Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 724
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2402890121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771868

ABSTRACT

Maintaining the structure of cardiac membranes and membrane organelles is essential for heart function. A critical cardiac membrane organelle is the transverse tubule system (called the t-tubule system) which is an invagination of the surface membrane. A unique structural characteristic of the cardiac muscle t-tubule system is the extension of the extracellular matrix (ECM) from the surface membrane into the t-tubule lumen. However, the importance of the ECM extending into the cardiac t-tubule lumen is not well understood. Dystroglycan (DG) is an ECM receptor in the surface membrane of many cells, and it is also expressed in t-tubules in cardiac muscle. Extensive posttranslational processing and O-glycosylation are required for DG to bind ECM proteins and the binding is mediated by a glycan structure known as matriglycan. Genetic disruption resulting in defective O-glycosylation of DG results in muscular dystrophy with cardiorespiratory pathophysiology. Here, we show that DG is essential for maintaining cardiac t-tubule structural integrity. Mice with defects in O-glycosylation of DG developed normal t-tubules but were susceptible to stress-induced t-tubule loss or severing that contributed to cardiac dysfunction and disease progression. Finally, we observed similar stress-induced cardiac t-tubule disruption in a cohort of mice that solely lacked matriglycan. Collectively, our data indicate that DG in t-tubules anchors the luminal ECM to the t-tubule membrane via the polysaccharide matriglycan, which is critical to transmitting structural strength of the ECM to the t-tubules and provides resistance to mechanical stress, ultimately preventing disruptions in cardiac t-tubule integrity.


Subject(s)
Dystroglycans , Myocardium , Animals , Mice , Myocardium/metabolism , Myocardium/pathology , Glycosylation , Dystroglycans/metabolism , Extracellular Matrix/metabolism , Mice, Knockout
2.
Cells ; 13(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474395

ABSTRACT

Dystroglycan is a ubiquitously expressed heterodimeric cell-surface laminin receptor with roles in cell adhesion, signalling, and membrane stabilisation. More recently, the transmembrane ß-subunit of dystroglycan has been shown to localise to both the nuclear envelope and the nucleoplasm. This has led to the hypothesis that dystroglycan may have a structural role at the nuclear envelope analogous to its role at the plasma membrane. The biochemical fraction of myoblast cells clearly supports the presence of dystroglycan in the nucleus. Deletion of the dystroglycan protein by disruption of the DAG1 locus using CRISPR/Cas9 leads to changes in nuclear size but not overall morphology; moreover, the Young's modulus of dystroglycan-deleted nuclei, as determined by atomic force microscopy, is unaltered. Dystroglycan-disrupted myoblasts are also no more susceptible to nuclear stresses including chemical and mechanical, than normal myoblasts. Re-expression of dystroglycan in DAG1-disrupted myoblasts restores nuclear size without affecting other nuclear parameters.


Subject(s)
Dystroglycans , Laminin , Dystroglycans/metabolism , Laminin/metabolism , Cell Nucleus/metabolism , Cell Membrane/metabolism , Nuclear Envelope/metabolism
3.
Hum Mol Genet ; 33(8): 709-723, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38272461

ABSTRACT

Biallelic mutations in Protein O-mannosyltransferase 1 (POMT1) are among the most common causes of a severe group of congenital muscular dystrophies (CMDs) known as dystroglycanopathies. POMT1 is a glycosyltransferase responsible for the attachment of a functional glycan mediating interactions between the transmembrane glycoprotein dystroglycan and its binding partners in the extracellular matrix (ECM). Disruptions in these cell-ECM interactions lead to multiple developmental defects causing brain and eye malformations in addition to CMD. Removing Pomt1 in the mouse leads to early embryonic death due to the essential role of dystroglycan during placental formation in rodents. Here, we characterized and validated a model of pomt1 loss of function in the zebrafish showing that developmental defects found in individuals affected by dystroglycanopathies can be recapitulated in the fish. We also discovered that pomt1 mRNA provided by the mother in the oocyte supports dystroglycan glycosylation during the first few weeks of development. Muscle disease, retinal synapse formation deficits, and axon guidance defects can only be uncovered during the first week post fertilization by generating knock-out embryos from knock-out mothers. Conversely, maternal pomt1 from heterozygous mothers was sufficient to sustain muscle, eye, and brain development only leading to loss of photoreceptor synapses at 30 days post fertilization. Our findings show that it is important to define the contribution of maternal mRNA while developing zebrafish models of dystroglycanopathies and that offspring generated from heterozygous and knock-out mothers can be used to differentiate the role of dystroglycan glycosylation in tissue formation and maintenance.


