Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
J Adv Res ; 57: 1-13, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37137429

ABSTRACT

INTRODUCTION: Fine-wool sheep are the most common breed used by the wool industry worldwide. Fine-wool sheep have over a three-fold higher follicle density and a 50% smaller fiber diameter than coarse-wool sheep. OBJECTIVES: This study aims to clarify the underlying genetic basis for the denser and finer wool phenotype in fine-wool breeds. METHOD: Whole-genome sequences of 140 samples, Ovine HD630K SNP array data of 385 samples, including fine, semi-fine, and coarse wool sheep, as well as skin transcriptomes of nine samples were integrated for genomic selection signature analysis. RESULTS: Two loci at keratin 74 (KRT74) and ectodysplasin receptor (EDAR) were revealed. Fine-scale analysis in 250 fine/semi-fine and 198 coarse wool sheep narrowed this association to one C/A missense variant of KRT74 (OAR3:133,486,008, P = 1.02E-67) and one T/C SNP in the regulatory region upstream of EDAR (OAR3:61,927,840, P = 2.50E-43). Cellular over-expression and ovine skin section staining assays confirmed that C-KRT74 activated the KRT74 protein and specifically enlarged cell size at the Huxley's layer of the inner root sheath (P < 0.01). This structure enhancement shapes the growing hair shaft into the finer wool than the wild type. Luciferase assays validated that the C-to-T mutation upregulated EDAR mRNA expression via a newly created SOX2 binding site and potentially led to the formation of more hair placodes. CONCLUSIONS: Two functional mutations driving finer and denser wool production were characterized and offered new targets for genetic breeding during wool sheep selection. This study not only provides a theoretical basis for future selection of fine wool sheep breeds but also contributes to improving the value of wool commodities.


Subject(s)
Edar Receptor , Keratins, Type II , Mutation, Missense , Wool , Animals , Edar Receptor/genetics , Sheep/genetics , Keratins, Type II/genetics
2.
J Dermatol ; 50(10): 1357-1362, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37269152

ABSTRACT

Pathogenic variants in the EDARADD gene result in autosomal recessive and autosomal dominant ectodermal dysplasia. This article reports on the fourth family in the world with ectodermal dysplasia 11A (ECTD11A) cause from a novel splicing variant in the EDARADD gene, identified by whole exome sequencing and confirmed by Sanger sequencing. The proband and his mother were heterozygous for the detected variant (NM_145861.4:c.161-2A>T). The proband manifests unusual symptoms including hyperkeratotic plaques, slow-growing hair, recurrent infection, and pectus excavatum. His mother presents hypohidrosis, extensive tooth decay, fragile nails, and sparse hair. Further studies on ECTD11A patients could be useful to characterizing the phenotype features more precisely.


Subject(s)
Ectodermal Dysplasia , Edar Receptor , Female , Humans , Edar Receptor/genetics , Edar Receptor/metabolism , Pedigree , Ectodermal Dysplasia/diagnosis , Ectodermal Dysplasia/genetics , Phenotype , Mothers , Edar-Associated Death Domain Protein/genetics
3.
Nat Commun ; 14(1): 767, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36765055

ABSTRACT

EDA is a tumor necrosis factor (TNF) family member, which functions together with its cognate receptor EDAR during ectodermal organ development. Mutations of EDA have long been known to cause X-linked hypohidrotic dysplasia in humans characterized by primary defects in teeth, hair and sweat glands. However, the structural information of EDA interaction with EDAR is lacking and the pathogenic mechanism of EDA variants is poorly understood. Here, we report the crystal structure of EDA C-terminal TNF homology domain bound to the N-terminal cysteine-rich domains of EDAR. Together with biochemical, cellular and mouse genetic studies, we show that different EDA mutations lead to varying degrees of ectodermal developmental defects in mice, which is consistent with the clinical observations on human patients. Our work extends the understanding of the EDA signaling mechanism, and provides important insights into the molecular pathogenesis of disease-causing EDA variants.


