Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.849
Filter
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 169-173, 2024 May 09.
Article in Chinese | MEDLINE | ID: mdl-38857961

ABSTRACT

OBJECTIVE: To investigate the prevalence of Echinococcus infections in small rodents around human residential areas in Yushu City, Qinghai Province in 2023, so as to provide insights into precision echinococcosis control. METHODS: One or two quadrats, each measuring 50 m × 50 m, were randomly assigned in Shanglaxiu Township and Longbao Township, Yushu City, Qinghai Province on June 2023, respectively, and 300 plate-type mouse traps, each measuring 12.0 cm × 6.5 cm, were assigned in each quadrat. Small rodents were captured during the period between 10 : 00 and 18 : 00 each day for 4 days. Then, all captured small rodents were identified and dissected, and liver specimens with suspected Echinococcus infections were subjected to pathological examinations. The Echinococcus cytochrome c oxidase 1 (cox1) gene was amplified using PCR assay, and the sequence of the amplified product was aligned to that was recorded in the GenBank to characterize the parasite species. In addition, a phylogenetic tree of Echinococcus was generated based on the cox1 gene sequence using the neighbor-joining method. RESULTS: A total of 236 small rodents were captured in Shanglaxiu and Longbao townships, Yushu City, including 65 Qinghai voles and 51 plateau pikas in Shanglaxiu Township, and 62 Qinghai voles and 58 plateau pikas in Longbao Township, and there was no significant difference in the constituent ratio of small rodents between the two townships (χ2 = 0.294, P > 0.05). Seven plateau pikas and 12 Qinghai voles were suspected to be infected with Echinococcus by dissection, and pathological examinations showed unclear structure of hepatic lobules and disordered hepatocyte arrangement in livers of small rodents suspected of Echinococcus infections. PCR assay identified E. shiquicus DNA in 7 Qinghai voles, which were all captured from Shanglaxiu Township. Phylogenetic analysis showed that the cox1 gene sequence of Echinococcus in small rodents was highly homologous to the E. shiquicus cox1 gene sequence reported previously. CONCLUSIONS: Plateau pika and Qinghai vole were predominant small rodents around human residential areas in Yushu City, Qinghai Province in 2023, and E. shiquicus infection was detected in Qinghai voles.


Subject(s)
Echinococcosis , Echinococcus , Phylogeny , Rodentia , Animals , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcosis/parasitology , China/epidemiology , Echinococcus/genetics , Echinococcus/isolation & purification , Echinococcus/classification , Rodentia/parasitology , Prevalence , Humans
2.
Trop Biomed ; 41(1): 20-28, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38852130

ABSTRACT

Echinococcosis is a common zoonotic disease in livestock; the type with the highest incidence is cystic echinococcosis (CE). In clinical management, patients with CE of the liver in which the cyst wall is calcified have been found to have better prognoses than those without calcification. In this study, we collected calcified and uncalcified cyst wall tissue from patients with hepatic CE and observed significant changes in the expression of 2336 messenger ribonucleic acids (mRNAs), 178 long noncoding RNAs (lncRNAs), 210 microRNAs (miRNAs), and 33 circular RNAs (circRNAs) using high-throughput sequencing (HTS). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially expressed RNAs (DERNAs: DEmRNAs, DElncRNAs, DEmiRNAs, and DEcircRNAs) were performed to explore these RNAs' potential biological functions and signaling pathways. Ultimately, the results of hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) staining confirmed the correlation between calcification and apoptosis of the cyst wall. In summary, this study was an initial exploration of the molecular-biological mechanism underlying spontaneous calcification of the hydatid cyst wall, and it provides a theoretical basis for exploring new targets for drug treatment in CE.


Subject(s)
Computational Biology , Humans , Calcinosis/genetics , Calcinosis/parasitology , Transcriptome , Echinococcosis/parasitology , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Male , MicroRNAs/genetics , Echinococcosis, Hepatic/parasitology , Adult , Female , Middle Aged , RNA, Circular/genetics
3.
Parasitol Res ; 123(6): 236, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856927

ABSTRACT

Echinococcosis is a worldwide disease endemic to the western region of China. In 2023, echinococcosis was detected in one of 27 wild boars (Sus scrofa) in Yili Prefecture, Xinjiang, northwestern China. Histopathological staining and full sequence mitochondrial (mt) analysis were used to determine the infection genotype. Echinococcus granulosus was detected in the wild boar liver, and the cystic lesion characteristics indicated the E. granulosus genotype (G1). This case is the first confirmation of wild boar serving as a transmitter for the G1 genotype of E. granulosus within China. These findings suggest that surveillance is needed to assess the risk of E. granulosus sensu lato transmission to humans and wild animals.


