinesia, Drug-Induced/etiology , Biomarkers , Oxidative Stress
18.
Eur J Neurol ; 31(2): e16147, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37975786

ABSTRACT

BACKGROUND AND PURPOSE: The ventral pallidum (VP) regulates involuntary movements, but it is unclear whether the VP regulates the abnormal involuntary movements in Parkinson's disease (PD) patients who have levodopa-induced dyskinesia (LID). To further understand the role of the VP in PD patients with LID (PD-LID), we explored the structural and functional characteristics of the VP in such patients using multimodal magnetic resonance imaging (MRI). METHODS: Thirty-one PD-LID patients, 39 PD patients without LID (PD-nLID), and 28 healthy controls (HCs) underwent T1-weighted MRI, quantitative susceptibility mapping, multi-shell diffusion MRI, and resting-state functional MRI (rs-fMRI). Different measures characterizing the VP were obtained using a region-of-interest-based approach. RESULTS: The left VP in the PD-LID group showed significantly higher intracellular volume fraction (ICVF) and isotropic volume fraction (IsoVF) compared with the PD-nLID and HC groups. Rs-MRI revealed that, compared with the PD-nLID group, the PD-LID group in the medication 'off' state had higher functional connectivity (FC) between the left VP and the left anterior caudate, left middle frontal gyrus and left precentral gyrus, as well as between the right VP and the right posterior ventral putamen and right mediodorsal thalamus. In addition, the ICVF values of the left VP, the FC between the left VP and the left anterior caudate and left middle frontal gyrus were positively correlated with Unified Dyskinesia Rating Scale scores. CONCLUSION: Our multimodal imaging findings show that the microstructural changes of the VP (i.e., the higher ICVF and IsoVF) and the functional change in the ventral striatum-VP-mediodorsal thalamus-cortex network may be associated with pathophysiological mechanisms of PD-LID.


Subject(s)
Basal Forebrain , Dyskinesia, Drug-Induced , Parkinson Disease , Humans , Levodopa/adverse effects , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Basal Forebrain/pathology , Magnetic Resonance Imaging/methods , Dyskinesia, Drug-Induced/diagnostic imaging
19.
Prog Neurobiol ; 232: 102548, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040324

ABSTRACT

Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Transcranial Direct Current Stimulation , Humans , Levodopa/adverse effects , Antiparkinson Agents/adverse effects , Transcranial Direct Current Stimulation/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/etiology , Parkinson Disease/drug therapy , Parkinson Disease/complications , Neuronal Plasticity/physiology
20.
Eur J Neurosci ; 59(6): 1169-1176, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37515363

ABSTRACT

Nelotanserin is a serotonin 2A and 2C (5-HT2A/2C) inverse agonist that was previously tested in the clinic for rapid-eye movement sleep behaviour disorder and psychosis in patients with Parkinson's disease (PD) dementia. Its effect on L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia has however not been investigated. As 5-HT2A antagonism/inverse agonism is a validated approach to alleviate dyskinesia, we undertook the current study to evaluate the anti-dyskinetic potential of nelotanserin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Parkinsonism was induced in six common marmosets (Callithrix jacchus, three females and three males) that were then chronically treated with L-DOPA to induce dyskinesia. On experimental days, they were administered L-DOPA in combination with vehicle or nelotanserin (0.1, 0.3 and 1 mg/kg) subcutaneously, in a randomised fashion. Dyskinesia and parkinsonism were rated post hoc by a blinded observer. In comparison to vehicle, the addition of nelotanserin 0.3 and 1 mg/kg to L-DOPA diminished peak dose dyskinesia by 47% (P < 0.05) and 69% (P < 0.001). Nelotanserin 0.3 and 1 mg/kg also reduced the severity of global dyskinesia, by 40% (P < 0.01) and 55% (P < 0.001), when compared to vehicle. Nelotanserin 0.1 mg/kg did not alleviate peak dose or global dyskinesia severity. Nelotanserin had no impact on the anti-parkinsonian action of L-DOPA. Our results highlight that nelotanserin may represent an efficacious anti-dyskinetic drug and provide incremental evidence of the potential benefit of 5-HT2A/2C antagonism/inverse agonism for drug-induced dyskinesia in PD.


Subject(s)
Dyskinesia, Drug-Induced , Parkinsonian Disorders , Phenylurea Compounds , Pyrazoles , Animals , Female , Male , Antiparkinson Agents/adverse effects , Callithrix , Drug Inverse Agonism , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/etiology , Levodopa/adverse effects , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/chemically induced , Serotonin
SELECTION OF CITATIONS
SEARCH DETAIL
...