Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.923
Filter
1.
Ecotoxicol Environ Saf ; 278: 116421, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705041

ABSTRACT

Subcellular metal distribution assessments are the most adequate biomonitoring approach to evaluate metal toxicity, instead of total metal assessments This study aimed to assess subcellular metal distributions and associations to the main metal exposure biomarker, metallothionein (MT), in two bromeliad species (Tillandsia usneoides and Tillandsia stricta) exposed established in industrial, urban, and port areas in the metropolitan region of Rio de Janeiro, southeastern Brazil, through an active biomonitoring approach conducted one year. Metals and metalloids in three subcellular fractions (insoluble, thermolabile and thermostable) obtained from the MT purification process were determined by inductively coupled plasma mass spectrometry (ICP-MS). Lower MT concentrations were observed both during the dry sampling periods, associated to the crassulacean acid metabolism (CAM) and during the COVID-19 pandemic, due to reduced urban mobility, decreasing pollutant emissions. The percentage of non-bioavailable metals detected in the insoluble fraction increased throughout the sampling period for both species. Several metals (Cr, Co, Cu, Cd, Mn, Ni, Se, and Zn), most associated with vehicle emissions, the main pollutant source in urban centers, were detected in the thermostable fraction and are, thus, associated with MT through the MT-metal detoxification route. Insoluble metal concentrations were higher in T. stricta, indicating that this species seems less susceptible to cellular metal exposure damage. A potential protective effect of Se and Fe was detected against Pb, suggested by a strong negative correlation, which may be attributed to antioxidant roles and similar uptake routes, respectively.


Subject(s)
Air Pollutants , Cities , Environmental Monitoring , Metallothionein , Tillandsia , Brazil , Metallothionein/metabolism , Metallothionein/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Air Pollutants/toxicity , Tillandsia/drug effects , Ecotoxicology/methods , Metals/analysis , Metals/toxicity , Biomarkers/analysis , Metals, Heavy/analysis , Metals, Heavy/toxicity
2.
Ecotoxicol Environ Saf ; 278: 116379, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38714082

ABSTRACT

Species sensitivity distributions (SSDs) estimated by fitting a statistical distribution to ecotoxicity data are indispensable tools used to derive the hazardous concentration for 5 % of species (HC5) and thereby a predicted no-effect concentration in environmental risk assessment. Whereas various statistical distributions are available for SSD estimation, the fundamental question of which statistical distribution should be used has received limited systematic analysis. We aimed to address this knowledge gap by applying four frequently used statistical distributions (log-normal, log-logistic, Burr type III, and Weibull distributions) to acute and chronic SSD estimation using aquatic toxicity data for 191 and 31 chemicals, respectively. Based on the differences in the corrected Akaike's information criterion (AICc) as well as visual inspection of the fitting of the lower tails of SSD curves, the log-normal SSD was generally better or equally good for the majority of chemicals examined. Together with the fact that the ratios of HC5 values of other alternative SSDs to those of log-normal SSDs generally fell within the range 0.1-10, our findings indicate that the log-normal distribution can be a reasonable first candidate for SSD derivation, which does not contest the existing widespread use of log-normal SSDs.


Subject(s)
Water Pollutants, Chemical , Risk Assessment , Animals , Water Pollutants, Chemical/toxicity , Ecotoxicology , Species Specificity , Toxicity Tests, Acute , Aquatic Organisms/drug effects , Toxicity Tests, Chronic , Models, Statistical
3.
J Hazard Mater ; 472: 134456, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703678