Subject(s)
Echinococcosis , Echinococcus granulosus , Genotype , Sus scrofa , Swine Diseases , Animals , China , Echinococcus granulosus/genetics , Echinococcus granulosus/isolation & purification , Echinococcus granulosus/classification , Sus scrofa/parasitology , Swine Diseases/parasitology , Swine , Echinococcosis/veterinary , Echinococcosis/parasitology , Echinococcosis/epidemiology , Liver/parasitology , Liver/pathology , Sequence Analysis, DNA , DNA, Mitochondrial/genetics , DNA, Helminth/genetics , Phylogeny
4.
Parasitol Res ; 123(6): 239, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860991

ABSTRACT

Echinococcus granulosus sensu lato (s.l.) is a species complex with the potential to cause cystic echinococcosis (CE). Contact with the feces of domestic dogs (Canis familiaris) fed with raw viscera of intermediate livestock hosts is a risk factor for this infection in the southern region of Brazil. Although the region has been considered endemic to CE for many years, molecular data regarding the species of the complex causing CE in humans are scarce. This study aimed to perform a molecular analysis of the biological fluid from a human liver cyst to investigate the species responsible for CE. Genetic material obtained from the hydatid fluid of a hepatic cyst from a human with CE was subjected to PCR to amplify mitochondrial and nuclear DNA sequences. The phylogenetic analysis confirmed the human infection by Echinococcus canadensis G7 in the state of Paraná, Brazil. This is the first molecular record of E. canadensis G7 infecting a human in Brazil, and it is important to reiterate the risk of human CE caused by this species in South America, as reported by a previous study in Patagonia, Argentina. From the epidemiological point of view, this finding is of great relevance for the southern region of Brazil, since this parasite has previously only been detected in pigs in the state of Rio Grande do Sul, neighboring Paraná. The finding points to the importance of this identification in the molecular epidemiology of E. granulosus s.l., especially in South America.


Subject(s)
DNA, Helminth , Echinococcus , Phylogeny , Animals , Brazil/epidemiology , Echinococcus/genetics , Echinococcus/classification , Echinococcus/isolation & purification , Humans , DNA, Helminth/genetics , Echinococcosis/veterinary , Echinococcosis/parasitology , Echinococcosis/epidemiology , Sequence Analysis, DNA , Polymerase Chain Reaction , DNA, Mitochondrial/genetics , Male
5.
Parasite Immunol ; 46(5): e13040, 2024 May.
Article in English | MEDLINE | ID: mdl-38801355

ABSTRACT

Cystic echinococcosis is caused by the tissue-dwelling larva (hydatid) of Echinococcus granulosus sensu lato. A salient feature is that this larva is protected by the acellular laminated layer (LL). As the parasite grows, the LL sheds abundant particles that can accumulate in the parasite's vicinity. The potential of LL particles to induce inflammation in vivo has not been specifically analysed. It is not known how each of its two major components, namely highly glycosylated mucins and calcium inositol hexakisphosphate (InsP6) deposits, impacts inflammation induced by the LL as a whole. In this work, we show that LL particles injected intraperitoneally cause infiltration of eosinophils, neutrophils and monocytes/macrophages as well as the disappearance of resident (large peritoneal) macrophages. Strikingly, the absence of calcium InsP6 enhanced the recruitment of all the inflammatory cell types analysed. In contrast, oxidation of the mucin carbohydrates caused decreased recruitment of neutrophils. The carbohydrate-oxidised particles caused cell influx nonetheless, which may be explained by possible receptor-independent effects of LL particles on innate immune cells, as suggested by previous works from our group. In summary, LL particles can induce acute inflammatory cell recruitment partly dependent on its mucin glycans, and this recruitment is attenuated by the calcium InsP6 component.


Subject(s)
Echinococcus granulosus , Phytic Acid , Animals , Echinococcus granulosus/immunology , Phytic Acid/pharmacology , Phytic Acid/metabolism , Echinococcosis/immunology , Echinococcosis/parasitology , Inflammation , Neutrophils/immunology , Mucins/metabolism , Mice , Macrophages/immunology , Macrophages/metabolism , Eosinophils/immunology , Female , Larva/immunology
6.
Sci Rep ; 14(1): 11957, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796499

ABSTRACT

Hydatidosis causes a serious health hazard to humans and animals leading to significant economic and veterinary and public health concern worldwide. The present study aimed to evaluate the in vitro and ex vivo protoscolicidal effects of synthesized poly(amidoamine), PAMAM, nanoemulsion. In this study, PAMAM was characterized through dynamic light scattering technique to investigate the particle size and zeta potential of nanoemulsified polymer. For the in vitro and ex vivo assays, we used eosin dye exclusion test and scanning electron microscope (SEM) to evaluate the effects of the prepared and characterized PAMAM nanoemulsion against protoscoleces from Echinococcus granulosus sensu lato G6 (GenBank: OQ443068.1) isolated from livers of naturally infected camels. Various concentrations (0.5, 1, 1.5 and 2 mg/mL) of PAMAM nanoemulsion at different exposure times (5, 10, 20 and 30 min) were tested against protoscolices. Our findings showed that PAMAM nanoemulsion had considerable concentration- and time-dependent protoscolicidal effect at both in vitro and ex vivo experiments. Regarding in vitro assay, PAMAM nanoemulsion had a potent protoscolicidal effect when compared with the control group with a highest protoscolicidal activity observed at the concentration of 2 mg/mL at all exposure times, such that 100% of protoscolices were killed after 20 min of exposure. Also, the mortality of protoscolices was 100% after 30 min of exposure to 1 and 1.5 mg/mL of PAMAM nanoemulsion, in vitro. Concerning ex vivo assay PAMAM nanoemulsion recorded the highest mortality rates at the concentration of 2 mg/mL (55, 99.4 and 100% at 10, 20, 30 min, respectively). Ultrastructure examination of examined protoscolices after 20 min of exposure to PAMAM nanoemulsion showed a complete loss of rostellar hooks, disruption of suckers with disorganization of hooks with partial or complete loss of them, and damage of protoscolices tegument with loss of their integrity in the form of holes and contraction of the soma region were observed in 1.5 and 2 mg/mL of PAMAM, in vitro and ex vivo, showing more damage in the in vitro conditions. It can be concluded that PAMAM nanoemulsion is a promising protoscolicidal agent offering a high protoscolicidal effect at a short exposure time. Further in vivo studies and preclinical animal trials are required to evaluate its efficacy and clinical applications against hydatid cysts.


