Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nature ; 622(7983): 603-610, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37699521

ABSTRACT

Non-segmented negative-strand RNA viruses, including Ebola virus (EBOV), rabies virus, human respiratory syncytial virus and pneumoviruses, can cause respiratory infections, haemorrhagic fever and encephalitis in humans and animals, and are considered a substantial health and economic burden worldwide1. Replication and transcription of the viral genome are executed by the large (L) polymerase, which is a promising target for the development of antiviral drugs. Here, using the L polymerase of EBOV as a representative, we show that de novo replication of L polymerase is controlled by the specific 3' leader sequence of the EBOV genome in an enzymatic assay, and that formation of at least three base pairs can effectively drive the elongation process of RNA synthesis independent of the specific RNA sequence. We present the high-resolution structures of the EBOV L-VP35-RNA complex and show that the 3' leader RNA binds in the template entry channel with a distinctive stable bend conformation. Using mutagenesis assays, we confirm that the bend conformation of the RNA is required for the de novo replication activity and reveal the key residues of the L protein that stabilize the RNA conformation. These findings provide a new mechanistic understanding of RNA synthesis for polymerases of non-segmented negative-strand RNA viruses, and reveal important targets for the development of antiviral drugs.


Subject(s)
Ebolavirus , RNA, Viral , RNA-Dependent RNA Polymerase , Virus Replication , Animals , Humans , Antiviral Agents/pharmacology , Ebolavirus/enzymology , Ebolavirus/genetics , Ebolavirus/growth & development , Hemorrhagic Fever, Ebola/virology , RNA, Viral/biosynthesis , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , Genome, Viral , Nucleic Acid Conformation , Mutagenesis , RNA Stability
2.
Nature ; 610(7931): 394-401, 2022 10.
Article in English | MEDLINE | ID: mdl-36171293

ABSTRACT

Filoviruses, including Ebola virus, pose an increasing threat to the public health. Although two therapeutic monoclonal antibodies have been approved to treat the Ebola virus disease1,2, there are no approved broadly reactive drugs to control diverse filovirus infection. Filovirus has a large polymerase (L) protein and the cofactor viral protein 35 (VP35), which constitute the basic functional unit responsible for virus genome RNA synthesis3. Owing to its conservation, the L-VP35 polymerase complex is a promising target for broadly reactive antiviral drugs. Here we determined the structure of Ebola virus L protein in complex with tetrameric VP35 using cryo-electron microscopy (state 1). Structural analysis revealed that Ebola virus L possesses a filovirus-specific insertion element that is essential for RNA synthesis, and that VP35 interacts extensively with the N-terminal region of L by three protomers of the VP35 tetramer. Notably, we captured the complex structure in a second conformation with the unambiguous priming loop and supporting helix away from polymerase active site (state 2). Moreover, we demonstrated that the century-old drug suramin could inhibit the activity of the Ebola virus polymerase in an enzymatic assay. The structure of the L-VP35-suramin complex reveals that suramin can bind at the highly conserved NTP entry channel to prevent substrates from entering the active site. These findings reveal the mechanism of Ebola virus replication and may guide the development of more powerful anti-filovirus drugs.


Subject(s)
Cryoelectron Microscopy , DNA-Directed RNA Polymerases , Ebolavirus , Viral Regulatory and Accessory Proteins , Antiviral Agents/pharmacology , Catalytic Domain , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/ultrastructure , Ebolavirus/enzymology , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/virology , Humans , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA, Viral/biosynthesis , Suramin/chemistry , Suramin/metabolism , Suramin/pharmacology , Suramin/therapeutic use , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/ultrastructure , Virus Replication
3.
PLoS Pathog ; 17(10): e1010002, 2021 10.
Article in English | MEDLINE | ID: mdl-34699554