Subject(s)
Ectodermal Dysplasia 1, Anhidrotic , Ectodermal Dysplasia , Humans , Mice , Animals , Ectodermal Dysplasia 1, Anhidrotic/genetics , Ectodysplasins/genetics , Ectodysplasins/metabolism , Ectodermal Dysplasia/genetics , Signal Transduction , Ectoderm/metabolism , Mutation , Edar Receptor/genetics
4.
J Dermatol ; 50(3): 349-356, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36258277

ABSTRACT

Hypohidrotic ectodermal dysplasia is a rare condition characterized by hypohidrosis, hypodontia, and hypotrichosis. The disease can show X-linked recessive, autosomal dominant or autosomal recessive inheritance trait. Of these, the autosomal forms are caused by mutations in either EDAR or EDARADD. To date, the underlying pathomechanisms or genotype-phenotype correlations for autosomal forms have not completely been disclosed. In this study, we performed a series of in vitro studies for four missense mutations in the death domain of EDAR protein: p.R358Q, p.G382S, p.I388T, and p.T403M. The results revealed that p.R358Q- and p.T403M-mutant EDAR showed different expression patterns from wild-type EDAR in both western blots and immunostainings. NF-κB reporter assays demonstrated that all the mutant EDAR showed reduced activation of NF-κB, but the reduction by p.G382S- and p.I388T-mutant EDAR was moderate. Co-immunoprecipitation assays showed that p.R358Q- and p.T403M-mutant EDAR did not bind with EDARADD at all, whereas p.G382S- and p.I388T-mutant EDAR maintained the affinity to some extent. Furthermore, we demonstrated that all the mutant EDAR proteins analyzed aberrantly bound with TRAF6. Sum of the data suggest that the degree of loss-of-function is different among the mutant EDAR proteins, which may be associated with the severity of the disease.


Subject(s)
Ectodermal Dysplasia 1, Anhidrotic , Ectodermal Dysplasia , Humans , Mutation, Missense , Ectodermal Dysplasia 1, Anhidrotic/diagnosis , Ectodermal Dysplasia 1, Anhidrotic/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Edar Receptor/genetics , Edar Receptor/metabolism , Ectodermal Dysplasia/genetics , Mutation
5.
Arch Oral Biol ; 146: 105600, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36470092

ABSTRACT

OBJECTIVE: This study aims to investigate a novel pathogenic variant in a Chinese family of non-syndromic tooth agenesis (NSTA) and study the impact of the variant on related protein and pathway. DESIGN: One NSTA family was collected. Whole exome sequencing and Sanger sequencing were performed on the proband with NSTA and his 5 family members. The pathogenic influence of the mutant is evaluated by bioinformatics analyses including evolutionary conservation analysis and secondary structure prediction. Molecular dynamics (MD) simulations and binding free energy calculations were then performed to explore changes in the tertiary structure and binding ability of the protein. RESULTS: We found a novel missense ectodysplasin A receptor (EDAR) variant (c .1292 T > G; p.Ile431Arg) in all affected family members. The results of bioinformatics analyses revealed that the EDAR had harmful changes after mutation. MD simulations and the binding free energy calculations results showed that the mutant EDAR protein and EDAR/ectodysplasin-A receptor-associated adapter (EDARADD) complex displayed tertiary structural change, and EDAR possessed a lower affinity to EDARADD after mutation. CONCLUSIONS: We found a novel EDAR variant (c.1292 T > G; p.Ile431Arg) in one NSTA family, which affects the binding of EDAR and EDARADD.


Subject(s)
Anodontia , Molecular Dynamics Simulation , Humans , Receptors, Ectodysplasin/genetics , Anodontia/genetics , Mutation , Wnt Proteins/genetics , Edar Receptor/genetics , Ectodysplasins/genetics
6.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 57(2): 155-161, 2022 Feb 09.
Article in Chinese | MEDLINE | ID: mdl-35152651