Subject(s)
Echinococcosis , Echinococcus granulosus , Emulsions , Animals , Echinococcus granulosus/drug effects , Echinococcus granulosus/ultrastructure , Echinococcosis/drug therapy , Echinococcosis/parasitology , Polyamines/pharmacology , Polyamines/chemistry , Nanoparticles/chemistry , Particle Size , Camelus/parasitology
7.
J Parasitol ; 110(3): 210-217, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38811020

ABSTRACT

Alveolar echinococcosis is considered to be one of the most potentially lethal parasitic zoonotic diseases. However, the molecular mechanisms by which Echinococcus multilocularis interacts with hosts are poorly understood, hindering the prevention and treatment of this disease. Due to the great advantages of cell culture systems for molecular research, numerous attempts have been made to establish primary cell cultures for E. multilocularis. In this study we developed a simple, rapid, and economical method that allows E. multilocularis metacestode tissue blocks to generate daughter vesicles without the continuous presence of host feeder cells in a regular medium. We performed anaerobic, hypoxic (1% O2), normoxic, and semi-anaerobic (in sealed tubes) cultures and found that E. multilocularis metacestode tissues can produce daughter vesicles only in the sealed tubes after 4 wk of incubation. The daughter vesicles cultivated in this system were remarkably enlarged under anaerobic conditions after 8 days of culture, whereas vesicles cultured under hypoxic (1% O2) and normoxic conditions showed only a mild increase in volume. Our in vitro cultivated vesicles showed strong viability and could be used to test antiparasitic drugs, isolate primary cells, and infect animals.


Subject(s)
Echinococcus multilocularis , Animals , Echinococcus multilocularis/growth & development , Echinococcosis/parasitology , Mice , Anaerobiosis , Cell Culture Techniques
8.
Front Cell Infect Microbiol ; 14: 1334211, 2024.
Article in English | MEDLINE | ID: mdl-38817444

ABSTRACT

Parasites possess remarkable abilities to evade and manipulate the immune response of their hosts. Echinococcus granulosus is a parasitic tapeworm that causes cystic echinococcosis in animals and humans. The hydatid fluid released by the parasite is known to contain various immunomodulatory components that manipulate host´s defense mechanism. In this study, we focused on understanding the effect of hydatid fluid on dendritic cells and its impact on autophagy induction and subsequent T cell responses. Initially, we observed a marked downregulation of two C-type lectin receptors in the cell membrane, CLEC9A and CD205 and an increase in lysosomal activity, suggesting an active cellular response to hydatid fluid. Subsequently, we visualized ultrastructural changes in stimulated dendritic cells, revealing the presence of macroautophagy, characterized by the formation of autophagosomes, phagophores, and phagolysosomes in the cell cytoplasm. To further elucidate the underlying molecular mechanisms involved in hydatid fluid-induced autophagy, we analyzed the expression of autophagy-related genes in stimulated dendritic cells. Our results demonstrated a significant upregulation of beclin-1, atg16l1 and atg12, indicating the induction of autophagy machinery in response to hydatid fluid exposure. Additionally, using confocal microscopy, we observed an accumulation of LC3 in dendritic cell autophagosomes, confirming the activation of this catabolic pathway associated with antigen presentation. Finally, to evaluate the functional consequences of hydatid fluid-induced autophagy in DCs, we evaluated cytokine transcription in the splenocytes. Remarkably, a robust polyfunctional T cell response, with inhibition of Th2 profile, is characterized by an increase in the expression of il-6, il-10, il-12, tnf-α, ifn-γ and tgf-ß genes. These findings suggest that hydatid fluid-induced autophagy in dendritic cells plays a crucial role in shaping the subsequent T cell responses, which is important for a better understanding of host-parasite interactions in cystic echinococcosis.