ABSTRACT

Exposure to toxic chemicals threatens species and ecosystems. This study introduces a novel approach using Graph Neural Networks (GNNs) to integrate aquatic toxicity data, providing an alternative to complement traditional in vivo ecotoxicity testing. This study pioneers the application of GNN in ecotoxicology by formulating the problem as a relation prediction task. GRAPE's key innovation lies in simultaneously modelling 444 aquatic species and 2826 chemicals within a graph, leveraging relations from existing datasets where informative species and chemical features are augmented to make informed predictions. Extensive evaluations demonstrate the superiority of GRAPE over Logistic Regression (LR) and Multi-Layer Perceptron (MLP) models, achieving remarkable improvements of up to a 30% increase in recall values. GRAPE consistently outperforms LR and MLP in predicting novel chemicals and new species. In particular, GRAPE showcases substantial enhancements in recall values, with improvements of ≥ 100% for novel chemicals and up to 13% for new species. Specifically, GRAPE correctly predicts the effects of novel chemicals (104 out of 126) and effects on new species (7 out of 8). Moreover, the study highlights the effectiveness of the proposed chemical features and induced network topology through GNN for accurately predicting metallic (74 out of 86) and organic (612 out of 674) chemicals, showcasing the broad applicability and robustness of the GRAPE model in ecotoxicological investigations. The code/data are provided at https://github.com/csiro-robotics/GRAPE.


Subject(s)
Ecotoxicology , Neural Networks, Computer , Animals , Water Pollutants, Chemical/toxicity
4.
Environ Pollut ; 351: 124096, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38703982

ABSTRACT

Plastic bags are currently a major component of marine litter, causing aesthetical nuisance, and undesirable effects on marine fauna that ingest them or are entangled. Plastic litter also rises concern on the ecotoxicological effects due to the potential toxicity of the chemical additives leached in aquatic environments. Conventional plastic bags are made of polyethylene, either from first use or recycled, but regulations restricting single-use plastics and limiting lightweight carrier bags (<50 µm thickness) have fostered the replacement of thin PE bags by compostable materials advertised as safer for the environment. In this study, we assess the degradation of commercially available plastic bags in marine conditions at two scales: aquariums (60 days) and outdoors flow-through mesocosm (120 days). Strength at break point and other tensile strength parameters were used as ecologically relevant endpoints to track mechanical degradation. Ecotoxicity has been assessed along the incubation period using the sensitive Paracentrotus lividus embryo test. Whereas PE bags did not substantially lose their mechanical properties within the 60 d aquarium exposures, compostable bags showed remarkable weight loss and tensile strength decay, some of them fragmenting in the aquarium after 3-4 weeks. Sediment pore water inoculum promoted a more rapid degradation of compostable bags, while nutrient addition pattern did not affect the degradation rate. Longer-term mesocosms exposures supported these findings, as well as pointed out the influence of the microbial processes on the degradation efficiency of compostable/bioplastic bags. Compostable materials, in contrast toPE, showed moderate toxicity on sea-urchin larvae, partially associated to degradation of these materials, but the environmental implications of these findings remain to be assessed. These methods proved to be useful to classify plastic materials, according to their degradability in marine conditions, in a remarkably shorter time than current standard tests and promote new materials safer for the marine fauna.


Subject(s)
Plastics , Water Pollutants, Chemical , Polyethylene/chemistry , Polyethylene/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Ecotoxicology , Recycling , Composting , Plastics/chemistry , Plastics/toxicity , Seawater , Paracentrotus/embryology , Animals , Biodegradable Plastics/chemistry , Biodegradable Plastics/toxicity , Stress, Mechanical , Toxicity Tests , Embryo, Nonmammalian
5.
Mar Pollut Bull ; 203: 116488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759467

ABSTRACT

This study examines the levels and patterns of potentially toxic elements (PTEs) in surface sediment of Almus Dam Lake (ADL), a key fish breeding site in Türkiye. PTE concentrations in sediment were ranked: Hg (0.05 ± 0.01) < Cd (0.16 ± 0.01) < Pb (9.34 ± 1.42) < As (18.75 ± 15.65) < Cu (63.30 ± 15.17) < Ni (72.64 ± 20.54) < Zn (86.66 ± 11.95) < Cr (108.35 ± 36.40) < Mn (1008 ± 151) < Fe (53,998 ± 6468), with no significant seasonal or spatial differences. Ecological risk indices (mHQ, EF, Igeo, CF, PLI, Eri, mCd, NPI, PERI, MPI, and TRI) showed low contamination levels. Health risk assessments, including LCR, HQ, and THI, indicated minimal risks to humans from sediment PTEs. Statistical analyses (PCA, HCA, SCC) identified natural, transportation, and anthropogenic PTE sources, with slight impacts from agriculture and fish farming. This research underlines contamination status of ADL and emphasizes the need for targeted management strategies, offering critical insights for environmental safeguarding.