ABSTRACT

Transcription of non-segmented negative sense (NNS) RNA viruses follows a stop-start mechanism and is thought to be initiated at the genome's very 3'-end. The synthesis of short abortive leader transcripts (leaderRNAs) has been linked to transcription initiation for some NNS viruses. Here, we identified the synthesis of abortive leaderRNAs (as well as trailer RNAs) that are specifically initiated opposite to (anti)genome nt 2; leaderRNAs are predominantly terminated in the region of nt ~ 60-80. LeaderRNA synthesis requires hexamer phasing in the 3'-leader promoter. We determined a steady-state NP mRNA:leaderRNA ratio of ~10 to 30-fold at 48 h after Ebola virus (EBOV) infection, and this ratio was higher (70 to 190-fold) for minigenome-transfected cells. LeaderRNA initiation at nt 2 and the range of termination sites were not affected by structure and length variation between promoter elements 1 and 2, nor the presence or absence of VP30. Synthesis of leaderRNA is suppressed in the presence of VP30 and termination of leaderRNA is not mediated by cryptic gene end (GE) signals in the 3'-leader promoter. We further found different genomic 3'-end nucleotide requirements for transcription versus replication, suggesting that promoter recognition is different in the replication and transcription mode of the EBOV polymerase. We further provide evidence arguing against a potential role of EBOV leaderRNAs as effector molecules in innate immunity. Taken together, our findings are consistent with a model according to which leaderRNAs are abortive replicative RNAs whose synthesis is not linked to transcription initiation. Rather, replication and transcription complexes are proposed to independently initiate RNA synthesis at separate sites in the 3'-leader promoter, i.e., at the second nucleotide of the genome 3'-end and at the more internally positioned transcription start site preceding the first gene, respectively, as reported for Vesicular stomatitis virus.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Ebolavirus/genetics , RNA, Viral/genetics , Transcription, Genetic/genetics , Ebolavirus/enzymology
4.
Nucleic Acids Res ; 49(3): 1737-1748, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33503246

ABSTRACT

The Ebola virus is a deadly human pathogen responsible for several outbreaks in Africa. Its genome encodes the 'large' L protein, an essential enzyme that has polymerase, capping and methyltransferase activities. The methyltransferase activity leads to RNA co-transcriptional modifications at the N7 position of the cap structure and at the 2'-O position of the first transcribed nucleotide. Unlike other Mononegavirales viruses, the Ebola virus methyltransferase also catalyses 2'-O-methylation of adenosines located within the RNA sequences. Herein, we report the crystal structure at 1.8 Å resolution of the Ebola virus methyltransferase domain bound to a fragment of a camelid single-chain antibody. We identified structural determinants and key amino acids specifically involved in the internal adenosine-2'-O-methylation from cap-related methylations. These results provide the first high resolution structure of an ebolavirus L protein domain, and the framework to investigate the effects of epitranscriptomic modifications and to design possible antiviral drugs against the Filoviridae family.


Subject(s)
Ebolavirus/enzymology , Methyltransferases/chemistry , Viral Proteins/chemistry , Catalytic Domain , Crystallography, X-Ray , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Mutation , Protein Conformation, alpha-Helical , Single-Domain Antibodies/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
5.
Proc Natl Acad Sci U S A ; 117(43): 26946-26954, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33028676

ABSTRACT

Remdesivir is a broad-spectrum antiviral nucleotide prodrug that has been clinically evaluated in Ebola virus patients and recently received emergency use authorization (EUA) for treatment of COVID-19. With approvals from the Federal Select Agent Program and the Centers for Disease Control and Prevention's Institutional Biosecurity Board, we characterized the resistance profile of remdesivir by serially passaging Ebola virus under remdesivir selection; we generated lineages with low-level reduced susceptibility to remdesivir after 35 passages. We found that a single amino acid substitution, F548S, in the Ebola virus polymerase conferred low-level reduced susceptibility to remdesivir. The F548 residue is highly conserved in filoviruses but should be subject to specific surveillance among novel filoviruses, in newly emerging variants in ongoing outbreaks, and also in Ebola virus patients undergoing remdesivir therapy. Homology modeling suggests that the Ebola virus polymerase F548 residue lies in the F-motif of the polymerase active site, a region that was previously identified as susceptible to resistance mutations in coronaviruses. Our data suggest that molecular surveillance of this region of the polymerase in remdesivir-treated COVID-19 patients is also warranted.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Betacoronavirus/enzymology , Ebolavirus/enzymology , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Betacoronavirus/chemistry , Cell Line , Drug Tolerance/genetics , Ebolavirus/drug effects , Ebolavirus/genetics , Humans , Models, Molecular , Mutation , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
6.
J Biol Chem ; 295(15): 4773-4779, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32094225