Subject(s)
Dystroglycans , Zebrafish , Animals , Dystroglycans/genetics , Dystroglycans/metabolism , Glycosylation , Phenotype , Zebrafish/genetics , Zebrafish/metabolism
4.
J Neuromuscul Dis ; 11(2): 275-284, 2024.
Article in English | MEDLINE | ID: mdl-38277301

ABSTRACT

Dystroglycanopathies are a group of muscle degenerative diseases characterized with significant reduction in matriglycan expression critical in disease pathogenesis. Missense point mutations in the Fukutin-related protein (FKRP) gene cause variable reduction in the synthesis of matriglycan on alpha-dystroglycan (α-DG) and a wide range of disease severity. Data analyses of muscle biopsies from patients fail to show consistent correlation between the levels of matriglycan and clinical phenotypes. By reviewing clinical reports in conjunction with analysis of clinically relevant mouse models, we identify likely causes for the confusion. Nearly all missense FKRP mutations retain variable, but sufficient function for the synthesis of matriglycan during the later stage of muscle development and periods of muscle regeneration. These factors lead to a highly heterogenous pattern of matriglycan expression in diseased muscles, depending on age and stages of muscle regeneration. The limited size in clinical biopsy samples from different parts of even a single muscle tissue at different time points of disease progression may well mis-represent the residual function (base-levels) of the mutated FKRPs and phenotypes. We propose to use a simple Multi Point tool from ImageJ to more accurately measure the signal intensity of matriglycan expression on fiber membrane for assessing mutant FKRP function and therapeutic efficacy. A robust and sensitive immunohistochemical protocol would further improve reliability and comparability for the detection of matriglycan.


Subject(s)
Dystroglycans , Pentosyltransferases , Animals , Humans , Mice , Dystroglycans/genetics , Dystroglycans/metabolism , Glycosylation , Pentosyltransferases/genetics , Pentosyltransferases/metabolism , Phenotype , Reproducibility of Results
5.
Eur J Hum Genet ; 32(3): 342-349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177406

ABSTRACT

DAG1 encodes for dystroglycan, a key component of the dystrophin-glycoprotein complex (DGC) with a pivotal role in skeletal muscle function and maintenance. Biallelic loss-of-function DAG1 variants cause severe muscular dystrophy and muscle-eye-brain disease. A possible contribution of DAG1 deficiency to milder muscular phenotypes has been suggested. We investigated the genetic background of twelve subjects with persistent mild-to-severe hyperCKemia to dissect the role of DAG1 in this condition. Genetic testing was performed through exome sequencing (ES) or custom NGS panels including various genes involved in a spectrum of muscular disorders. Histopathological and Western blot analyses were performed on muscle biopsy samples obtained from three patients. We identified seven novel heterozygous truncating variants in DAG1 segregating with isolated or pauci-symptomatic hyperCKemia in all families. The variants were rare and predicted to lead to nonsense-mediated mRNA decay or the formation of a truncated transcript. In four cases, DAG1 variants were inherited from similarly affected parents. Histopathological analysis revealed a decreased expression of dystroglycan subunits and Western blot confirmed a significantly reduced expression of beta-dystroglycan in muscle samples. This study supports the pathogenic role of DAG1 haploinsufficiency in isolated or pauci-symptomatic hyperCKemia, with implications for clinical management and genetic counseling.


Subject(s)
Muscular Diseases , Muscular Dystrophies , Humans , Dystroglycans/genetics , Dystroglycans/metabolism , Haploinsufficiency , Muscular Dystrophies/genetics , Muscle, Skeletal/pathology , Muscular Diseases/pathology
6.
J Biochem ; 175(4): 418-425, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38140954

ABSTRACT

The core M3 O-mannosyl glycan on α-dystroglycan serves as the binding epitope for extracellular matrix molecules. Defects in core M3 glycans cause congenital muscular dystrophies that are collectively known as dystroglycanopathies. The core M3 glycan contains a tandem D-ribitol-5-phosphate (Rbo5P) structure, which is synthesized by the Rbo5P-transferases fukutin and fukutin-related protein using CDP-ribitol (CDP-Rbo) as a donor substrate. CDP-Rbo is synthesized from CTP and Rbo5P by CDP-Rbo pyrophosphorylase A. However, the Rbo5P biosynthesis pathway has yet to be elucidated in mammals. Here, we investigated the reductase activities toward four substrates, including ribose, ribulose, ribose-phosphate and ribulose-phosphate, to identify the intracellular Rbo5P production pathway and elucidated the role of the aldo-keto reductases AKR1A1, AKR1B1 and AKR1C1 in those pathways. It was shown that the ribose reduction pathway is the endogenous pathway that contributes most to Rbo5P production in HEK293T cells and that AKR1B1 is the major reductase in this pathway.