Subject(s)
Environmental Monitoring , Fishes , Geologic Sediments , Water Pollutants, Chemical , Animals , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Environmental Monitoring/methods , Metals/analysis , Ecotoxicology , Lakes/chemistry
6.
Environ Sci Technol ; 58(22): 9487-9499, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38691763

ABSTRACT

The booming development of artificial intelligence (AI) has brought excitement to many research fields that could benefit from its big data analysis capability for causative relationship establishment and knowledge generation. In toxicology studies using zebrafish, the microscopic images and videos that illustrate the developmental stages, phenotypic morphologies, and animal behaviors possess great potential to facilitate rapid hazard assessment and dissection of the toxicity mechanism of environmental pollutants. However, the traditional manual observation approach is both labor-intensive and time-consuming. In this Perspective, we aim to summarize the current AI-enabled image and video analysis tools to realize the full potential of AI. For image analysis, AI-based tools allow fast and objective determination of morphological features and extraction of quantitative information from images of various sorts. The advantages of providing accurate and reproducible results while avoiding human intervention play a critical role in speeding up the screening process. For video analysis, AI-based tools enable the tracking of dynamic changes in both microscopic cellular events and macroscopic animal behaviors. The subtle changes revealed by video analysis could serve as sensitive indicators of adverse outcomes. With AI-based toxicity analysis in its infancy, exciting developments and applications are expected to appear in the years to come.


Subject(s)
Artificial Intelligence , Zebrafish , Animals , High-Throughput Screening Assays/methods , Ecotoxicology , Toxicity Tests/methods
7.
Environ Res ; 252(Pt 3): 119012, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38704010

ABSTRACT

Microplastics and heavy metals are ubiquitous and persistent contaminants that are widely distributed worldwide, yet little is known about the effects of their interaction on soil ecosystems. A soil incubation experiment was conducted to investigate the individual and combined effects of polyethylene microplastics (PE-MPs) and lead (Pb) on soil enzymatic activities, microbial biomass, respiration rate, and community diversity. The results indicate that the presence of PE-MPs notably reduced soil pH and elevated soil Pb bioavailability, potentially exacerbated the combined toxicity on the biogeochemical cycles of soil nutrients, microbial biomass carbon and nitrogen, and the activities of soil urease, sucrase, and alkaline phosphatase. Soil CO2 emissions increased by 7.9% with PE-MPs alone, decreased by 46.3% with single Pb, and reduced by 69.4% with PE-MPs and Pb co-exposure, compared to uncontaminated soils. Specifically, the presence of PE-MPs and Pb, individually and in combination, facilitated the soil metabolic quotient, leading to reduced microbial metabolic efficiency. Moreover, the addition of Pb and PE-MPs modified the composition of the microbial community, leading to the enrichment of specific taxa. Tax4Fun analysis showed the effects of Pb, PE-MPs and their combination on the biogeochemical processes and ecological functions of microbes were mainly by altering amino acid metabolism, carbohydrate metabolism, membrane transport, and signal transduction. These findings offer valuable insights into the ecotoxicological effects of combined PE-MPs and Pb on soil microbial dynamics, reveals key assembly mechanisms and environmental drivers, and highlights the potential threat of MPs and heavy metals to the multifunctionality of soil ecosystems.


Subject(s)
Biomass , Lead , Microplastics , Polyethylene , Soil Microbiology , Soil Pollutants , Lead/toxicity , Soil Pollutants/toxicity , Microplastics/toxicity , Polyethylene/toxicity , Soil/chemistry , Ecotoxicology
8.
Sci Total Environ ; 935: 173026, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38750741

ABSTRACT

Among rising environmental concerns, emerging contaminants constitute a variety of different chemicals and biological agents. The composition, residence time in environmental media, chemical interactions, and toxicity of emerging contaminants are not fully known, and hence, their regulation becomes problematic. Some of the important groups of emerging contaminants are pesticides and pesticide transformation products (PTPs), which present a considerable obstacle to maintaining and preserving ecosystem health. This review article aims to thoroughly comprehend the occurrence, fate, and ecotoxicological importance of pesticide transformation products (PTPs). The paper provides an overview of pesticides and PTPs as contaminants of emerging concern and discusses the modes of degradation of pesticides, their properties and associated risks. The degradation of pesticides, however, does not lead to complete destruction but can instead lead to the generation of PTPs. The review discusses the properties and toxicity of PTPs and presents the methods available for their detection. Moreover, the present study examines the existing regulatory framework and suggests the need for the development of new technologies for easy, routine detection of PTPs to regulate them effectively in the environment.