ABSTRACT

Objective: To detect gene mutation in patients with hypohidrotic ectodermal dysplasia (HED) by using whole exome sequencing, to analyze the pathogenicity of the mutations, and to provide reference for the genetic diagnosis of HED patients. Methods: Peripheral blood genomic DNA was extracted from each of the HED patients and their family members collected in Peking University School and Hospital of Stomatology from August 2016 to August 2021. Whole exome sequencing and sanger sequencing were performed to detect gene mutations. Functions of the rare variants after the database filtering were analyzed by bioinformatics tools. Results: Three reported mutations of ectodysplasin A (EDA) gene (c.2T>C, c.161A>G, c.467G>A) and a mutation of ectodysplasin A receptor (EDAR) gene (c.871G>A) were detected by whole genome sequencing in four HED patients, and were verified by Sanger sequencing in four HED families. The EDAR gene mutation founded in this research was reported in HED patients for the first time. Bioinformatics tools predicted that the mutations of EDA gene detected in this study were highly species conserved and disease-causing. The combined annotation dependent depletion (CADD) scores of EDA gene mutations c.2T>C, c.161A>G and c.467G>A were 22.5, 26.3 and 25.5 respectively, and the genomic evolutionary rate profiling (GERP) scores were 2.16, 2.26 and 2.18 respectively. The EDAR gene mutation c.871G>A detected in this study was species conserved and possibly disease-causing. The CADD and GERP scores of EDAR gene mutation c.871G>A were 22.0 and 1.93 respectively. Conclusions: Three reported mutations of EDA gene and a previously unreported mutation of EDAR gene were detected in four HED families. Different mutations of EDA gene and EDAR gene could make different influence on the protein function and lead to the occurrence of HED.


Subject(s)
Ectodermal Dysplasia 1, Anhidrotic , Ectodermal Dysplasia , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia 1, Anhidrotic/genetics , Edar Receptor/genetics , Humans , Mutation , Pedigree , Exome Sequencing
7.
Chinese Journal of Stomatology ; (12): 155-161, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-935842

ABSTRACT

Objective: To detect gene mutation in patients with hypohidrotic ectodermal dysplasia (HED) by using whole exome sequencing, to analyze the pathogenicity of the mutations, and to provide reference for the genetic diagnosis of HED patients. Methods: Peripheral blood genomic DNA was extracted from each of the HED patients and their family members collected in Peking University School and Hospital of Stomatology from August 2016 to August 2021. Whole exome sequencing and sanger sequencing were performed to detect gene mutations. Functions of the rare variants after the database filtering were analyzed by bioinformatics tools. Results: Three reported mutations of ectodysplasin A (EDA) gene (c.2T>C, c.161A>G, c.467G>A) and a mutation of ectodysplasin A receptor (EDAR) gene (c.871G>A) were detected by whole genome sequencing in four HED patients, and were verified by Sanger sequencing in four HED families. The EDAR gene mutation founded in this research was reported in HED patients for the first time. Bioinformatics tools predicted that the mutations of EDA gene detected in this study were highly species conserved and disease-causing. The combined annotation dependent depletion (CADD) scores of EDA gene mutations c.2T>C, c.161A>G and c.467G>A were 22.5, 26.3 and 25.5 respectively, and the genomic evolutionary rate profiling (GERP) scores were 2.16, 2.26 and 2.18 respectively. The EDAR gene mutation c.871G>A detected in this study was species conserved and possibly disease-causing. The CADD and GERP scores of EDAR gene mutation c.871G>A were 22.0 and 1.93 respectively. Conclusions: Three reported mutations of EDA gene and a previously unreported mutation of EDAR gene were detected in four HED families. Different mutations of EDA gene and EDAR gene could make different influence on the protein function and lead to the occurrence of HED.


Subject(s)
Humans , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia 1, Anhidrotic/genetics , Edar Receptor/genetics , Mutation , Pedigree , Exome Sequencing
8.
PLoS One ; 16(10): e0258212, 2021.
Article in English | MEDLINE | ID: mdl-34618839