Subject(s)
Ribitol , Ribose , Humans , Animals , Ribitol/metabolism , Phosphates , HEK293 Cells , Dystroglycans/metabolism , Oxidoreductases , Mammals , Polysaccharides/metabolism , Aldehyde Reductase
7.
Mol Ther ; 31(12): 3478-3489, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37919902

ABSTRACT

Mutations in the fukutin-related protein (FKRP) gene cause dystroglycanopathy, with disease severity ranging from mild LGMD2I to severe congenital muscular dystrophy. Recently, considerable progress has been made in developing experimental therapies, with adeno-associated virus (AAV) gene therapy and ribitol treatment demonstrating significant therapeutic effect. However, each treatment has its strengths and weaknesses. AAV gene therapy can achieve normal levels of transgene expression, but it requires high doses, with toxicity concerns and variable distribution. Ribitol relies on residual FKRP function and restores limited levels of matriglycan. We hypothesized that these two treatments can work synergistically to offer an optimized therapy with efficacy and safety unmatched by each treatment alone. The most effective treatment is the combination of high-dose (5e-13 vg/kg) AAV-FKRP with ribitol, whereas low dose (1e-13 vg/kg) AAV-FKRP combined with ribitol showed a 22.6% increase in positive matriglycan fibers and the greater improvement in pathology when compared to low-dose AAV-FKRP alone. Together, our results support the potential benefits of combining ribitol with AAV gene therapy for treating FKRP-related muscular dystrophy. The fact that ribitol is a metabolite in nature and has already been tested in animal models and clinical trials in humans without severe side effects provides a safety profile for it to be trialed in combination with AAV gene therapy.


Subject(s)
Muscular Dystrophies , Pentosyltransferases , Animals , Humans , Pentosyltransferases/genetics , Pentosyltransferases/metabolism , Pentosyltransferases/therapeutic use , Ribitol/metabolism , Ribitol/therapeutic use , Dependovirus/genetics , Dependovirus/metabolism , Dystroglycans/metabolism , Muscular Dystrophies/drug therapy , Genetic Therapy/methods , Mutation , Muscle, Skeletal/metabolism
8.
Cells ; 12(20)2023 10 12.
Article in English | MEDLINE | ID: mdl-37887288

ABSTRACT

Limb-Girdle Muscular Dystrophy R9 (LGMDR9) is a dystroglycanopathy caused by Fukutin-related protein (FKRP) defects leading to the deficiency of α-DG glycosylation, essential to membrane integrity. Recombinant adeno-associated viral vector (rAAV) gene therapy offers great therapeutic promise for such neuromuscular disorders. Pre-clinical studies have paved the way for a phase 1/2 clinical trial aiming to evaluate the safety and efficacy of FKRP gene therapy in LGMDR9 patients. To demonstrate product activity, quality, and consistency throughout product and clinical development, regulatory authorities request several quality controls, including a potency assay aiming to demonstrate and quantify the intended biological effect of the gene therapy product. In the present study, we generated FKRP knock-out (KO) cells fully depleted of α-DG glycosylation using CRISPR-Cas9 to assess the functional activity of a rAAV-FKRP gene therapy. We then developed a high-throughput On-Cell-Western methodology to evaluate the restoration of α-DG glycosylation in KO-FKRP cells and determine the biological activity of the FKRP transgene. The determination of the half maximal effective concentration (EC50) provides a method to compare the rAAV-FKRP batch using a reference standard. The generation of KO-FKRP muscle cells associated with the high-throughput On-Cell-Western technique may serve as a cell-based potency assay to assess rAAV-FKRP gene therapy products.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Pentosyltransferases , Humans , Cell Line , CRISPR-Cas Systems/genetics , Dystroglycans/metabolism , Genetic Therapy/methods , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/metabolism , Pentosyltransferases/genetics
9.
PLoS Biol ; 21(8): e3002212, 2023 08.
Article in English | MEDLINE | ID: mdl-37540708