Subject(s)
Ecotoxicology , Environmental Pollutants , Pesticides , Pesticides/toxicity , Environmental Pollutants/toxicity , Environmental Monitoring , Biodegradation, Environmental
9.
Mar Pollut Bull ; 203: 116386, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703625

ABSTRACT

Ecotoxicological tools, namely biomarkers and bioassays, may provide insights on the ecological quality status of mangroves under restoration. We investigated how 1) physicochemical parameters and water bioassays using Artemia franciscana; and 2) quantification of sublethal (osmoregulatory capacity, biochemical, and oxidative stress) and individual biomarkers (density, length-weight relationship [LWR], parasitic prevalence) in the sentinel fiddler crab Minuca rapax, can improve restoration indicators in mangroves from the Yucatán Peninsula, Southern Gulf of Mexico. We showed that water quality was improved with restoration, but still presented toxicity. Regarding sublethal biomarkers, M rapax from restored areas lower osmotic regulatory capacity, higher oxidative stress, and showed lipid peroxidation. As to the individual biomarkers, the density, LWR, and the prevalence of parasites in M. rapax was higher in restored areas. The use of bioassays/biomarkers were useful as early warning indicators to better assess the health of mangroves under restoration.


Subject(s)
Ecotoxicology , Environmental Monitoring , Wetlands , Animals , Mexico , Environmental Monitoring/methods , Biomarkers , Brachyura , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Water Quality , Artemia , Biological Assay , Environmental Restoration and Remediation , Oxidative Stress , Gulf of Mexico
10.
Mar Pollut Bull ; 203: 116441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703629

ABSTRACT

Microplastics (MPs) in the aquatic environment pose a serious threat to biota, by being confounded with food. These effects occur in mussels which are filter-feeding organisms. Mussels from the genus Mytilus sp. were used to evaluate the ecotoxicological effects of two MPs, polypropylene (PP) and polyethylene terephthalate (PET), after 4 and 28-days. Measured individual endpoints were condition index and feeding rate; and sub-individual parameters, metabolism of phase I (CYP1A1, CYP1A2 and CYP3A4) and II (glutathione S-transferases - GSTs), and antioxidant defense (catalase - CAT). MPs decreased both condition index (CI) and feeding rate (FR). No alterations occurred in metabolic enzymes, suggesting that these MPs are not metabolized by these pathways. Furthermore, lack of alterations in GSTs and CAT activities suggests the absence of conjugation and oxidative stress. Overall, biochemical markers were not responsive, but non-enzymatic responses showed deleterious effects caused by these MPs, which may be of high ecological importance.


Subject(s)
Ecotoxicology , Microplastics , Mytilus , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Mytilus/drug effects , Environmental Monitoring , Glutathione Transferase/metabolism , Polypropylenes/toxicity , Polyethylene Terephthalates , Oxidative Stress , Catalase/metabolism
11.
Chemosphere ; 359: 142246, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710414

ABSTRACT

The knowledge and assessment of mixtures of chemical pollutants in the aquatic environment is a complex issue that is often challenging to address. In this review, we focused on the use of zebrafish (Danio rerio), a vertebrate widely used in biomedical research, as a model for detecting the effects of chemical mixtures with a focus on behaviour. Our aim was to summarize the current status of the ecotoxicological research in this sector. Specifically, we limited our research to the period between January 2012 and September 2023, including only those works aimed at detecting neurotoxicity through behavioural endpoints, utilizing zebrafish at one or more developmental stages, from egg to adult. Additionally, we gathered the findings for every group of chemicals involved and summarised data from all the works we included. At the end of the screening process 101 papers were considered eligible for inclusion. Results show a growing interest in zebrafish at all life stages for this kind of research in the last decade. Also, a wide variety of different assays, involving different senses, was used in the works we surveyed, with exposures ranging from acute to chronic. In conclusion, the results of this study show the versatility of zebrafish as a model for the detection of mixture toxicity although, for what concerns behavioural analysis, the lack of standardisation of methods and endpoints might still be limiting.