Subject(s)
Autophagy , Dendritic Cells , Echinococcosis , Echinococcus granulosus , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Echinococcus granulosus/immunology , Autophagy/immunology , Echinococcosis/immunology , Echinococcosis/parasitology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice , Lectins, C-Type/metabolism , Cytokines/metabolism , Female , Autophagosomes/immunology , Autophagosomes/metabolism
9.
J Helminthol ; 98: e40, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738533

ABSTRACT

In the past decade, interest has significantly increased regarding the medicinal and nutritional benefits of pomegranate (Punica granatum) peel. This study examined the effects of using pomegranate peel extract (PGE) alone and in combination with albendazole (ABZ) on ultrastructural and immunological changes in cystic echinococcosis in laboratory-infected mice. Results revealed that the smallest hydatid cyst size and weight (0.48 ± 0.47mm, 0.17 ± 0.18 gm) with the highest drug efficacy (56.2%) was detected in the PGE + ABZ group, which also exhibited marked histopathological improvement. Ultrastructural changes recorded by transmission electron microscopy including fragmentation of the nucleus, glycogen depletion, and multiple lysosomes in vacuolated cytoplasm were more often observed in PGE + ABZ group. IFN-γ levels were significantly increased in the group treated with ABZ, with a notable reduction following PGE treatment, whether administered alone or in combination with ABZ. Thus, PGE enhanced the therapeutic efficiency of ABZ, with improvement in histopathological and ultrastructural changes.


Subject(s)
Albendazole , Echinococcosis , Plant Extracts , Pomegranate , Animals , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Pomegranate/chemistry , Mice , Echinococcosis/drug therapy , Echinococcosis/parasitology , Albendazole/pharmacology , Albendazole/administration & dosage , Anthelmintics/pharmacology , Anthelmintics/administration & dosage , Disease Models, Animal , Microscopy, Electron, Transmission , Interferon-gamma/blood , Female , Male
10.
Parasit Vectors ; 17(1): 190, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643149

ABSTRACT

BACKGROUND: Cystic echinococcosis (CE) is a widespread zoonosis caused by the infection with Echinococcus granulosus sensu lato (E. granulosus s.l.). CE cysts mainly develop in the liver of intermediate hosts, characterized by the fibrotic tissue that separates host organ from parasite. However, precise mechanism underlying the formation of fibrotic tissue in CE remains unclear. METHODS: To investigate the potential impact of ubiquitin-conjugating enzymes on liver fibrosis formation in CE, two members of ubiquitin-conjugating (UBC) enzyme of Echinococcus granulosus (EgE2D2 and EgE2N) were recombinantly expressed in Escherichia coli and analyzed for bioinformatics, immunogenicity, localization, and enzyme activity. In addition, the secretory pathway and their effects on the formation of liver fibrosis were also explored. RESULTS: Both rEgE2D2 and rEgE2N possess intact UBC domains and active sites, exhibiting classical ubiquitin binding activity and strong immunoreactivity. Additionally, EgE2D2 and EgE2N were widely distributed in protoscoleces and germinal layer, with differences observed in their distribution in 25-day strobilated worms. Further, these two enzymes were secreted to the hydatid fluid and CE-infected sheep liver tissues via a non-classical secretory pathway. Notably, TGFß1-induced LX-2 cells exposed to rEgE2D2 and rEgE2N resulted in increasing expression of fibrosis-related genes, enhancing cell proliferation, and facilitating cell migration. CONCLUSIONS: Our findings suggest that EgE2D2 and EgE2N could secrete into the liver and may interact with hepatic stellate cells, thereby promoting the formation of liver fibrosis.


Subject(s)
Echinococcosis , Echinococcus granulosus , Sheep Diseases , Animals , Sheep , Echinococcus granulosus/genetics , Ubiquitin-Conjugating Enzymes/genetics , Echinococcosis/parasitology , Liver Cirrhosis , Ubiquitins/genetics , Genotype , Sheep Diseases/parasitology
11.
Parasitology ; 151(4): 421-428, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576256

ABSTRACT

Cystic echinococcosis (CE), caused by the larval stage of the cestode Echinococcus granulosus, is one of the most widespread zoonoses in Mediterranean countries. Baiting not-owned dogs with praziquantel (PZQ), due to their key role in the maintaining the transmission of CE, currently appears to be the most effective way to limit the transmission of CE, as well as an important aspect to introduce for the control of this parasitic disease. Therefore, this study aims to test 3 types of PZQ-based baits by evaluating different parameters (integrity over time, attractiveness and palatability for dogs, and mechanical resistance after release to different altitudes) and the bait acceptance in field by target animals, i.e. not-owned dogs, by using camera traps. The double PZQ-laced baits (with a double layer of highly palatable chews) showed the greatest resistance in the environment while also preserving the attractiveness and palatability up to 10 days, also withstood heights of 25 m, thus resulting as the most suitable also for drone delivery. The results on the field showed that most of the baits were consumed by not-owned dogs (82.2%), while the remaining were consumed by wild boars (8.9%), foxes (6.7%), badgers (1.1%) and hedgehogs (1.1%), confirming the specific and high attractiveness of the double PZQ-laced baits for the target population and highlights how an anthelmintic baiting programme may be a viable tool for the management of E. granulosus among free-ranging dog populations in endemic rural areas.