ABSTRACT

The mature mammalian cortex is composed of 6 architecturally and functionally distinct layers. Two key steps in the assembly of this layered structure are the initial establishment of the glial scaffold and the subsequent migration of postmitotic neurons to their final position. These processes involve the precise and timely regulation of adhesion and detachment of neural cells from their substrates. Although much is known about the roles of adhesive substrates during neuronal migration and the formation of the glial scaffold, less is understood about how these signals are interpreted and integrated within these neural cells. Here, we provide in vivo evidence that Cas proteins, a family of cytoplasmic adaptors, serve a functional and redundant role during cortical lamination. Cas triple conditional knock-out (Cas TcKO) mice display severe cortical phenotypes that feature cobblestone malformations. Molecular epistasis and genetic experiments suggest that Cas proteins act downstream of transmembrane Dystroglycan and ß1-Integrin in a radial glial cell-autonomous manner. Overall, these data establish a new and essential role for Cas adaptor proteins during the formation of cortical circuits and reveal a signaling axis controlling cortical scaffold formation.


Subject(s)
Adaptor Proteins, Signal Transducing , Dystroglycans , Integrin beta1 , Neuroglia , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Movement/physiology , Cerebral Cortex/metabolism , Dystroglycans/genetics , Dystroglycans/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Neuroglia/metabolism , Neurons/physiology , Signal Transduction/physiology
10.
Mol Biol Rep ; 50(8): 6373-6379, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37318662

ABSTRACT

BACKGROUND: Congenital muscular dystrophies (CMDs) result from genetically inherited defects in the biosynthesis and/or the posttranslational modification (glycosylation) of laminin-α2 and α-dystroglycan (α-DG), respectively. The interaction between both proteins is responsible for the stability and integrity of the muscle cell. We aimed to study the expression profiles of both proteins in two classes of CMDs. SUBJECTS AND METHODS: Whole-exome sequencing (WES) was done for four patients with neuromuscular manifestations. The expression of core α-DG and laminin-α2 subunit in skin fibroblasts and MCF-7 cells was assessed by western blot. RESULTS: WES revealed two cases with nonsense mutations; c.2938G > T and c.4348 C > T, in LAMA2 encodes laminin-α2. It revealed also two cases with mutations in POMGNT1 encode protein O-mannose beta-1,2-N-acetylglucosaminyltransferase mutations. One patient had a missense mutation c.1325G > A, and the other had a synonymous variant c.636 C > T. Immunodetection of core α-DG in skin fibroblasts revealed the expression of truncated forms of core α-DG accompanied by reduced expression of laminin-α2 in POMGNT1-CMD patients and one patient with LAMA2-CMD. One patient with LAMA2-CMD had overexpression of laminin-α2 and expression of a low level of an abnormal form of increased molecular weight core α-DG. MCF-7 cells showed truncated forms of core α-CDG with an absent laminin-α2. CONCLUSION: A correlation between the expression pattern/level of core α-DG and laminin-α2 could be found in patients with different types of CMD.


Subject(s)
Laminin , Muscular Dystrophies , Humans , Dystroglycans/genetics , Dystroglycans/metabolism , Fibroblasts/metabolism , Laminin/genetics , Muscular Dystrophies/genetics , Muscular Dystrophies/complications , Muscular Dystrophies/metabolism , Mutation/genetics
11.
Nat Commun ; 14(1): 1771, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997523

ABSTRACT

Disrupted synaptic inhibition is implicated in neuropsychiatric disorders, yet the molecular mechanisms that shape and sustain inhibitory synapses are poorly understood. Here, we show through rescue experiments performed using Neurexin-3 conditional knockout mice that alternative splicing at SS2 and SS4 regulates the release probability, but not the number, of inhibitory synapses in the olfactory bulb and prefrontal cortex independent of sex. Neurexin-3 splice variants that mediate Neurexin-3 binding to dystroglycan enable inhibitory synapse function, whereas splice variants that don't allow dystroglycan binding do not. Furthermore, a minimal Neurexin-3 protein that binds to dystroglycan fully sustains inhibitory synaptic function, indicating that trans-synaptic dystroglycan binding is necessary and sufficient for Neurexin-3 function in inhibitory synaptic transmission. Thus, Neurexin-3 enables a normal release probability at inhibitory synapses via a trans-synaptic feedback signaling loop consisting of presynaptic Neurexin-3 and postsynaptic dystroglycan.