Subject(s)
Behavior, Animal , Neurotoxicity Syndromes , Water Pollutants, Chemical , Zebrafish , Animals , Water Pollutants, Chemical/toxicity , Behavior, Animal/drug effects , Neurotoxicity Syndromes/etiology , Toxicity Tests/methods , Ecotoxicology/methods
12.
Chemosphere ; 359: 142301, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740337

ABSTRACT

Bioplastics are considered sustainable alternatives to conventional microplastics which are recognized as a threat to terrestrial ecosystems. However, little is known about the potential ecotoxicological effects of bioplastics on soil fauna and ecosystems. The present study assessed the toxicity of microplastics [Polystyrene (PS), Polyethylene (PE)] and bioplastics [Polyvinyl alcohol (PVA), Sodium polyacrylate (NaPa) on a key soil fauna Oppia nitens, a soil oribatid mite, and investigated the ecological relevance of O. nitens avoidance response as a valuable tool for the risk assessment of contaminated soils such as the Superfund sites. Findings showed that the mites' net response indicated avoidance behavior such that in most cases as concentrations of micro- and bioplastics increased, so did the avoidance responses. The avoidance EC50 endpoints showed PS < PE < PVA < NaPa, indicating higher deleterious effects of microplastics. High toxicity of PS in soils to O. nitens at EC50 of 165 (±25) mg/kg compared to bioplastics and other known contaminants poses an enormous threat to soil. For bioplastics in this study, there were no significant avoidances at concentrations up to 16,200 mg/kg compared to PS and PE which showed avoidance responses at 300 and 9000 mg/kg respectively, implying that bioplastics might be relatively safer to soil mites compared to conventional microplastics. Also, results indicated that long-term heavy metal pollution such as in contaminated Superfund sites decreased microbial biomass; a useful bioindicator of soil pollution. Furthermore, O. nitens avoidance of heavy metals contaminated sites demonstrated the ecological relevance of avoidance response test when assessing the habitat integrity of contaminated soil. The present study further supports the inclusion of the oribatid mite, O. nitens in the ecological risk assessment of contaminants in soil.


Subject(s)
Microplastics , Mites , Soil Pollutants , Animals , Microplastics/toxicity , Soil Pollutants/toxicity , Mites/drug effects , Ecotoxicology , Soil/chemistry , Environmental Monitoring/methods , Polyethylene/toxicity , Ecosystem , Risk Assessment , Plastics/toxicity , Avoidance Learning/drug effects
13.
Sci Total Environ ; 934: 173159, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38761939

ABSTRACT

The contamination of marine and freshwater environments by nanoplastics is considered a global threat for aquatic biota. Taking into account the most recent concentration range estimates reported globally and recognizing a knowledge gap in polystyrene nanoplastics (PS-NPs) ecotoxicology, the present work investigated the harmful effects of 20 nm and 80 nm PS-NPs, at increasing biological complexity, on the rainbow trout Oncorhynchus mykiss RTG-2 and gilthead seabream Sparus aurata SAF-1 cell lines. Twenty nm PS-NPs exerted a greater cytotoxicity than 80 nm ones and SAF-1 were approximately 4-fold more vulnerable to PS-NPs than RTG-2. The engagement of PS-NPs with plasma membranes was accompanied by discernible uptake patterns and morphological alterations along with a nuclear translocation already within a 30-min exposure. Cells were structurally damaged only by the 20 nm PS-NPs in a time-dependent manner as indicated by distinctive features of the execution phase of the apoptotic cell death mechanism such as cell shrinkage, plasma membrane blebbing, translocation of phosphatidylserine to the outer leaflet of the cell membrane and DNA fragmentation. At last, functional analyses unveiled marked transcriptional impairment at both sublethal and lethal doses of 20 nm PS-NPs, with the latter impacting the "Steroid biosynthesis", "TGF-beta signaling pathway", "ECM-receptor interaction", "Focal adhesion", "Regulation of actin cytoskeleton" and "Protein processing in endoplasmic reticulum" pathways. Overall, a distinct ecotoxicological hazard of PS-NPs at environmentally relevant concentrations was thoroughly characterized on two piscine cell lines. The effects were demonstrated to depend on size, exposure time and model, emphasizing the need for a comparative evaluation of endpoints between freshwater and marine ecosystems.