ABSTRACT

The ectodysplasin receptor (EDAR) is a tumor necrosis factor receptor (TNF) superfamily member. A substitution in an exon of EDAR at position 370 (EDARV370A) creates a gain of function mutant present at high frequencies in Asian and Indigenous American populations but absent in others. Its frequency is intermediate in populations of Mexican ancestry. EDAR regulates the development of ectodermal tissues, including mammary ducts. Obesity and type 2 diabetes mellitus are prevalent in people with Indigenous and Latino ancestry. Latino patients also have altered prevalence and presentation of breast cancer. It is unknown whether EDARV370A might connect these phenomena. The goals of this study were to determine 1) whether EDARV370A is associated with metabolic phenotypes and 2) if there is altered breast anatomy in women carrying EDARV370A. Participants were from two Latino cohorts, the Arizona Insulin Resistance (AIR) registry and Sangre por Salud (SPS) biobank. The frequency of EDARV370A was 47% in the Latino cohorts. In the AIR registry, carriers of EDARV370A (GG homozygous) had significantly (p < 0.05) higher plasma triglycerides, VLDL, ALT, 2-hour post-challenge glucose, and a higher prevalence of prediabetes/diabetes. In a subset of the AIR registry, serum levels of ectodysplasin A2 (EDA-A2) also were associated with HbA1c and prediabetes (p < 0.05). For the SPS biobank, participants that were carriers of EDARV370A had lower breast density and higher HbA1c (both p < 0.05). The significant associations with measures of glycemia remained when the cohorts were combined. We conclude that EDARV370A is associated with characteristics of the metabolic syndrome and breast density in Latinos.


Subject(s)
Breast Density/genetics , Edar Receptor/genetics , Genetic Predisposition to Disease , Hispanic or Latino/genetics , Metabolic Syndrome/genetics , Mutation/genetics , Adult , Advisory Committees , Arizona , Biological Specimen Banks , Blood Glucose/metabolism , Ectodysplasins/genetics , Female , Gene Frequency/genetics , Genetic Association Studies , Glycated Hemoglobin/metabolism , Humans , Insulin Resistance , Male , Metabolic Syndrome/blood , Middle Aged , Registries
9.
Genes (Basel) ; 12(9)2021 09 08.
Article in English | MEDLINE | ID: mdl-34573371

ABSTRACT

Ectodermal dysplasia (ED) is a diverse group of genetic disorders caused by congenital defects of two or more ectodermal-derived body structures, namely, hair, teeth, nails, and some glands, e.g., sweat glands. Molecular pathogenesis of ED involves mutations of genes encoding key proteins of major developmental pathways, including ectodysplasin (EDA) and wingless-type (WNT) pathways. The most common ED phenotype is hypohidrotic/anhidrotic ectodermal dysplasia (HED) featuring hypotrichosis, hypohidrosis/anhidrosis, and hypodontia. Molecular diagnosis is fundamental for disease management and emerging treatments. We used targeted next generation sequencing to study EDA, EDAR, EDARADD, and WNT10A genes in 45 Egyptian ED patients with or without hypohidrosis. We present genotype and phenotype data of 28 molecularly-characterized patients demonstrating genetic heterogeneity, variable expressivity, and intrafamilial phenotypic variability. Thirteen mutations were reported, including four novel EDA mutations, two novel EDARADD, and one novel EDAR mutations. Identified mutations congregated in exons encoding key functional domains. EDA is the most common gene contributing to 85% of the identified Egyptian ED genetic spectrum, followed by EDARADD (10%) and EDAR (5%). Our cohort represents the first and largest cohort from North Africa where more than 60% of ED patients were identified emphasizing the need for exome sequencing to explore unidentified cases.


Subject(s)
Ectodermal Dysplasia/genetics , Ectodysplasins/genetics , Edar Receptor/genetics , Edar-Associated Death Domain Protein/genetics , Mutation , Adult , Child , Child, Preschool , Ectodermal Dysplasia/etiology , Egypt , Female , Heterozygote , Humans , Infant , Male , Middle Aged , Wnt Proteins/genetics
10.
Mol Genet Genomic Med ; 9(6): e1684, 2021 06.
Article in English | MEDLINE | ID: mdl-33943035