Subject(s)
Alternative Splicing , Dystroglycans , Animals , Mice , Alternative Splicing/genetics , Cell Adhesion Molecules/metabolism , Dystroglycans/genetics , Dystroglycans/metabolism , Synapses/metabolism , Synaptic Transmission
12.
Acta Neuropathol ; 145(4): 479-496, 2023 04.
Article in English | MEDLINE | ID: mdl-36799992

ABSTRACT

DTNA encodes α-dystrobrevin, a component of the macromolecular dystrophin-glycoprotein complex (DGC) that binds to dystrophin/utrophin and α-syntrophin. Mice lacking α-dystrobrevin have a muscular dystrophy phenotype, but variants in DTNA have not previously been associated with human skeletal muscle disease. We present 12 individuals from four unrelated families with two different monoallelic DTNA variants affecting the coiled-coil domain of α-dystrobrevin. The five affected individuals from family A harbor a c.1585G > A; p.Glu529Lys variant, while the recurrent c.1567_1587del; p.Gln523_Glu529del DTNA variant was identified in the other three families (family B: four affected individuals, family C: one affected individual, and family D: two affected individuals). Myalgia and exercise intolerance, with variable ages of onset, were reported in 10 of 12 affected individuals. Proximal lower limb weakness with onset in the first decade of life was noted in three individuals. Persistent elevations of serum creatine kinase (CK) levels were detected in 11 of 12 affected individuals, 1 of whom had an episode of rhabdomyolysis at 20 years of age. Autism spectrum disorder or learning disabilities were reported in four individuals with the c.1567_1587 deletion. Muscle biopsies in eight affected individuals showed mixed myopathic and dystrophic findings, characterized by fiber size variability, internalized nuclei, and slightly increased extracellular connective tissue and inflammation. Immunofluorescence analysis of biopsies from five affected individuals showed reduced α-dystrobrevin immunoreactivity and variably reduced immunoreactivity of other DGC proteins: dystrophin, α, ß, δ and γ-sarcoglycans, and α and ß-dystroglycans. The DTNA deletion disrupted an interaction between α-dystrobrevin and syntrophin. Specific variants in the coiled-coil domain of DTNA cause skeletal muscle disease with variable penetrance. Affected individuals show a spectrum of clinical manifestations, with severity ranging from hyperCKemia, myalgias, and exercise intolerance to childhood-onset proximal muscle weakness. Our findings expand the molecular etiologies of both muscular dystrophy and paucisymptomatic hyperCKemia, to now include monoallelic DTNA variants as a novel cause of skeletal muscle disease in humans.


Subject(s)
Autism Spectrum Disorder , Muscular Dystrophies , Neuropeptides , Mice , Humans , Animals , Child , Dystrophin/genetics , Dystrophin/metabolism , Autism Spectrum Disorder/metabolism , Muscular Dystrophies/metabolism , Dystroglycans/metabolism , Alternative Splicing , Muscle, Skeletal/pathology , Neuropeptides/genetics , Neuropeptides/metabolism , Dystrophin-Associated Proteins/genetics , Dystrophin-Associated Proteins/metabolism
13.
J Biochem ; 173(5): 333-335, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-36760122

ABSTRACT

Dystroglycan (DG), a muscular transmembrane protein, plays a critical role in transducing extracellular matrix-derived signals to the cytoskeleton and provides physical strength to skeletal muscle cell membranes. The extracellular domain of DG, α-DG, displays unique glycosylation patterns. Fully functional glycosylation is required for this domain to interact with components of extracellular matrices, including laminin. One of the unique sugar compositions found in such functional glycans on DG is two ribitol phosphates that are transferred by the sequential actions of fukutin (FKTN) and fukutin-related protein (FKRP), which use CDP-ribitol as a donor substrate. These are then further primed for matriglycan biosynthesis. A recent in vitro study reported that glycerol phosphate could be similarly added to α-DG by FKTN and FKRP if they used CDP-glycerol (CDP-Gro) as a donor substrate. However, the physiological relevance of these findings remains elusive. Imae et al. addressed the knowledge gap regarding whether CDP-Gro is present in mammals and how CDP-Gro is synthesized and functions in mammals.


Subject(s)
Dystroglycans , Pentosyltransferases , Animals , Dystroglycans/metabolism , Glycerol , Glycosylation , Pentosyltransferases/metabolism , Ribitol/metabolism , Ribitol/pharmacology
14.
Biomolecules ; 13(2)2023 01 22.
Article in English | MEDLINE | ID: mdl-36830582