Subject(s)
Polystyrenes , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Polystyrenes/toxicity , Fresh Water , Transcriptome/drug effects , Oncorhynchus mykiss/physiology , Sea Bream/physiology , Cell Line , Ecotoxicology , Seawater/chemistry , Nanoparticles/toxicity
14.
Chemosphere ; 360: 142391, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777192

ABSTRACT

This study addresses the gap in freshwater ecotoxicological characterization factors (CFs) for Persistent, Mobile, and Toxic (PMT) and Very Persistent and Very Mobile (vPvM) substances. These CFs are vital for integrating the ecotoxicity impacts of these chemicals into life cycle assessments. Our goals are twofold: first, to calculate experimental freshwater CFs for PMT/vPvM substances listed by the German Environment Agency (UBA); second, to compare these CFs with those from the USEtox database. The expanded UBA list includes 343 PMT/vPvM substances, each representing a unique chemical structure, and linked to 474 REACH-registered substances. This study successfully computed CFs for 244 substances, with 107 overlapping the USEtox database and 137 being new. However, ecotoxicity data limitations prevented CF determination for 97 substances. This research enhances our understanding of freshwater CFs for PMT/vPvM substances, covering 72% of UBA's 343 PMT/vPvM substances. Data scarcity remains a significant challenge, which invariably impedes CF calculations. Notably, the disparities observed between CF values in the USEtox database and those derived in this research largely stem from variations in ecotoxicity data. Consequently, this research underscores the dynamic nature of CFs for substances, emphasizing the need for regular updates to ensure their accuracy and relevance.


Subject(s)
Ecotoxicology , Fresh Water , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Fresh Water/chemistry , Environmental Monitoring/methods , Risk Assessment , Germany , Databases, Factual
15.
Chemosphere ; 360: 142455, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810797

ABSTRACT

The ecological risks of sewage sludge biochar (SSB) after land use is still not truly reflected. Herein, the ecological risks of SSB prepared at different temperature were investigated using the earthworm E. fetida as a model organism from the perspectives of organismal, tissue, cellular, and molecular level. The findings revealed that the ecological risk associated with low-temperature SSB (SSB300) was more pronounced compared to medium- and high-temperature SSB (SSB500 and SSB700), and the ecological risk intensified with increasing SSB addition rates, as revealed by an increase in the integrated biomarker response v2 (IBRv2) value by 2.59-25.41 compared to those of SSB500 and SSB700. Among them, 10% SSB300 application caused significant oxidative stress and neurotoxicity in earthworms compared to CK (p < 0.001). The weight growth rate and cocoon production rate of earthworms were observed to decrease by 25.06% and 69.29%, respectively, while the mortality rate exhibited a significant increase of 33.34% following a 10% SSB300 application, as compared to the CK. Moreover, 10% SSB300 application also resulted in extensive stratum corneum injury and significant longitudinal muscle damage in earthworms, while also inducing severe collapse of intestinal epithelial cells and disruption of intestinal integrity. In addition, 10% SSB300 caused abnormal expression of earthworm detoxification and cocoon production genes (p < 0.001). These results may improve our understanding of the ecotoxicity of biochar, especially in the long term application, and contribute to providing the guidelines for applying biochar as a soil amendment.


