Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 117(3): 783-791, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29335790

ABSTRACT

Both the oncospheral tegument and the hook region membrane (HRM) of Echinococcus multilocularis hexacanths originate from a syncytial binucleate complex that appears in the early stage of morphogenesis and organogenesis of the hexacanth larva. The primordium of this binucleate complex forms a binucleate syncytial cap or "calotte" situated beneath the inner envelope at one pole of the developing embryo. During oncospheral differentiation, the binucleate perikaryon of the syncytial cap is sunk progressively deeper into the central part of the embryo, but remains always connected with the distal cytoplasm by a tendrillar cytoplasmic connection or bridge. Following migration or sinking of the binucleate perikaryon, numerous cytoplasmic vesicles appear in the distal cytoplasm. These vesicles fuse progressively together and form a single large cavity or lacuna. The walls of this cavity are becoming at this point the walls of two delaminated layers: (1) the distal anucleated cytoplasmic layer is transformed into the oncospheral tegument and (2) the proximal thin cytoplasmic layer is transformed into the "hook region membrane". This delamination of the initially compact layer of distal cytoplasm into two layers seems to be closely associated with differentiation of oncospheral hooks, the elongating blades of which protrude progressively into a newly formed cavity. The pressure of hook blades on the hook region membrane appears to facilitate its further separation from the basal layer of distal cytoplasm which is transformed into the peripheral layer of oncospheral tegument. In the mature oncosphere, the surface of this peripheral layer forms a regular brush border of cytoplasmic processes or microvilli and represents the true body covering of the hexacanth. The very thin cytoplasmic connection between the peripheral layer of tegument and binucleate perikaryon appears only very seldom in the ultrathin sections as a narrow cytoplasmic strand and has a plasma membrane that is reinforced by a single row of cortical microtubules. The HRM covers only one pole of the oncosphere and is attached to the oncosphere surface. The HRM is clearly visible in the mature oncosphere and is draped over the hook blades, the sharp points of which are protected by moderately electron-dense caps. Comparison of the above morphology with that of TEM study of the tegument of adult cestodes shows a great similarity as well as homology in the body covering of both larval and adult cestodes.


Subject(s)
Echinococcus multilocularis/ultrastructure , Animals , Cell Differentiation , Echinococcus multilocularis/cytology , Echinococcus multilocularis/embryology , Larva/ultrastructure , Morphogenesis , Neurons
2.
Parasitol Res ; 116(7): 1963-1971, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28593390

ABSTRACT

The origin, differentiation and functional ultrastructure of oncospheral or egg envelopes in Echinococcus multilocularis Leuckart, 1863 were studied by transmission electron microscopy (TEM) and cytochemistry. The purpose of our study is to describe the formation of the four primary embryonic envelopes, namely vitelline capsule, outer envelope, inner envelope and oncospheral membrane, and their transformation into the oncospheral or egg envelopes surrounding the mature hexacanth. This transformation takes place in the preoncospheral phase of embryonic development. The vitelline capsule and oncospheral membrane are thin membranes, while the outer and inner envelopes are thick cytoplasmic layers formed by two specific types of blastomeres: the outer envelope by cytoplasmic fusion of two macromeres and the inner envelope by cytoplasmic fusion of three mesomeres. Both outer and inner envelopes are therefore cellular in origin and syncytial in nature. During the advanced phase of embryonic development, the outer and inner envelopes undergo great modifications. The outer envelope remains as a metabolically active layer involved in the storage of glycogen and lipids for the final stages of egg development and survival. The inner envelope is the most important protective layer because of its thick layer of embryophoric blocks that assures oncospheral protection and survival. This embryophore is the principal layer of mature eggs, affording physical and physiological protection for the differentiated embryo or oncosphere, since the outer envelope is stripped from the egg before it is liberated. The embryophore is very thick and impermeable, consisting of polygonal blocks of an inert keratin-like protein held together by a cementing substance. The embryophore therefore assures extreme resistance of eggs, enabling them to withstand a wide range of environmental temperatures and physicochemical conditions.


Subject(s)
Echinococcus multilocularis/physiology , Ovum/ultrastructure , Animals , Cell Differentiation , Cytoplasm , Echinococcus multilocularis/embryology , Echinococcus multilocularis/ultrastructure , Female , Microscopy, Electron, Transmission
3.
Parasitol Res ; 115(10): 3715-21, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27206654

ABSTRACT

Ultrastructural characteristics of the oncospheral hook morphogenesis in the taeniid cestode Echinococcus multilocularis Leuckart, 1863, a parasite of medical and veterinary importance, are described. Oncospheral hook primordia appear at the preoncospheral phase of the embryonic development. Within six specialised cells of the so-called oncoblasts, high concentration of mitochondria, numerous ribosomes and extended Golgi regions are involved in hook development. During hook growth, the blade and base gradually protrude outside the oncoblast plasma membrane. The nucleated oncoblast persists around the handles of fully formed hooks. Simultaneously with the hook primordium elongation and transformation into a blade, handle and base, the hook material differentiates into an electron-dense cortex and a less dense inner core. The exit of the blade of each mature hook, protruding from the oncosphere, is surrounded by a circular, septate desmosome and two rigid, dense rings on either side. The pattern of oncospheral hook morphogenesis in E. multilocularis is compared with that of other previously examined cyclophyllidean cestodes. Though oncoblasts have never been observed around the mature hooks, their remnants are often still visible in the fully developed infective oncospheres in particular in some taeniid species so far examined in this respect. The origin and formation of oncospheral hooks in E. multilocularis, evidently differs from that of the rostellar hooks. Thus, although the hooks may have slight similarity at the gross level, they are neither analogous nor homologous structures.


Subject(s)
Echinococcosis/parasitology , Echinococcus multilocularis/embryology , Foxes/parasitology , Animals , Echinococcus multilocularis/ultrastructure , Embryonic Development , Female , France , Golgi Apparatus/ultrastructure , Mitochondria/ultrastructure , Morphogenesis , Ribosomes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...