ABSTRACT

Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome-coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome-CoV and Middle East respiratory syndrome (MERS-CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS-CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS-CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i, the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3'-5' exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Middle East Respiratory Syndrome Coronavirus/enzymology , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Virus Replication/drug effects , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Coronavirus/enzymology , Ebolavirus/enzymology , Gene Expression , Nucleic Acid Synthesis Inhibitors/chemistry , RNA , RNA-Dependent RNA Polymerase/genetics , Sf9 Cells , Viral Nonstructural Proteins/genetics
7.
Viruses ; 11(4)2019 04 04.
Article in English | MEDLINE | ID: mdl-30987343

ABSTRACT

Remdesivir (GS-5734) is a 1'-cyano-substituted adenosine nucleotide analogue prodrug that shows broad-spectrum antiviral activity against several RNA viruses. This compound is currently under clinical development for the treatment of Ebola virus disease (EVD). While antiviral effects have been demonstrated in cell culture and in non-human primates, the mechanism of action of Ebola virus (EBOV) inhibition for remdesivir remains to be fully elucidated. The EBOV RNA-dependent RNA polymerase (RdRp) complex was recently expressed and purified, enabling biochemical studies with the relevant triphosphate (TP) form of remdesivir and its presumptive target. In this study, we confirmed that remdesivir-TP is able to compete for incorporation with adenosine triphosphate (ATP). Enzyme kinetics revealed that EBOV RdRp and respiratory syncytial virus (RSV) RdRp incorporate ATP and remdesivir-TP with similar efficiencies. The selectivity of ATP against remdesivir-TP is ~4 for EBOV RdRp and ~3 for RSV RdRp. In contrast, purified human mitochondrial RNA polymerase (h-mtRNAP) effectively discriminates against remdesivir-TP with a selectivity value of ~500-fold. For EBOV RdRp, the incorporated inhibitor at position i does not affect the ensuing nucleotide incorporation event at position i+1. For RSV RdRp, we measured a ~6-fold inhibition at position i+1 although RNA synthesis was not terminated. Chain termination was in both cases delayed and was seen predominantly at position i+5. This pattern is specific to remdesivir-TP and its 1'-cyano modification. Compounds with modifications at the 2'-position show different patterns of inhibition. While 2'-C-methyl-ATP is not incorporated, ara-ATP acts as a non-obligate chain terminator and prevents nucleotide incorporation at position i+1. Taken together, our biochemical data indicate that the major contribution to EBOV RNA synthesis inhibition by remdesivir can be ascribed to delayed chain termination. The long distance of five residues between the incorporated nucleotide analogue and its inhibitory effect warrant further investigation.


Subject(s)
Adenosine/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Ebolavirus/enzymology , Enzyme Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Ribonucleotides/pharmacology , Viral Proteins/antagonists & inhibitors , Adenosine/chemistry , Adenosine/metabolism , Adenosine/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Alanine/chemistry , Alanine/metabolism , Alanine/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , DNA-Directed RNA Polymerases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Kinetics , Molecular Structure , Prodrugs , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/metabolism , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/enzymology , Respiratory Syncytial Virus, Human/physiology , Ribonucleotides/chemistry , Ribonucleotides/metabolism , Substrate Specificity , Viral Proteins/metabolism
9.
PLoS Negl Trop Dis ; 11(10): e0005996, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28991917

ABSTRACT

BACKGROUND: Ebola virus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates. While no licensed therapeutics are available, recently there has been tremendous progress in developing antivirals. Targeting the ribonucleoprotein complex (RNP) proteins, which facilitate genome replication and transcription, and particularly the polymerase L, is a promising antiviral approach since these processes are essential for the virus life cycle. However, until now little is known about L in terms of its structure and function, and in particular the catalytic center of the RNA-dependent RNA polymerase (RdRp) of L, which is one of the most promising molecular targets, has never been experimentally characterized. METHODOLOGY/PRINCIPAL FINDINGS: Using multiple sequence alignments with other negative sense single-stranded RNA viruses we identified the putative catalytic center of the EBOV RdRp. An L protein with mutations in this center was then generated and characterized using various life cycle modelling systems. These systems are based on minigenomes, i.e. miniature versions of the viral genome, in which the viral genes are exchanged against a reporter gene. When such minigenomes are coexpressed with RNP proteins in mammalian cells, the RNP proteins recognize them as authentic templates for replication and transcription, resulting in reporter activity reflecting these processes. Replication-competent minigenome systems indicated that our L catalytic domain mutant was impaired in genome replication and/or transcription, and by using replication-deficient minigenome systems, as well as a novel RT-qPCR-based genome replication assay, we showed that it indeed no longer supported either of these processes. However, it still showed similar expression to wild-type L, and retained its ability to be incorporated into inclusion bodies, which are the sites of EBOV genome replication. CONCLUSIONS/SIGNIFICANCE: We have experimentally defined the catalytic center of the EBOV RdRp, and thus a promising antiviral target regulating an essential aspect of the EBOV life cycle.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Ebolavirus/enzymology , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Viral/physiology , Viral Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , DNA-Directed RNA Polymerases/genetics , Ebolavirus/genetics , Genome, Viral , HEK293 Cells , Humans , Viral Proteins/genetics , Virus Replication
10.
Antiviral Res ; 146: 21-27, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28807685