Subject(s)
Dog Diseases , Echinococcosis , Echinococcus granulosus , Praziquantel , Animals , Dogs , Echinococcus granulosus/drug effects , Echinococcosis/veterinary , Echinococcosis/prevention & control , Echinococcosis/parasitology , Dog Diseases/parasitology , Dog Diseases/prevention & control , Praziquantel/pharmacology , Anthelmintics/pharmacology , Zoonoses/parasitology , Swine
12.
Open Vet J ; 14(3): 866-878, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682137

ABSTRACT

Background: Cystic echinococcosis (CE), which is triggered by the parasite Echinococcus granulosus, is a global zoonotic disease that is common in rural regions in which there are frequent encounters between dogs and other domestic animals. The disease can have devastating consequences, impacting the health of people and animals and leading to huge financial losses, especially in the agricultural industry. In the Kingdom of Saudi Arabia (KSA) and Egypt, despite the high incidence of disease, few investigations have been conducted into the genetic variation in species of the genus Echinococcus. Aim: This study sought to compare the genetic features of the hydatid cysts carried in sheep in KSA with those found in Egypt. Methods: DNA from the protoscolices was used in a PCR targeting the mitochondrial NADH dehydrogenase 1 (NAD1), cytochrome c oxidase subunit 1 (COX1), and nuclear actin II (ACT II) genes, and the resulting amplification products of 30 KSA and Egyptian isolates were sequenced and compared. Results: Among the sheep in KSA, the overall prevalence of CE was 0.51%. Of the sheep cyst DNA samples, 95%, 100%, and 52% were positive for the Cox1, nad1, and act II genes, respectively. Targeting all three genes, all KSA samples belonged to the E. granulosus genotype (G1), whereas all Egyptian isolates belonged to E. granulosus (G1) and E. canadensis (G6). Conclusion: We conclude that isolates of E. granulosus from the two countries shared a common origin in Arabic North Africa, with sheep and camels as common hosts.


Subject(s)
Echinococcosis , Echinococcus granulosus , Genotype , Sheep Diseases , Animals , Echinococcus granulosus/genetics , Echinococcus granulosus/isolation & purification , Echinococcosis/veterinary , Echinococcosis/epidemiology , Echinococcosis/parasitology , Sheep , Egypt/epidemiology , Sheep Diseases/parasitology , Sheep Diseases/epidemiology , Saudi Arabia/epidemiology , Prevalence
13.
Vet Parasitol Reg Stud Reports ; 50: 101013, 2024 05.
Article in English | MEDLINE | ID: mdl-38644038

ABSTRACT

Canids harbor many zoonotic parasites and play an important role in the spread of parasites in the human environment. Estimation of parasitic infection among canids as definitive hosts may help competent authorities design efficient control programs. This study was conducted to determine the prevalence of intestinal parasites in dogs and foxes with an emphasis on Echinococcus spp. A total of 500 fecal samples of dogs and 30 fecal samples of foxes were studied in the summer, autumn, and winter of 2021 in the Zanjan province using the formalin-ethyl acetate concentration technique, followed by multiplex PCR. The overall prevalence of gastrointestinal parasite infection was estimated to be 19.05%. The prevalence was 24.8%, 10.2%, and 26.7% in stray, shelter dogs and foxes, respectively. No parasites were found among pet and guard dog samples. PCR results on Taenidae eggs showed that 2.4% of samples were positive for Echinococcus granulosus and none contained E. multilocularis. Noteworthy is that E. granulosus was identified only in stray dog samples. The higher prevalence of E. granulosus infection in stray dogs in this province emphasizes the importance of monitoring the food sources consumed by these animals.


Subject(s)
Dog Diseases , Echinococcosis , Feces , Foxes , Intestinal Diseases, Parasitic , Animals , Dogs , Foxes/parasitology , Iran/epidemiology , Dog Diseases/epidemiology , Dog Diseases/parasitology , Prevalence , Feces/parasitology , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcosis/parasitology , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Echinococcus/isolation & purification , Seasons , Echinococcus granulosus/isolation & purification
14.
Vet Parasitol ; 328: 110180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626652

ABSTRACT

The Echinococcus granulosus sensu lato species complex is responsible for the neglected zoonotic disease known as cystic echinococcosis (CE). Humans and livestock are infected via fecal-oral transmission. CE remains prevalent in Western China, Central Asia, South America, Eastern Africa, and the Mediterranean. Approximately one million individuals worldwide are affected, influencing veterinary and public health, as well as social and economic matters. The infection causes slow-growing cysts, predominantly in the liver and lungs, but can also develop in other organs. The exact progression of these cysts is uncertain. This study aimed to understand the survival mechanisms of liver and lung CE cysts from cattle by determining their metabolite profiles through metabolomics and multivariate statistical analyses. Non-targeted metabolomic approaches were conducted using quadrupole-time-of-flight liquid chromatography/mass spectrometry (LC-QTOF-MS) to distinguish between liver and lung CE cysts. Data processing to extract the peaks on complex chromatograms was performed using XCMS. PCA and OPLS-DA plots obtained through multiple statistical analyses showed interactions of metabolites within and between groups. Metabolites such as glutathione, prostaglandin, folic acid, and cortisol that cause different immunological reactions have been identified both in liver and lung hydatid cysts, but in different ratios. Considering the differences in the metabolomic profiles of the liver and lung cysts determined in the present study will contribute research to enlighten the nature of the cyst and develop specific therapeutic strategies.