ABSTRACT

BACKGROUND: Causative variants in genes of the EDA/EDAR/NF-κB pathway, such as EDA and EDARADD, have been widely identified in patients with non-syndromic tooth agenesis (NSTA). However, few cases of NSTA are due to ectodysplasin-A receptor (EDAR) variants. In this study, we investigated NSTA-associated variants in Chinese families. METHODS: Peripheral blood samples were collected from the family members of 24 individuals with NSTA for DNA extraction. The coding region of the EDA gene of the 24 probands was amplified by PCR and sequenced to investigate new variants. Whole-exome sequencing and Sanger sequencing were then performed for probands without EDA variants detected by PCR. RESULTS: A novel missense variant EDAR c.338G>A (p.(Cys113Tyr)) was identified in one family. In addition, three known EDA variants (c.865C>T, c.866G>A, and c.1013C>T) were identified in three families. Genotype-phenotype correlation analysis of EDAR gene mutation showed that NSTA patients were most likely to lose the maxillary lateral incisors and the maxillary central incisors were the least affected. The phenotype of mutations at codon 289 of EDA in NSTA affected patients was characterized by lateral incisors loss, rarely affecting the maxillary first molars. CONCLUSION: A novel EDAR missense variant c.338G>A (p.(Cys113Tyr)) was identified in a family with NSTA, extending the mutation spectrum of the EDAR gene. Genotype-phenotype correlation analyses of EDAR and EDA mutations could help to improve disease status prediction in NSTA families.


Subject(s)
Anodontia/genetics , Edar Receptor/genetics , Mutation, Missense , Anodontia/pathology , Ectodysplasins/genetics , Female , Humans , Male , Pedigree , Phenotype , Whole Genome Sequencing
11.
Sci Rep ; 11(1): 5143, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664401

ABSTRACT

Morphological variations in human teeth have long been recognized and, in particular, the spatial and temporal distribution of two patterns of dental features in Asia, i.e., Sinodonty and Sundadonty, have contributed to our understanding of the human migration history. However, the molecular mechanisms underlying such dental variations have not yet been completely elucidated. Recent studies have clarified that a nonsynonymous variant in the ectodysplasin A receptor gene (EDAR 370V/A; rs3827760) contributes to crown traits related to Sinodonty. In this study, we examined the association between the EDAR polymorphism and tooth root traits by using computed tomography images and identified that the effects of the EDAR variant on the number and shape of roots differed depending on the tooth type. In addition, to better understand tooth root morphogenesis, a computational analysis for patterns of tooth roots was performed, assuming a reaction-diffusion system. The computational study suggested that the complicated effects of the EDAR polymorphism could be explained when it is considered that EDAR modifies the syntheses of multiple related molecules working in the reaction-diffusion dynamics. In this study, we shed light on the molecular mechanisms of tooth root morphogenesis, which are less understood in comparison to those of tooth crown morphogenesis.


Subject(s)
Edar Receptor/genetics , Odontogenesis/genetics , Tooth Root/anatomy & histology , Adult , Aged , Female , Humans , Male , Middle Aged , Polymorphism, Genetic , Tooth Crown/anatomy & histology , Tooth Crown/metabolism , Tooth Root/metabolism , Young Adult
12.
Mol Genet Genomic Med ; 9(1): e1555, 2021 01.
Article in English | MEDLINE | ID: mdl-33205897

ABSTRACT

BACKGROUND: Hypohidrotic ectodermal dysplasia (HED) is the most common form of ectodermal dysplasia and is mainly associated with mutations in the EDA, EDAR, and EDARADD responsible for the development of ectodermal-derived structures. HED displays different modes of inheritance according to the gene that is involved, with X-linked EDA-related HED being the most frequent form of the disease. METHODS: Two families with tooth agenesis and manifestations of HED underwent clinical examination and EDA, EDAR, and EDARADD genetic analysis. The impact of the novel variant on the protein was evaluated through bioinformatics tools, whereas molecular modeling was used to predict the effect on the protein structure. RESULTS: A novel missense variant was identified in the EDAR (c.287T>C, p.Phe96Ser) of a female child proband and her mother, accounting for autosomal dominant HED. The genetic variant c.866G>A (p.Arg289His) in EDA, which has been previously described, was observed in the male proband of another family confirming its role in X-linked HED. The inheritance model of the missense mutation showed a different relationship with X-linked HED and non-syndromic tooth agenesis. CONCLUSION: Our findings provide evidence of variable expression of HED in heterozygous females, which should be considered for genetic counseling, and different modes of inheritance related to tooth development.