ABSTRACT

Ebola virus (EBOV) causes a severe disease in humans with the potential for significant international public health consequences. Currently, treatments are limited to experimental vaccines and therapeutics. Therefore, research into prophylaxis and antiviral strategies to combat EBOV infections is of utmost importance. The requirement for high containment laboratories to study EBOV infection is a limiting factor for conducting EBOV research. To overcome this issue, minigenome systems have been used as valuable tools to study EBOV replication and transcription mechanisms and to screen for antiviral compounds at biosafety level 2. The most commonly used EBOV minigenome system relies on the ectopic expression of the T7 RNA polymerase (T7), which can be limiting for certain cell types. We have established an improved EBOV minigenome system that utilizes endogenous RNA polymerase II (pol II) as a driver for the synthesis of minigenome RNA. We show here that this system is as efficient as the T7-based minigenome system, but works in a wider range of cell types, including biologically relevant cell types such as bat cells. Importantly, we were also able to adapt this system to a reliable and cost-effective 96-well format antiviral screening assay with a Z-factor of 0.74, indicative of a robust assay. Using this format, we identified JG40, an inhibitor of Hsp70, as an inhibitor of EBOV replication, highlighting the potential for this system as a tool for antiviral drug screening. In summary, this updated EBOV minigenome system provides a convenient and effective means of advancing the field of EBOV research.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/drug effects , Ebolavirus/genetics , Genome, Viral , Microbial Sensitivity Tests/methods , RNA Polymerase II/genetics , Animals , Antiviral Agents/isolation & purification , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Ebolavirus/enzymology , HSP72 Heat-Shock Proteins/antagonists & inhibitors , Hemorrhagic Fever, Ebola/virology , High-Throughput Screening Assays/economics , High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods , Humans , Microbial Sensitivity Tests/economics , Microbial Sensitivity Tests/instrumentation , RNA Polymerase II/metabolism , RNA, Viral/genetics , Transcription, Genetic/drug effects , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/drug effects
11.
Sci Rep ; 7: 43395, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262699

ABSTRACT

GS-5734 is a monophosphate prodrug of an adenosine nucleoside analog that showed therapeutic efficacy in a non-human primate model of Ebola virus infection. It has been administered under compassionate use to two Ebola patients, both of whom survived, and is currently in Phase 2 clinical development for treatment of Ebola virus disease. Here we report the antiviral activities of GS-5734 and the parent nucleoside analog across multiple virus families, providing evidence to support new indications for this compound against human viruses of significant public health concern.


Subject(s)
Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Ebolavirus/drug effects , Marburgvirus/drug effects , Paramyxoviridae/drug effects , Pneumovirinae/drug effects , Prodrugs/pharmacology , Ribonucleotides/pharmacology , A549 Cells , Adenosine Monophosphate/analogs & derivatives , Alanine/chemical synthesis , Alanine/metabolism , Alanine/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Cell Line, Tumor , Chlorocebus aethiops , Ebolavirus/enzymology , Ebolavirus/growth & development , Gene Expression , HEK293 Cells , HeLa Cells , Hepatocytes/drug effects , Hepatocytes/virology , Humans , Marburgvirus/enzymology , Marburgvirus/growth & development , Microbial Sensitivity Tests , Nucleosides/chemical synthesis , Nucleosides/metabolism , Nucleosides/pharmacology , Paramyxoviridae/enzymology , Paramyxoviridae/growth & development , Pneumovirinae/enzymology , Pneumovirinae/growth & development , Prodrugs/chemical synthesis , Prodrugs/metabolism , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Ribonucleotides/chemical synthesis , Ribonucleotides/metabolism , Vero Cells , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
12.
J Clin Virol ; 73: 89-94, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26587786