Subject(s)
Cattle Diseases , Liver , Lung , Metabolomics , Animals , Cattle , Cattle Diseases/parasitology , Liver/parasitology , Lung/parasitology , Echinococcus granulosus/physiology , Echinococcus granulosus/immunology , Echinococcosis, Pulmonary/veterinary , Echinococcosis/veterinary , Echinococcosis/parasitology , Echinococcosis, Hepatic/veterinary , Echinococcosis, Hepatic/parasitology , Chromatography, Liquid , Mass Spectrometry/veterinary
15.
Exp Biol Med (Maywood) ; 249: 10126, 2024.
Article in English | MEDLINE | ID: mdl-38510493

ABSTRACT

Cystic echinococcosis (CE) is a zoonotic disease caused by the tapeworm Echinococcus granulosus sensu lato (s.l). In the intermediate host, this disease is characterized by the growth of cysts in viscera such as liver and lungs, inside of which the parasite develops to the next infective stage known as protoscoleces. There are records that the infected viscera affect the development and morphology of E. granulosus s.l. protoscolex in hosts such as buffalo or humans. However, the molecular mechanisms that drive these differences remains unknown. Weighted gene co-expression network analysis (WGCNA) using a set of RNAseq data obtained from E. granulosus sensu stricto (s.s.) protoscoleces found in liver and lung cysts reveals 34 modules in protoscoleces of liver origin, of which 12 have differential co-expression from protoscoleces of lung origin. Three of these twelve modules contain hub genes related to immune evasion: tegument antigen, tegumental protein, ubiquitin hydrolase isozyme L3, COP9 signalosome complex subunit 3, tetraspanin CD9 antigen, and the methyl-CpG-binding protein Mbd2. Also, two of the twelve modules contain only hypothetical proteins with unknown orthology, which means that there are a group of unknown function proteins co-expressed inside the protoscolex of liver CE cyst origin. This is the first evidence of gene expression differences in protoscoleces from CE cysts found in different viscera, with co-expression networks that are exclusive to protoscoleces from liver CE cyst samples. This should be considered in the control strategies of CE, as intermediate hosts can harbor CE cysts in liver, lungs, or both organs simultaneously.


Subject(s)
Cysts , Echinococcosis , Echinococcus granulosus , Humans , Animals , Echinococcus granulosus/genetics , Immune Evasion , Genotype , Echinococcosis/genetics , Echinococcosis/parasitology
16.
Methods Cell Biol ; 185: 115-136, 2024.
Article in English | MEDLINE | ID: mdl-38556444

ABSTRACT

Cystic echinococcosis (CE) is a parasitic zoonosis caused by the larval stage of the cestode Echinococcus granulosus sensu lato (s. l.), a genetic complex composed of five species: E. granulosus sensu stricto (s. s.), E. equinus, E. ortleppi, E. canadensis, and E. felidis. The parasite requires two mammalian hosts to complete its life cycle: a definitive host (mainly dogs) harboring the adult parasite in its intestines, and an intermediate host (mostly farm and wild ungulates) where hydatid cysts develop mainly in the liver and lungs. Humans are accidental intermediate hosts, being susceptible to either primary or secondary forms of CE; the first one due to the ingestion of oncospheres, and the second one because of the spillage of protoscoleces (PSC) contained within a primary cyst. Secondary CE is a serious medical problem, and can be modeled in immunocompetent mice (a non-natural intermediate host) through the intraperitoneal inoculation of viable PSC from E. granulosus s. l. This model is useful to study not only the immunobiology of CE, but also to test new chemotherapeutics or therapeutical protocols, to explore novel vaccine candidates, and to evaluate alternative diagnostic and/or follow-up tools. The mouse model of secondary CE involves two sequential stages: an early stage of parasite pre-encystment (PSC develop into hydatid cysts in the peritoneal cavity of mice), and a late or chronic stage of parasite post-encystment (already differentiated cysts slowly grow during the whole host lifespan). This model is a time-consuming infection, whose outcome depends on several factors like the parasite infective dose, the mouse strain, and the parasite species/genotype. Thus, such variables should always be adjusted according to the research objectives. Herein, the general materials and procedures needed to establish secondary CE in mice are described, as well as several useful tips and recommendations.