Subject(s)
Charcoal , Oligochaeta , Oxidative Stress , Sewage , Soil Pollutants , Oligochaeta/drug effects , Animals , Charcoal/toxicity , Sewage/chemistry , Soil Pollutants/toxicity , Oxidative Stress/drug effects , Ecotoxicology , Biomarkers/metabolism
16.
J Hazard Mater ; 473: 134479, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38762985

ABSTRACT

Once in the marine environment, fishing nets and cables undergo weathering, breaking down into micro and nano-size particles and leaching plastic additives, which negatively affect marine biota. This study aims to unravel the ecotoxicological impact of different concentrations of leachate obtained from abandoned or lost fishing nets and cables in the mussel Mytilus galloprovincialis under long-term exposure (28 days). Biochemical biomarkers linked to antioxidant defense system, xenobiotic biotransformation, oxidative damage, genotoxicity, and neurotoxicity were evaluated in different mussel tissues. The chemical nature of the fishing nets and cables and the chemical composition of the leachate were assessed and metals, plasticizers, UV stabilizers, flame retardants, antioxidants, dyes, flavoring agents, preservatives, intermediates and photo initiators were detected. The leachate severely affected the antioxidant and biotransformation systems in mussels' tissues. Following exposure to 1 mg·L-1 of leachate, mussels' defense system was enhanced to prevent oxidative damage. In contrast, in mussels exposed to 10 and 100 mg·L-1 of leachate, defenses failed to overcome pro-oxidant molecules, resulting in genotoxicity and oxidative damage. Principal component analysis (PCA) and Weight of Evidence (WOE) evaluation confirmed that mussels were significantly affected by the leachate being the hazard of the leachate concentrations of 10 mg·L-1 ranked as major, while 1 and 100 mg·L-1 was moderate. These results highlighted that the leachate from fishing nets and cables can be a threat to the heath of the mussel M. galloprovincialis.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Mytilus/drug effects , Mytilus/metabolism , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Biomarkers/metabolism , Antioxidants/metabolism , Ecotoxicology , DNA Damage/drug effects
17.
Environ Pollut ; 355: 124233, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38801877

ABSTRACT

The impact of leachates from micronized beached plastics of the Mediterranean Sea and Atlantic Ocean on coastal marine ecosystems was investigated by using a multidisciplinary approach. Chemical analysis and ecotoxicological tests on phylogenetically distant species were performed on leachates from the following plastic categories: bottles, pellets, hard plastic (HP) containers, fishing nets (FN) and rapido trawling rubber (RTR). The bacteria Alivibrio fischeri, the nauplii of the crustaceans Amphibalanus amphitrite and Acartia tonsa, the rotifer Brachionus plicatilis, the embryos of the sea urchin Paracentrotus lividus, the ephyrae of the jellyfish Aurelia sp. and the larvae of the medaka Oryzias latipes were exposed to different concentrations of leachates to evaluate lethal and sub-lethal effects. Thirty-one additives were identified in the plastic leachates; benzophenone, benzyl butyl phthalate and ethylparaben were present in all leachates. Ecotoxicity of leachates varied among plastic categories and areas, being RTR, HP and FN more toxic than plastic bottles and pellets to several marine invertebrates. The ecotoxicological results based on 13 endpoints were elaborated within a quantitative weight of evidence (WOE) model, providing a synthetic hazard index for each data typology, before their integrations in an environmental risk index. The WOE assigned a moderate and slight hazard to organisms exposed to leachates of FN and HP collected in the Mediterranean Sea respectively, and a moderate hazard to leachates of HP from the Atlantic Ocean. No hazard was found for pellet, bottles and RTR. These findings suggest that an integrated approach based on WOE on a large set of bioassays is recommended to get a more reliable assessment of the ecotoxicity of beached-plastic leachates. In addition, the additives leached from FN and HP should be further investigated to reduce high concentrations and additive types that could impact marine ecosystem health.