ABSTRACT

BACKGROUND AND OBJECTIVE: The urgency of ebolavirus drug development is obvious in light of the current local epidemic in Western Africa with high morbidity and a risk of wider spread. We present an in silico study as a first step to identify inhibitors of ebolavirus polymerase activity based on approved antiviral nucleotide analogues. STUDY DESIGN: Since a structure model of the ebolavirus polymerase is lacking, we performed combined homology and ab initio modeling and report a similarity to known polymerases of human enterovirus, bovine diarrhea virus and foot-and-mouth disease virus. This facilitated the localization of a nucleotide binding domain in the ebolavirus polymerase. We next performed molecular docking studies with nucleotides (ATP, CTP, GTP and UTP) and nucleotide analogues, including a variety of approved antiviral drugs. RESULTS AND CONCLUSIONS: Specific combinations of nucleotide analogues significantly reduce the ligand-protein interaction energies of the ebolavirus polymerase for natural nucleotides. Any nucleotide analogue on its own did not reduce ligand-protein interaction energies. This prediction encourages specific drug testing efforts and guides future strategies to inhibit ebolavirus replication.


Subject(s)
DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/chemistry , Ebolavirus/enzymology , Nucleotides/chemistry , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites/drug effects , Cattle , Computer Simulation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Nucleotides/pharmacology , Phylogeny , Structural Homology, Protein
13.
Tohoku J Exp Med ; 237(1): 45-50, 2015 09.
Article in English | MEDLINE | ID: mdl-26346967

ABSTRACT

Ebola virus disease (EVD) has been a great concern worldwide because of its high mortality. EVD usually manifests with fever, diarrhea and vomiting, as well as disseminated intravascular coagulation (DIC). To date, there is neither a licensed Ebola vaccine nor a promising therapeutic agent, although clinical trials are ongoing. For replication inside the cell, Ebola virus (EBOV) must undergo the proteolytic processing of its surface glycoprotein in the endosome by proteases including cathepsin B (CatB), followed by the fusion of the viral membrane and host endosome. Thus, the proteases have been considered as potential targets for drugs against EVD. However, no protease inhibitor has been presented as effective clinical drug against it. A synthetic serine protease inhibitor, nafamostat mesilate (NM), reduced the release of CatB from the rat pancreas. Furthermore, it has anticoagulant activities, such as inhibition of the factor VIIa complex, and has been used for treating DIC in Japan. Thus, NM could be considered as a drug candidate for the treatment of DIC induced by EBOV infection, as well as for the possible CatB-related antiviral action. Moreover, the drug has a history of large-scale production and clinical use, and the issues of safety and logistics might have been cleared. We advocate in vitro and in vivo experiments using active EBOV to examine the activities of NM against the infection and the DIC induced by the infection. In addition, we suggest trials for comparison among anti-DIC drugs including the NM in EVD patients, in parallel with the experiments.


Subject(s)
Antiviral Agents/therapeutic use , Ebolavirus/drug effects , Guanidines/therapeutic use , Hemorrhagic Fever, Ebola/drug therapy , Serine Proteinase Inhibitors/therapeutic use , Animals , Benzamidines , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/etiology , Ebolavirus/enzymology , Factor VIIa/antagonists & inhibitors , Hemorrhagic Fever, Ebola/complications , Humans , Hyperkalemia/etiology , Hyperkalemia/therapy , Hyponatremia/etiology , Hyponatremia/therapy , Rats , Serine Proteases/metabolism , Virus Replication/drug effects
14.
J Mol Biol ; 426(10): 2045-58, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24495995