Subject(s)
Echinococcosis , Echinococcus granulosus , Echinococcus , Adult , Animals , Humans , Dogs , Mice , Echinococcosis/parasitology , Echinococcosis/veterinary , Echinococcus granulosus/genetics , Echinococcus/genetics , Genotype , Liver , Disease Models, Animal , Mammals
17.
Exp Parasitol ; 260: 108723, 2024 May.
Article in English | MEDLINE | ID: mdl-38432406

ABSTRACT

Cystic echinococcosis (CE) is a zoonotic disease, caused by Echinococcus granulosus sensu lato (E. granulosus s. l.), which posed significant public health concern globally. E. granulosus s. l. annexin B18 (EgANXB18) acts as a secretory protein, exerting a crucial influence in mediating host-parasite interactions. Recombinant annexin B18 (rEgANXB18) was expressed by Escherichia coli and the immunoreactivity was assessed by western blotting. The binding affinity between rEgANXB18 and total protein of RAW264.7 cells was assessed by ELISA. The impact of rEgANXB18 on the metabolic activity of RAW264.7 cells was assayed by Cell Counting Kit-8 assay. The mRNA levels of polarization markers (inducible nitrous oxide synthase (iNOS) and arginase 1 (Arg1)) and key cellular factors (IL-1ß,IL-6,IL-10 and TNFα) were evaluated by qRT-PCR. rEgANXB18 was successfully expressed and recognized by E. granulosus s.l. infected canine sera, as well as could bind to the total protein of RAW264.7 cells. Additionally, rEgANXB18 could promote metabolic activity at 5, 10, 20, and 40 µg/mL while no significant impact on metabolic activity was observed at 80 µg/mL. Co-culture RAW264.7 cells with rEgANXB18 resulted in significantly upregulation of the transcript levels of polarization markers iNOS and Arg1. Moreover, rEgANXB18 significantly upregulated the transcript levels of IL-1ß, IL-6, TNFα, and IL-10, while dose-effect relationship was observed in IL-1ß, IL-6, and IL-10. Our results indicated that EgANXB18 showed the potential to regulate immune response of macrophages by shifting the cell polarization and cytokine profile, thereby promoting the parasitism of CE.


Subject(s)
Annexins , Arginase , Echinococcosis , Echinococcus granulosus , Macrophages , Nitric Oxide Synthase Type II , Animals , Echinococcus granulosus/genetics , Echinococcus granulosus/immunology , Mice , Macrophages/parasitology , Macrophages/metabolism , RAW 264.7 Cells , Arginase/metabolism , Arginase/genetics , Echinococcosis/parasitology , Echinococcosis/immunology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Annexins/genetics , Annexins/metabolism , Dogs , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cytokines/metabolism , Cytokines/genetics , RNA, Messenger/metabolism , Enzyme-Linked Immunosorbent Assay , Blotting, Western , Host-Parasite Interactions
18.
Exp Parasitol ; 260: 108734, 2024 May.
Article in English | MEDLINE | ID: mdl-38490318

ABSTRACT

Both E. multilocularis and host-derived exosomes are involved in the pathogenic process of alveolar echinococcosis (AE). Exosomes secrete miRNAs that have regulatory roles in host-pathogen interactions in multiple ways. In the present study, we collected and purified supernatants of E. multilocularis cultures, as well as human plasma exosomes. High-throughput sequencing showed the identities of 45 exosomal miRNAs in E. multilocularis. The lengths of these miRNAs ranged from 19 to 25 nucleotides (nt), with the majority (n = 18) measuring 22 nt. Notably, emu-let-7-5p emerged as the most abundant among these miRNAs, with a detected count of 33,097 and also length of 22 nt. Nanoparticle tracking analysis (NTA) showed that the concentration of exosomes in the plasma of AE patients was lower compared to that in the healthy individuals. This result suggested that the concentration of plasma exosomes was able to distinguish AE patients from healthy individuals. Using qRT-PCR to assess the relative expression of 10 miRNAs of E. multilocularis, we showed that the expression of miR-184-3p was downregulated significantly in the exosomes of plasma from AE patients compared to that in the control group. In summary, this study indicates that AE induces a reduction in the concentration of human plasma exosomes, as well as downregulating miR-184-3p in infected individuals.


Subject(s)
Echinococcus multilocularis , Exosomes , MicroRNAs , Humans , MicroRNAs/blood , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Exosomes/genetics , Exosomes/chemistry , Echinococcus multilocularis/genetics , Animals , Echinococcosis/parasitology , Echinococcosis/blood , Down-Regulation , High-Throughput Nucleotide Sequencing , Male , Female , Adult , Echinococcosis, Hepatic/parasitology , Echinococcosis, Hepatic/blood , Echinococcosis, Hepatic/genetics , Real-Time Polymerase Chain Reaction , Middle Aged
19.
Acta Parasitol ; 69(1): 839-853, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38436864