ABSTRACT

The choroid plexus (CP) is a structure in the brain ventricles that produces the main part of the cerebrospinal fluid (CSF). It is covered with specialized cells which show epithelial characteristics and are the site of the blood-CSF barrier. These cells form a contiguous cell sheet with ventricle-lining ependymal cells which are known to express aquaporin-4 (AQP4). In contrast, CP epithelial cells express aquaporin-1 (AQP1) apically. We investigated the expression patterns of aquaporins in the CP-ependyma transition from human body donors using immunofluorescence and electron microscopy. Ependymal cells and subependymal astrocytes at the base of the CP showed a particularly high AQP4 immunoreactivity. Astrocytic processes formed a dense meshwork or glial plate around the blood vessels entering the CP. Interestingly, some of these astrocytic processes were in direct contact with the CP stroma, which contains fenestrated blood vessels, separated only by a basal lamina. Electron microscopy confirmed the continuity of the subastrocytic basal lamina with the CP epithelium. We also probed for components of the AQP4 anchoring dystrophin-dystroglycan complex. Immunolabeling for dystrophin and AQP4 showed an overlapping staining pattern in the glial plate but not in previously reported AQP4-positive CP epithelial cells. In contrast, dystroglycan expression was associated with laminin staining in the glial plate and the CP epithelium. This suggests different mechanisms for AQP4 anchoring in the cell membrane. The high AQP4 density in the connecting glial plate might facilitate the transport of water in and out of the CP stroma and could possibly serve as a drainage and clearing pathway for metabolites.


Subject(s)
Choroid Plexus , Ependyma , Humans , Ependyma/metabolism , Choroid Plexus/metabolism , Dystrophin , Dystroglycans/metabolism , Aquaporin 4/metabolism , Brain/metabolism
15.
Genes (Basel) ; 14(2)2023 01 31.
Article in English | MEDLINE | ID: mdl-36833299

ABSTRACT

GDP-mannose pyrophosphorylase B (GMPPB) is a cytoplasmic protein that catalyzes the formation of GDP-mannose. Impaired GMPPB function reduces the amount of GDP-mannose available for the O-mannosylation of α-dystroglycan (α-DG) and ultimately leads to disruptions of the link between α-DG and extracellular proteins, hence dystroglycanopathy. GMPPB-related disorders are inherited in an autosomal recessive manner and caused by mutations in either a homozygous or compound heterozygous state. The clinical spectrum of GMPPB-related disorders spans from severe congenital muscular dystrophy (CMD) with brain and eye abnormalities to mild forms of limb-girdle muscular dystrophy (LGMD) to recurrent rhabdomyolysis without overt muscle weakness. GMPPB mutations can also lead to the defect of neuromuscular transmission and congenital myasthenic syndrome due to altered glycosylation of the acetylcholine receptor subunits and other synaptic proteins. Such impairment of neuromuscular transmission is a unique feature of GMPPB-related disorders among dystroglycanopathies. LGMD is the most common phenotypic presentation, characterized by predominant proximal weakness involving lower more than upper limbs. Facial, ocular, bulbar, and respiratory muscles are largely spared. Some patients demonstrate fluctuating fatigable weakness suggesting neuromuscular junction involvement. Patients with CMD phenotype often also have structural brain defects, intellectual disability, epilepsy, and ophthalmic abnormalities. Creatine kinase levels are typically elevated, ranging from 2 to >50 times the upper limit of normal. Involvement of the neuromuscular junction is demonstrated by the decrement in the compound muscle action potential amplitude on low-frequency (2-3 Hz) repetitive nerve stimulation in proximal muscles but not in facial muscles. Muscle biopsies typically show myopathic changes with variable degrees of reduced α-DG expression. Higher mobility of ß-DG on Western blotting represents a specific feature of GMPPB-related disorders, distinguishing it from other α-dystroglycanopathies. Patients with clinical and electrophysiologic features of neuromuscular transmission defect can respond to acetylcholinesterase inhibitors alone or combined with 3,4 diaminopyridine or salbutamol.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Muscular Dystrophies , Humans , Acetylcholinesterase , Mannose , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies/genetics , Dystroglycans/metabolism , Muscle Weakness
16.
Elife ; 122023 02 01.
Article in English | MEDLINE | ID: mdl-36723429