ABSTRACT

The Ebola virus (EBOV) genome only encodes a single viral polypeptide with enzymatic activity, the viral large (L) RNA-dependent RNA polymerase protein. However, currently, there is limited information about the L protein, which has hampered the development of antivirals. Therefore, antifiloviral therapeutic efforts must include additional targets such as protein-protein interfaces. Viral protein 35 (VP35) is multifunctional and plays important roles in viral pathogenesis, including viral mRNA synthesis and replication of the negative-sense RNA viral genome. Previous studies revealed that mutation of key basic residues within the VP35 interferon inhibitory domain (IID) results in significant EBOV attenuation, both in vitro and in vivo. In the current study, we use an experimental pipeline that includes structure-based in silico screening and biochemical and structural characterization, along with medicinal chemistry, to identify and characterize small molecules that target a binding pocket within VP35. NMR mapping experiments and high-resolution x-ray crystal structures show that select small molecules bind to a region of VP35 IID that is important for replication complex formation through interactions with the viral nucleoprotein (NP). We also tested select compounds for their ability to inhibit VP35 IID-NP interactions in vitro as well as VP35 function in a minigenome assay and EBOV replication. These results confirm the ability of compounds identified in this study to inhibit VP35-NP interactions in vitro and to impair viral replication in cell-based assays. These studies provide an initial framework to guide development of antifiloviral compounds against filoviral VP35 proteins.


Subject(s)
Antiviral Agents/chemistry , Coenzymes/antagonists & inhibitors , Ebolavirus/drug effects , Small Molecule Libraries/chemistry , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Coenzymes/chemistry , Computer Simulation , Crystallography, X-Ray , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/metabolism , Ebolavirus/enzymology , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Interaction Domains and Motifs/physiology , Pyrroles/chemistry , Pyrroles/metabolism , Pyrroles/pharmacology , Small Molecule Libraries/pharmacology , Viral Regulatory and Accessory Proteins/chemistry
15.
PLoS Pathog ; 9(1): e1003147, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23382680

ABSTRACT

Ebolaviruses, highly lethal zoonotic pathogens, possess longer genomes than most other non-segmented negative-strand RNA viruses due in part to long 5' and 3' untranslated regions (UTRs) present in the seven viral transcriptional units. To date, specific functions have not been assigned to these UTRs. With reporter assays, we demonstrated that the Zaire ebolavirus (EBOV) 5'-UTRs lack internal ribosomal entry site function. However, the 5'-UTRs do differentially regulate cap-dependent translation when placed upstream of a GFP reporter gene. Most dramatically, the 5'-UTR derived from the viral polymerase (L) mRNA strongly suppressed translation of GFP compared to a ß-actin 5'-UTR. The L 5'-UTR is one of four viral genes to possess upstream AUGs (uAUGs), and ablation of each uAUG enhanced translation of the primary ORF (pORF), most dramatically in the case of the L 5'-UTR. The L uAUG was sufficient to initiate translation, is surrounded by a "weak" Kozak sequence and suppressed pORF translation in a position-dependent manner. Under conditions where eIF2α was phosphorylated, the presence of the uORF maintained translation of the L pORF, indicating that the uORF modulates L translation in response to cellular stress. To directly address the role of the L uAUG in virus replication, a recombinant EBOV was generated in which the L uAUG was mutated to UCG. Strikingly, mutating two nucleotides outside of previously-defined protein coding and cis-acting regulatory sequences attenuated virus growth to titers 10-100-fold lower than a wild-type virus in Vero and A549 cells. The mutant virus also exhibited decreased viral RNA synthesis as early as 6 hours post-infection and enhanced sensitivity to the stress inducer thapsigargin. Cumulatively, these data identify novel mechanisms by which EBOV regulates its polymerase expression, demonstrate their relevance to virus replication and identify a potential therapeutic target.


Subject(s)
DNA-Directed RNA Polymerases , Ebolavirus/enzymology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Viral , Viral Proteins/metabolism , Virus Replication/genetics , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Animals , Base Sequence , Cell Line , Chlorocebus aethiops , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Ebolavirus/genetics , Enzyme Inhibitors/pharmacology , Humans , Molecular Sequence Data , Protein Biosynthesis , RNA, Viral/biosynthesis , Thapsigargin/pharmacology , Vero Cells
16.
Sci Transl Med ; 4(123): 123ra24, 2012 Feb 29.
Article in English | MEDLINE | ID: mdl-22378924

