Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomic Med ; 9(1): e1555, 2021 01.
Article in English | MEDLINE | ID: mdl-33205897

ABSTRACT

BACKGROUND: Hypohidrotic ectodermal dysplasia (HED) is the most common form of ectodermal dysplasia and is mainly associated with mutations in the EDA, EDAR, and EDARADD responsible for the development of ectodermal-derived structures. HED displays different modes of inheritance according to the gene that is involved, with X-linked EDA-related HED being the most frequent form of the disease. METHODS: Two families with tooth agenesis and manifestations of HED underwent clinical examination and EDA, EDAR, and EDARADD genetic analysis. The impact of the novel variant on the protein was evaluated through bioinformatics tools, whereas molecular modeling was used to predict the effect on the protein structure. RESULTS: A novel missense variant was identified in the EDAR (c.287T>C, p.Phe96Ser) of a female child proband and her mother, accounting for autosomal dominant HED. The genetic variant c.866G>A (p.Arg289His) in EDA, which has been previously described, was observed in the male proband of another family confirming its role in X-linked HED. The inheritance model of the missense mutation showed a different relationship with X-linked HED and non-syndromic tooth agenesis. CONCLUSION: Our findings provide evidence of variable expression of HED in heterozygous females, which should be considered for genetic counseling, and different modes of inheritance related to tooth development.


Subject(s)
Anodontia/genetics , Ectodermal Dysplasia/genetics , Ectodysplasins/genetics , Edar Receptor/genetics , Adult , Anodontia/pathology , Child, Preschool , Ectodermal Dysplasia/pathology , Ectodysplasins/chemistry , Ectodysplasins/metabolism , Edar Receptor/chemistry , Edar Receptor/metabolism , Female , Genes, Dominant , Humans , Male , Mutation, Missense , Pedigree , Protein Binding , Protein Domains , Protein Stability , Syndrome
2.
Eur J Hum Genet ; 28(12): 1694-1702, 2020 12.
Article in English | MEDLINE | ID: mdl-32499598

ABSTRACT

Ectodysplasin A1 receptor (EDAR) is a TNF receptor family member with roles in the development and growth of hair, teeth and glands. A derived allele of EDAR, single-nucleotide variant rs3827760, encodes EDAR:p.(Val370Ala), a receptor with more potent signalling effects than the ancestral EDAR370Val. This allele of rs3827760 is at very high frequency in modern East Asian and Native American populations as a result of ancient positive selection and has been associated with straighter, thicker hair fibres, alteration of tooth and ear shape, reduced chin protrusion and increased fingertip sweat gland density. Here we report the characterisation of another SNV in EDAR, rs146567337, encoding EDAR:p.(Ser380Arg). The derived allele of this SNV is at its highest global frequency, of up to 5%, in populations of southern China, Vietnam, the Philippines, Malaysia and Indonesia. Using haplotype analyses, we find that the rs3827760 and rs146567337 SNVs arose on distinct haplotypes and that rs146567337 does not show the same signs of positive selection as rs3827760. From functional studies in cultured cells, we find that EDAR:p.(Ser380Arg) displays increased EDAR signalling output, at a similar level to that of EDAR:p.(Val370Ala). The existence of a second SNV with partly overlapping geographic distribution, the same in vitro functional effect and similar evolutionary age as the derived allele of rs3827760, but of independent origin and not exhibiting the same signs of strong selection, suggests a northern focus of positive selection on EDAR function in East Asia.


Subject(s)
Edar Receptor/genetics , Gain of Function Mutation , Gene Frequency , Asia, Southeastern , Edar Receptor/chemistry , Edar Receptor/metabolism , Evolution, Molecular , HEK293 Cells , HaCaT Cells , Haplotypes , Humans , Molecular Dynamics Simulation , Polymorphism, Single Nucleotide , Selection, Genetic
3.
Int J Mol Sci ; 20(21)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31652981

ABSTRACT

The dental abnormalities are the typical features of many ectodermal dysplasias along with congenital malformations of nails, skin, hair, and sweat glands. However, several reports of non-syndromic/isolated tooth agenesis have also been found in the literature. The characteristic features of hypohidrotic ectodermal dysplasia (HED) comprise of hypodontia/oligodontia, along with hypohidrosis/anhidrosis, and hypotrichosis. Pathogenic variants in EDA, EDAR, EDARADD, and TRAF6, cause the phenotypic expression of HED. Genetic alterations in EDA and WNT10A cause particularly non-syndromic/isolated oligodontia. In the current project, we recruited 57 patients of 17 genetic pedigrees (A-Q) from different geographic regions of the world, including Pakistan, Egypt, Saudi Arabia, and Syria. The molecular investigation of different syndromic and non-syndromic dental conditions, including hypodontia, oligodontia, generalized odontodysplasia, and dental crowding was carried out by using exome and Sanger sequencing. We have identified a novel missense variant (c.311G>A; p.Arg104His) in WNT10A in three oligodontia patients of family A, two novel sequence variants (c.207delinsTT, p.Gly70Trpfs*25 and c.1300T>G; p.Try434Gly) in EDAR in three patients of family B and four patients of family C, respectively. To better understand the structural and functional consequences of missense variants in WNT10A and EDAR on the stability of the proteins, we have performed extensive molecular dynamic (MD) simulations. We have also identified three previously reported pathogenic variants (c.1076T>C; p.Met359Thr), (c.1133C>T; p.Thr378Met) and (c.594_595insC; Gly201Argfs*39) in EDA in family D (four patients), E (two patients) and F (one patient), correspondingly. Presently, our data explain the genetic cause of 18 syndromic and non-syndromic tooth agenesis patients in six autosomal recessive and X-linked pedigrees (A-F), which expand the mutational spectrum of these unique clinical manifestations.