ABSTRACT

Dystroglycan (DG) requires extensive post-translational processing and O-glycosylation to function as a receptor for extracellular matrix (ECM) proteins containing laminin-G (LG) domains. Matriglycan is an elongated polysaccharide of alternating xylose (Xyl) and glucuronic acid (GlcA) that binds with high affinity to ECM proteins with LG domains and is uniquely synthesized on α-dystroglycan (α-DG) by like-acetylglucosaminyltransferase-1 (LARGE1). Defects in the post-translational processing or O-glycosylation of α-DG that result in a shorter form of matriglycan reduce the size of α-DG and decrease laminin binding, leading to various forms of muscular dystrophy. Previously, we demonstrated that protein O-mannose kinase (POMK) is required for LARGE1 to generate full-length matriglycan on α-DG (~150-250 kDa) (Walimbe et al., 2020). Here, we show that LARGE1 can only synthesize a short, non-elongated form of matriglycan in mouse skeletal muscle that lacks the DG N-terminus (α-DGN), resulting in an ~100-125 kDa α-DG. This smaller form of α-DG binds laminin and maintains specific force but does not prevent muscle pathophysiology, including reduced force production after eccentric contractions (ECs) or abnormalities in the neuromuscular junctions. Collectively, our study demonstrates that α-DGN, like POMK, is required for LARGE1 to extend matriglycan to its full mature length on α-DG and thus prevent muscle pathophysiology.


Subject(s)
Dystroglycans , Muscular Dystrophies , N-Acetylglucosaminyltransferases , Animals , Mice , Dystroglycans/metabolism , Extracellular Matrix Proteins/metabolism , Glycosylation , Laminin/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Protein Kinases/metabolism , Protein Processing, Post-Translational , N-Acetylglucosaminyltransferases/metabolism
17.
J Biol Chem ; 299(3): 102890, 2023 03.
Article in English | MEDLINE | ID: mdl-36634851

ABSTRACT

Mutations in protein O-mannosyltransferases (POMTs) result in severe brain defects and congenital muscular dystrophies characterized by abnormal glycosylation of α-dystroglycan (α-Dg). However, neurological phenotypes of POMT mutants are not well understood, and the functional substrates of POMTs other than α-Dg remain unknown. Using a Drosophila model, here we reveal that Dg alone cannot account for the phenotypes of POMT mutants, and identify Protein tyrosine phosphatase 69D (PTP69D) as a gene interacting with POMTs in producing the abdomen rotation phenotype. Using RNAi-mediated knockdown, mutant alleles, and a dominant-negative form of PTP69D, we reveal that PTP69D is required for the wiring of larval sensory axons. We also found that PTP69D and POMT genes interact in this process, and that their interactions lead to complex synergistic or antagonistic effects on axon wiring phenotypes, depending on the mode of genetic manipulation. Using glycoproteomic approaches, we further characterized the glycosylation of the PTP69D transgenic construct expressed in genetic strains with different levels of POMT activity. We found that the PTP69D construct carries many O-linked mannose modifications when expressed in Drosophila with wild-type or ectopically upregulated expression of POMTs. These modifications were absent in POMT mutants, suggesting that PTP69D is a substrate of POMT-mediated O-mannosylation. Taken together, our results indicate that PTP69D is a novel functional substrate of POMTs that is required for axon connectivity. This mechanism of POMT-mediated regulation of receptor-type protein tyrosine phosphatase functions could potentially be conserved in mammals and may shed new light on the etiology of neurological defects in muscular dystrophies.


Subject(s)
Axons , Drosophila , Mannosyltransferases , Protein Tyrosine Phosphatases , Animals , Axons/metabolism , Drosophila/enzymology , Drosophila/metabolism , Drosophila Proteins/genetics , Dystroglycans/genetics , Dystroglycans/metabolism , Mammals/metabolism , Mannosyltransferases/metabolism , Protein Tyrosine Phosphatases/metabolism , Receptor-Like Protein Tyrosine Phosphatases/genetics
18.
Dis Model Mech ; 16(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36594281

ABSTRACT

Deficiencies in the human dystrophin glycoprotein complex (DGC), which links the extracellular matrix with the intracellular cytoskeleton, cause muscular dystrophies, a group of incurable disorders associated with heterogeneous muscle, brain and eye abnormalities. Stresses such as nutrient deprivation and aging cause muscle wasting, which can be exacerbated by reduced levels of the DGC in membranes, the integrity of which is vital for muscle health and function. Moreover, the DGC operates in multiple signaling pathways, demonstrating an important function in gene expression regulation. To advance disease diagnostics and treatment strategies, we strive to understand the genetic pathways that are perturbed by DGC mutations. Here, we utilized a Drosophila model to investigate the transcriptomic changes in mutants of four DGC components under temperature and metabolic stress. We identified DGC-dependent genes, stress-dependent genes and genes dependent on the DGC for a proper stress response, confirming a novel function of the DGC in stress-response signaling. This perspective yields new insights into the etiology of muscular dystrophy symptoms, possible treatment directions and a better understanding of DGC signaling and regulation under normal and stress conditions.