ABSTRACT

Ebola virus causes a fulminant infection in humans resulting in diffuse bleeding, vascular instability, hypotensive shock, and often death. Because of its high mortality and ease of transmission from human to human, Ebola virus remains a biological threat for which effective preventive and therapeutic interventions are needed. An understanding of the mechanisms of Ebola virus pathogenesis is critical for developing antiviral therapeutics. Here, we report that productive replication of Ebola virus is modulated by the c-Abl1 tyrosine kinase. Release of Ebola virus-like particles (VLPs) in a cell culture cotransfection system was inhibited by c-Abl1-specific small interfering RNA (siRNA) or by Abl-specific kinase inhibitors and required tyrosine phosphorylation of the Ebola matrix protein VP40. Expression of c-Abl1 stimulated an increase in phosphorylation of tyrosine 13 (Y(13)) of VP40, and mutation of Y(13) to alanine decreased the release of Ebola VLPs. Productive replication of the highly pathogenic Ebola virus Zaire strain was inhibited by c-Abl1-specific siRNAs or by the Abl-family inhibitor nilotinib by up to four orders of magnitude. These data indicate that c-Abl1 regulates budding or release of filoviruses through a mechanism involving phosphorylation of VP40. This step of the virus life cycle therefore may represent a target for antiviral therapy.


Subject(s)
Ebolavirus/enzymology , Proto-Oncogene Proteins c-abl/metabolism , Viral Proteins/metabolism , Virus Replication , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Ebolavirus/classification , Ebolavirus/drug effects , Ebolavirus/genetics , Ebolavirus/growth & development , Ebolavirus/pathogenicity , HEK293 Cells , Humans , Mutation , Nucleoproteins/genetics , Nucleoproteins/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Proto-Oncogene Proteins c-abl/genetics , Pyrimidines/pharmacology , RNA Interference , Time Factors , Transfection , Tyrosine , Vero Cells , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics , Virus Release , Virus Replication/drug effects
17.
J Virol ; 83(19): 10176-86, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19625394

ABSTRACT

To explore mechanisms of entry for Ebola virus (EBOV) glycoprotein (GP) pseudotyped virions, we used comparative gene analysis to identify genes whose expression correlated with viral transduction. Candidate genes were identified by using EBOV GP pseudotyped virions to transduce human tumor cell lines that had previously been characterized by cDNA microarray. Transduction profiles for each of these cell lines were generated, and a significant positive correlation was observed between RhoC expression and permissivity for EBOV vector transduction. This correlation was not specific for EBOV vector alone as RhoC also correlated highly with transduction of vesicular stomatitis virus GP (VSVG) pseudotyped vector. Levels of RhoC protein in EBOV and VSV permissive and nonpermissive cells were consistent with the cDNA gene array findings. Additionally, vector transduction was elevated in cells that expressed high levels of endogenous RhoC but not RhoA. RhoB and RhoC overexpression significantly increased EBOV GP and VSVG pseudotyped vector transduction but had minimal effect on human immunodeficiency virus (HIV) GP pseudotyped HIV or adeno-associated virus 2 vector entry, indicating that not all virus uptake was enhanced by expression of these molecules. RhoB and RhoC overexpression also significantly enhanced VSV infection. Similarly, overexpression of RhoC led to a significant increase in fusion of EBOV virus-like particles. Finally, ectopic expression of RhoC resulted in increased nonspecific endocytosis of fluorescent dextran and in formation of increased actin stress fibers compared to RhoA-transfected cells, suggesting that RhoC is enhancing macropinocytosis. In total, our studies implicate RhoB and RhoC in enhanced productive entry of some pseudovirions and suggest the involvement of actin-mediated macropinocytosis as a mechanism of uptake of EBOV GP and VSVG pseudotyped viral particles.


Subject(s)
Ebolavirus/enzymology , Genetic Vectors , Vesiculovirus/metabolism , rho GTP-Binding Proteins/metabolism , Animals , COS Cells , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Clostridioides difficile , Humans , Microscopy, Fluorescence/methods , Models, Biological , Plasmids/metabolism , Vero Cells
18.
Virus Res ; 87(2): 155-63, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12191779

ABSTRACT

We have determined the entire genomic sequence of the Pennsylvania strain, which was isolated along with the Virginia strain during the emergence of Ebola virus Reston in 1989/90 in the United States. Thus, either the Pennsylvania or Virginia strain, neither of which had been previously molecularly characterized, can be considered as the prototype for Ebola virus Reston. Comparative analysis showed a high degree of homology to the concomitantly analyzed and recently published Philippine strain of EBOV Reston from 1996 (Ikegami et al., Arch. Virol., 146 (2001) 2021). In comparison to EBOV Zaire, strain Mayinga, conservation could be found within the open reading frames, the 3' leader and 5' trailer region and the transcriptional signals, whereas the non-coding and intergenic regions did not show any homology. This clearly supports that EBOV Reston is a distinct species within the genus Ebola-like virus but which seems to be similar to other members with respect to transcription and replication strategies. The sequence determination provides the basis for the development of a reverse genetics system for Ebola virus Reston, which is needed to study differences in pathogenicity among filoviruses.