ABSTRACT

PURPOSE: During cystic echinococcosis surgery, the use of scolicidal agents such as hypertonic saline (20%) aims to reduce the risk of infection recurrence, but most of the used agents are associated with undesirable side effects. Therefore, the use of natural scolicidal agents such as medicinal plant extracts could reduce these medical issues. The present study aimed to compare in vitro the scolicidal activity between two extracts of the medicinal plant Myrtus communis from Algeria against Echinococcus granulosus sensu lato protoscoleces. METHODS: The ethanolic and aqueous extraction of plant leaves was performed. Phytochemical analysis by gas chromatography-tandem mass spectrometry (GC-MS/MS), determination of total phenolic and flavonoid contents, and in vitro antioxidant activity by DPPH were evaluated for both extracts. Finally, the in vitro scolicidal activity was tested by different concentrations. The viability was evaluated by the eosin exclusion test. RESULTS: The phytochemical analysis revealed 28 components for the ethanolic extract and 44 components for the aqueous extract. The major components were 2'-hydroxy-5'-methoxyacetophenone and 4-amino-2-methylphenol, respectively. The total phenolic and flavonoid contents were 45.9 ± 0.085 mg of gallic acid equivalent per g of extract (GAE/g E) and 16.5 ± 0.004 mg of quercetin equivalent per g (QE/g E) for the ethanolic extract, and 36.5 ± 0.016 mg GAE/g E and 18.2 ± 0.023 mg QE/g E for the aqueous extract, respectively. Furthermore, ethanolic and aqueous extracts of M. communis gave a value of IC50 = 0.009 ± 0.0004 mg/ml and IC50 = 0.012 ± 0.0003 mg/ml for the antioxidant activity, respectively. The in vitro scolicidal activity with concentrations of 50, 75, 100, and 150 mg/ml was tested for 5, 10, 15, and 30 min, and 5, 10, 15, 30, 60, 90, and 120 min for ethanolic and aqueous extracts, respectively. The mortality rate of protoscoleces at concentrations of 100 and 150 mg/ml was 98.8 and 100%, respectively, after 5 min of exposure to the ethanolic extract, while this rate was 100% at the same concentrations only after 60 min of exposure to the aqueous extract. CONCLUSIONS: The ethanolic extract showed a stronger scolicidal activity against E. granulosus s.l protoscoleces than the aqueous extract. In the future, other investigations are necessary to elucidate the mechanism of action and the possible toxicity on human cells. Moreover, experimental animal studies are required to investigate the efficacy of different extracts of this plant and its components as natural anti-parasitic alternatives for the treatment of human cystic echinococcosis.


Subject(s)
Echinococcus granulosus , Myrtus , Plant Extracts , Plant Leaves , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Animals , Echinococcus granulosus/drug effects , Myrtus/chemistry , Algeria , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/pharmacology , Phenols/analysis , Flavonoids/pharmacology , Flavonoids/analysis , Flavonoids/chemistry , Gas Chromatography-Mass Spectrometry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Echinococcosis/drug therapy , Echinococcosis/parasitology
20.
Int J Parasitol ; 54(7): 321-332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460722

ABSTRACT

Key parasite transmission parameters are difficult to obtain from elusive wild animals. For Echinococcus multilocularis, the causative agent of alveolar echinococcosis (AE), the red fox is responsible for most of the environmental contamination in Europe. The identification of individual spreaders of E. multilocularis environmental contamination is crucial to improving our understanding of the ecology of parasite transmission in areas of high endemicity and optimising the effectiveness of prevention and control measures in the field. Genetic faecal sampling appears to be a feasible method to gain information about the faecal deposition of individual animals. We conducted a 4 year faecal sampling study in a village that is highly endemic for E. multilocularis, to assess the feasibility of individual identification and sexing of foxes to describe individual infection patterns. Individual fox identification from faecal samples was performed by obtaining reliable genotypes from 14 microsatellites and one sex locus, coupled with the detection of E. multilocularis DNA, first using captive foxes and then by environmental sampling. From a collection of 386 fox stools collected between 2017 and 2020, tested for the presence of E. multilocularis DNA, 180 were selected and 124 samples were successfully genotyped (68.9%). In total, 45 unique individual foxes were identified and 26 associated with at least one sample which tested positive for E. multilocularis (Em(+)). Estimation of the population size showed the fox population to be between 29 and 34 individuals for a given year and 67 individuals over 4 years. One-third of infected individuals (9/26 Em(+) foxes) deposited 2/3 of the faeces which tested positive for E. multilocularis (36/60 Em(+) stools). Genetic investigation showed a significantly higher average number of multiple stools for females than males, suggesting that the two sexes potentially defecated unequally in the studied area. Three partially overlapping clusters of fox faeces were found, with one cluster concentrating 2/3 of the total E. multilocularis-positive faeces. Based on these findings, we estimated that 12.5 million E. multilocularis eggs were produced during the study period, emphasizing the high contamination level of the environment and the risk of exposure faced by the parasite hosts.


Subject(s)
Echinococcosis , Echinococcus multilocularis , Feces , Foxes , Genotype , Animals , Foxes/parasitology , Echinococcus multilocularis/isolation & purification , Echinococcus multilocularis/genetics , Feces/parasitology , Echinococcosis/veterinary , Echinococcosis/parasitology , Echinococcosis/transmission , Female , Male , Microsatellite Repeats
SELECTION OF CITATIONS
SEARCH DETAIL
...