Subject(s)
Aquatic Organisms , Invertebrates , Plastics , Water Pollutants, Chemical , Animals , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Mediterranean Sea , Aquatic Organisms/drug effects , Invertebrates/drug effects , Aliivibrio fischeri/drug effects , Environmental Monitoring , Atlantic Ocean , Ecotoxicology , Vertebrates , Oryzias , Paracentrotus/drug effects
18.
Aquat Toxicol ; 271: 106931, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718520

ABSTRACT

Numerous studies evaluate chemical contaminants released by human activities and their effects on biota and aquatic ecosystems. However, few of these studies address non-toxic agents and their potentially harmful effects, which, in a concealed manner, culminate in an increased ecotoxicological risk for aquatic life and public health. This study investigated the presence of toxic and non-toxic pollutants in one of the main watersheds in Northeast Brazil (Rio São Francisco) and proposed a model of dispersion and transfer of resistance among the analyzed bacteria, also assessing the health risks of individuals and aquatic organisms present there. The results are worrying because although most toxic parameters, including physical-chemical and chromatographic aspects, comply with Brazilian environmental standards, non-toxic (microbiological) parameters do not. This research reveals the circulation of pathogens in several points of this hydrographic basin, highlighting the hidden ecotoxicological potential of an aquatic environment considered unaffected by the usual patterns of toxic parameters.


Subject(s)
Ecotoxicology , Environmental Monitoring , Water Pollutants, Chemical , Brazil , Water Pollutants, Chemical/toxicity , Risk Assessment , Bacteria/drug effects , Animals , Aquatic Organisms/drug effects , Rivers/chemistry
19.
Chemosphere ; 358: 142176, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701864

ABSTRACT

Spatial patterns, potential origins, and ecotoxicological risk of alkylated (APAH) -and parent -(PPAH) polycyclic aromatic hydrocarbons (PAHs) were studied in mangrove surface sediments along the northern coasts of the Persian Gulf, Iran. The mean total concentrations (ngg-1dw) ∑32PAH, ∑PPAHs and ∑APAHs in sediments were 3482 (1689-61228), 2642 (1109-4849), and 840 (478-1273), respectively. The spatial variability was similar among these PAH groups, with the highest levels occurring in Nayband National Marine Park (NNMP). Physicochemical environmental factors, such as sediment grain size, and total organic carbon (TOC) contents, are significant factors of PAH distribution. These findings suggest that PAH pollution level is moderate-to-high, supporting the current view that mangrove ecosystems are under intensive anthropogenic impacts, such as petrochemical, oil and gas loads, port activities, and urbanization. Non-parametric multidimensional scaling (NPMDS) ordination demonstrated that NNMP mangrove is the critical site exhibiting high loading of PAH pollutants. Here, for the first time in this region, Soil quality guidelines (SQGs), Toxic equivalency quotient (TEQ), Mutagenic equivalency quotient (MEQ), and composition indices comprising Mean maximum permissible concentration quotient (m-MPC-Q), and Mean effect range median quotient (m-ERM-Q) methods were used to have a comprehensive risk assessment for PAH compounds and confirmed medium-to-high ecological risks of PAHs in the study area, particularly in the western part of the Gulf, highlighting the industrial impacts on the environment.


Subject(s)
Ecotoxicology , Environmental Monitoring , Geologic Sediments , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Iran , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Indian Ocean , Risk Assessment , Wetlands
20.
Environ Res ; 252(Pt 4): 119017, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38704009

ABSTRACT

In the last years, lipid physiology has become an important research target for systems biology applied to the field of ecotoxicology. Lipids are not only essential components of biological membranes, but also participate in extra and intracellular signaling processes and as signal transducers and amplifiers of regulatory cascades. Particularly in sauropsids, lipids are the main source of energy for reproduction, growth, and embryonic development. In nature, organisms are exposed to different stressors, such as parasites, diseases and environmental contaminants, which interact with lipid signaling and metabolic pathways, disrupting lipid homeostasis. The system biology approach applied to ecotoxicological studies is crucial to evaluate metabolic regulation under environmental stress produced by xenobiotics. In this review, we cover information of molecular mechanisms that contribute to lipid metabolism homeostasis in sauropsids, specifically in crocodilian species. We focus on the role of lipid metabolism as a powerful source of energy and its importance during oocyte maturation, which has been increasingly recognized in many species, but information is still scarce in crocodiles. Finally, we highlight priorities for future research on the influence of environmental stressors on lipid metabolism, their potential effect on the reproductive system and thus on the offspring, and their implications on crocodilians conservation.


Subject(s)
Alligators and Crocodiles , Ecotoxicology , Lipid Metabolism , Animals , Ecotoxicology/methods , Alligators and Crocodiles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...