Subject(s)
Ebolavirus/genetics , Macaca/virology , Amino Acid Sequence , Animals , Chlorocebus aethiops , Ebolavirus/classification , Ebolavirus/enzymology , Ebolavirus/isolation & purification , Genes, Viral , Genome, Viral , Molecular Sequence Data , Sequence Analysis , Sequence Homology, Amino Acid , United States , Vero Cells
19.
J Gen Virol ; 80 ( Pt 2): 355-362, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10073695

ABSTRACT

The nucleotide sequences of the L gene and 5' trailer region of Ebola virus strain Mayinga (subtype Zaire) have been determined, thus completing the sequence of the Ebola virus genome. The putative transcription start signal of the L gene was identical to the determined 5' terminus of the L mRNA (5' GAGGAAGAUUAA) and showed a high degree of similarity to the corresponding regions of other Ebola virus genes. The 3' end of the L mRNA terminated with 5' AUUAUAAAAAA, a sequence which is distinct from the proposed transcription termination signals of other genes. The 5' trailer sequence of the Ebola virus genomic RNA consisted of 676 nt and revealed a self-complementary sequence at the extreme end which may play an important role in virus replication. The L gene contained a single ORF encoding a polypeptide of 2212 aa. The deduced amino acid sequence showed identities of about 73 and 44% to the L proteins of Ebola virus strain Maleo (subtype Sudan) and Marburg virus, respectively. Sequence comparison studies of the Ebola virus L proteins with several corresponding proteins of other non-segmented, negative-strand RNA viruses, including Marburg viruses, confirmed a close relationship between filoviruses and members of the Paramyxovirinae. The presence of several conserved linear domains commonly found within L proteins of other members of the order Mononegavirales identified this protein as the RNA-dependent RNA polymerase of Ebola virus.


Subject(s)
Ebolavirus/genetics , Genes, Viral , Amino Acid Sequence , Animals , Base Sequence , Chlorocebus aethiops , DNA Primers/genetics , Ebolavirus/classification , Ebolavirus/enzymology , Filoviridae/genetics , Genome, Viral , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Messenger/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Sequence Homology, Amino Acid , Vero Cells , Viral Proteins/genetics
20.
Virology ; 214(2): 421-30, 1995 Dec 20.
Article in English | MEDLINE | ID: mdl-8553543

ABSTRACT

The glycoprotein gene of Ebola virus contains a translational stop codon in the middle, thus preventing synthesis of full-length glycoprotein. Twenty percent of the mRNA isolated from Ebola virus-infected cells was shown to be edited, containing one additional nontemplate A in a stretch of seven consecutive A residues. Only the edited mRNA species encoded full-length glycoprotein, whereas the exact copies of the viral template coded for a smaller secreted glycoprotein. Expression of the glycoprotein by an in vitro transcription/translation system, by the vaccinia virus/T7 polymerase system, and by recombinant vaccinia virus revealed that full-length glycoprotein was synthesized not only when the edited glycoprotein gene (8A's) was used as a template for T7 and vaccinia virus polymerases, but also when the nonedited (genomic) glycoprotein gene was used. Analysis of mRNA produced by T7 and vaccinia virus polymerase from the 7A's construct revealed that 1-5% contained alterations at the same site that was also edited by the Ebola virus polymerase. Our data indicate that the editing site in the Ebola virus glycoprotein gene is recognized not only by Ebola virus polymerase but also by DNA-dependent RNA polymerases of different origin.


Subject(s)
Ebolavirus/genetics , Glycoproteins/genetics , RNA Editing , RNA, Viral/metabolism , Viral Structural Proteins/genetics , Amino Acid Sequence , Animals , Bacteriophage T7/enzymology , Base Sequence , Cell Line , Chlorocebus aethiops , Cloning, Molecular , DNA, Viral , DNA-Directed RNA Polymerases/metabolism , Ebolavirus/enzymology , Ebolavirus/isolation & purification , Genetic Vectors , Glycoproteins/metabolism , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Viral/chemistry , Vaccinia virus/enzymology , Vaccinia virus/genetics , Vero Cells , Viral Proteins , Viral Structural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...