Subject(s)
Ectodermal Dysplasia 1, Anhidrotic/pathology , Ectodysplasins/genetics , Edar Receptor/genetics , Molecular Dynamics Simulation , Wnt Proteins/genetics , Ectodermal Dysplasia 1, Anhidrotic/genetics , Ectodysplasins/chemistry , Ectodysplasins/metabolism , Edar Receptor/chemistry , Edar Receptor/metabolism , Humans , Mutation, Missense , Pedigree , Phenotype , Protein Stability , Protein Structure, Tertiary , Exome Sequencing , Wnt Proteins/chemistry , Wnt Proteins/metabolism
4.
PLoS One ; 13(8): e0202219, 2018.
Article in English | MEDLINE | ID: mdl-30118524

ABSTRACT

Spines, or modified hairs, have evolved multiple times in mammals, particularly in rodents. In this study, we investigated the evolution of spines in six rodent families. We first measured and compared the morphology and physical properties of hairs between paired spiny and non-spiny sister lineages. We found two distinct hair morphologies had evolved repeatedly in spiny rodents: hairs with a grooved cross-section and a second near cylindrical form. Compared to the ancestral elliptical-shaped hairs, spiny hairs had higher tension and stiffness, and overall, hairs with similar morphology had similar functional properties. To examine the genetic basis of this convergent evolution, we tested whether a single amino acid change (V370A) in the Ectodysplasin A receptor (Edar) gene is associated with spiny hair, as this substitution causes thicker and straighter hair in East Asian human populations. We found that most mammals have the common amino acid valine at position 370, but two species, the kangaroo rat (non-spiny) and spiny pocket mouse (spiny), have an isoleucine. Importantly, none of the variants we identified are associated with differences in rodent hair morphology. Thus, the specific Edar mutation associated with variation in human hair does not seem to play a role in modifying hairs in wild rodents, suggesting that different mutations in Edar and/or other genes are responsible for variation in the spiny hair phenotypes we observed within rodents.


Subject(s)
Edar Receptor/genetics , Evolution, Molecular , Hair/anatomy & histology , Rodentia/anatomy & histology , Rodentia/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Edar Receptor/chemistry , Elastic Modulus , Genetic Variation , Hair/physiology , Hair/ultrastructure , Humans , Microscopy, Electron, Scanning , Mutation , Phenotype , Phylogeny , Polymorphism, Single Nucleotide , Rodentia/classification , Sequence Homology, Amino Acid , Species Specificity , Tensile Strength
5.
Hum Mutat ; 29(12): 1405-11, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18561327

ABSTRACT

Hair morphology differs dramatically between human populations: people of East Asian ancestry typically have a coarse hair texture, with individual fibers being straight, of large diameter, and cylindrical when compared to hair of European or African origin. Ectodysplasin-A receptor (EDAR) is a cell surface receptor of the tumor necrosis factor receptor (TNFR) family involved in the development of hair follicles, teeth, and sweat glands. Analyses of genome-wide polymorphism data from multiple human populations suggest that EDAR experienced strong positive selection in East Asians. It is likely that a nonsynonymous SNP in EDAR, rs3827760, was the direct target of selection as the derived p.Val370Ala variant is seen at high frequencies in populations of East Asian and Native American origin but is essentially absent from European and African populations. Here we demonstrate that the derived EDAR370A common in East Asia has a more potent signaling output than the ancestral EDAR370 V in vitro. We show that elevation of Edar activity in transgenic mice converts their hair phenotype to the typical East Asian morphology. The coat texture becomes coarse, with straightening and thickening of individual hairs and conversion of fiber cross-sectional profile to a circular form. These thick hair fibers are produced by enlarged hair follicles, which in turn develop from enlarged embryonic organ primordia. This work shows that the multiple differences in hair form between East Asian and other human populations can be explained by the simplest of genetic alterations.


Subject(s)
Asian People/genetics , Edar Receptor/genetics , Edar Receptor/metabolism , Hair/chemistry , Polymorphism, Single Nucleotide , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Edar Receptor/chemistry , Hair/metabolism , Humans , Mice , Mice, Transgenic , Sequence Alignment
6.
Nature ; 449(7164): 913-8, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17943131

ABSTRACT

With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used 'long-range haplotype' methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:LARGE and DMD, both related to infection by the Lassa virus, in West Africa;SLC24A5 and SLC45A2, both involved in skin pigmentation, in Europe; and EDAR and EDA2R, both involved in development of hair follicles, in Asia.


Subject(s)
Genome, Human/genetics , Selection, Genetic , Antiporters/genetics , Edar Receptor/chemistry , Edar Receptor/genetics , Gene Frequency , Genetics, Population , Geography , Haplotypes/genetics , Humans , Models, Molecular , Polymorphism, Single Nucleotide/genetics , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...