Subject(s)
Drosophila , Muscular Dystrophies , Animals , Humans , Dystrophin/genetics , Dystrophin/metabolism , Transcriptome/genetics , Dystroglycans/metabolism , Muscular Dystrophies/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , Muscle, Skeletal/metabolism
19.
Hum Mol Genet ; 32(8): 1301-1312, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36426838

ABSTRACT

Fukuyama congenital muscular dystrophy (FCMD) is an autosomal recessive disorder caused by fukutin (FKTN) gene mutations. FCMD is the second most common form of childhood muscular dystrophy in Japan, and the most patients possess a homozygous retrotransposal SINE-VNTR-Alu insertion in the 3'-untranslated region of FKTN. A deep-intronic variant (DIV) was previously identified as the second most prevalent loss-of-function mutation in Japanese patients with FCMD. The DIV creates a new splicing donor site in intron 5 that causes aberrant splicing and the formation of a 64-base pair pseudoexon in the mature mRNA, resulting in a truncated nonfunctional protein. Patients with FCMD carrying the DIV present a more severe symptoms, and currently, there is no radical therapy available for this disorder. In the present study, we describe in vitro evaluation of antisense oligonucleotide mediated skipping of pseudoexon inclusion and restoration of functional FKTN protein. A total of 16 19-26-mer antisense oligonucleotide sequences were designed with a 2'-O-methyl backbone and were screened in patient-derived fibroblasts, lymphoblast cells and minigene splice assays. One antisense oligonucleotide targeting the exonic splice enhancer region significantly induced pseudoexon skipping and increased the expression of normal mRNA. It also rescued FKTN protein production in lymphoblast cells and restored functional O-mannosyl glycosylation of alpha-dystroglycan in patient-derived myotubes. Based on our results, antisense oligonucleotide-based splicing correction should be investigated further as a potential treatment for patients with FCMD carrying the DIV.One Sentence Summary Antisense oligonucleotide treatment restored normal FKTN protein production and functional O-mannosyl glycosylation of alpha-dystroglycan via pseudoexon skipping in patient-derived cells carrying the compound heterozygous deep-intronic variant of Fukuyama muscular dystrophy.


Subject(s)
Walker-Warburg Syndrome , Humans , Walker-Warburg Syndrome/genetics , Oligonucleotides, Antisense/genetics , Dystroglycans/metabolism , Mutation , RNA, Messenger
20.
Neuroscience ; 510: 95-108, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36493910

ABSTRACT

Aquaporin-4 (AQP4) regulates retinal water homeostasis and participates in retinal oedema pathophysiology. ß-dystroglycan (ß-DG) is responsible for AQP4 polarization and can be cleaved by matrix metalloproteinase-9 (MMP9). Retinal oedema induced by ischemia-reperfusion (I/R) injury is an early complication. Bumetanide (BU) has potential efficacy against cytotoxic oedema. Our study investigated the effects of ß-DG cleavage on AQP4 and the roles of BU in a rat retinal I/R injury model. The model was induced by applying 110 mm Hg intraocular pressure to the anterior eye chamber. BU and U0126 (a selective ERK inhibitor) were intraperitoneally administered 15 and 30 min, respectively, before I/R induction. Rhodamine isothiocyanate extravasation detection, quantitative real-time PCR, transmission electron microscopy, hematoxylin-eosin staining, immunofluorescence staining, western blotting, and TUNEL staining were performed. AQP4 lost its polarization in the retinal perivascular domain as a result of ß-DG cleavage. BU rescued AQP4 depolarization, suppressed AQP4 protein expression, attenuated retinal cytotoxic oedema, and downregulated ß-DG and AQP4 mRNA expression. BU suppressed glial responses and mitochondria-mediated apoptotic protein expression, including that of Caspase-3 and Cyto C, raised the Bcl-2/Bax ratio, and lowered the number of apoptotic cells in the retina. Both BU and U0126 downregulated p-ERK and MMP9 expression. Thus, BU treatment suppressed ß-DG cleavage, recovered AQP4 polarization partially via inhibiting ERK/MMP9 signaling pathway, and possess potential neuroprotective efficacy in the rat retinal ischemia-reperfusion injury model.


Subject(s)
Papilledema , Reperfusion Injury , Animals , Rats , Aquaporin 4/metabolism , Bumetanide/pharmacology , Dystroglycans/genetics , Dystroglycans/metabolism , Edema , Matrix Metalloproteinase 9/metabolism , Neuroprotection , Reperfusion Injury/metabolism , Retina/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...