Subject(s)
Anodontia/genetics , Ectodermal Dysplasia/genetics , Ectodysplasins/genetics , Edar Receptor/genetics , Adult , Anodontia/pathology , Child, Preschool , Ectodermal Dysplasia/pathology , Ectodysplasins/chemistry , Ectodysplasins/metabolism , Edar Receptor/chemistry , Edar Receptor/metabolism , Female , Genes, Dominant , Humans , Male , Mutation, Missense , Pedigree , Protein Binding , Protein Domains , Protein Stability , Syndrome
13.
Methods Mol Biol ; 2248: 167-183, 2021.
Article in English | MEDLINE | ID: mdl-33185875

ABSTRACT

Genetic deficiency of ectodysplasin A (EDA) causes X-linked hypohidrotic ectodermal dysplasia, a congenital condition characterized by the absence or abnormal formation of sweat glands, teeth, and several skin appendages. Stimulation of the EDA receptor (EDAR) with agonists in the form of recombinant EDA or anti-EDAR antibodies can compensate for the absence of Eda in a mouse model of Eda deficiency, provided that agonists are administered in a timely manner during fetal development. Here we provide detailed protocols for the administration of EDAR agonists or antagonists, or other proteins, by the intravenous, intraperitoneal, and intra-amniotic routes as well as protocols to collect blood, to visualize sweat gland function, and to prepare skulls in mice.


Subject(s)
Edar Receptor/metabolism , Signal Transduction/drug effects , Animals , Animals, Newborn , Disease Models, Animal , Drug Administration Routes , Ectodermal Dysplasia/drug therapy , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/metabolism , Edar Receptor/genetics , Mice , Phenotype , Recombinant Proteins/administration & dosage , Treatment Outcome
14.
Hum Mutat ; 41(11): 1957-1966, 2020 11.
Article in English | MEDLINE | ID: mdl-32906216

ABSTRACT

Nonsyndromic oligodontia is a rare congenital anomaly. Mutations in the ectodysplasin A receptor (EDAR) gene are the primary cause of hypohidrotic ectodermal dysplasia but are rarely reported in nonsyndromic oligodontia. This study investigated EDAR mutations in multiplex nonsyndromic oligodontia and comparatively analyzed the EDAR- and EDA-related tooth agenesis patterns. Mutation screening was carried out using whole-exome sequencing and familial segregation. Evolutionary conservation and conformational analyses were used to evaluate the potential pathogenic influence of EDAR mutants. EDAR mutations were found to occur in 10.7% of nonsyndromic oligodontia cases. We reported seven heterozygous mutations of EDAR, including five novel mutations (c.404G>A, c.871G>A, c.43G>A, c.1072C>T, and c.1109T>C) and two known mutations (c.319A>G and c.1138A>C). Genotype-phenotype correlation analysis demonstrated that the EDAR-related tooth agenesis pattern was markedly different from EDA. The mandibular second premolars were most frequently missing (57.69%) in EDAR-mutated patients. Our results provide new evidence for the genotypic study of nonsyndromic oligodontia and suggest that EDAR haploinsufficiency results in nonsyndromic tooth agenesis. Furthermore, the distinct pattern between EDAR- and EDA-related tooth agenesis can be used as a guide for mutation screening during the clinical genetic diagnosis of this genetic disorder.


Subject(s)
Anodontia/genetics , Edar Receptor/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Genotype , Heterozygote , Humans , Male , Mutation , Exome Sequencing , Young Adult
15.
Eur J Dermatol ; 30(4): 408-416, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32819890

ABSTRACT

BACKGROUND: Hypohidrotic ectodermal dysplasia (HED) is a congenital anomaly characterized by hypohydrosis, hypotrichosis and hypodontia. Mutations in at least four genes (EDAR, EDARADD, WNT10A, TRAF6) have been reported to cause both autosomal recessive and autosomal dominant forms of HED. Mutations in two other genes (EDA and IKBKG) have been reported to cause X-linked HED. OBJECTIVES: To clinically characterize three consanguineous families (A-C) segregating with autosomal recessive HED and identify possible disease-causing variants of EDAR and EDARADD genes. MATERIALS AND METHODS: The genes, EDAR and EDARADD, were sequenced in Family A and C, and exome sequencing was performed in Family B. Additionally, in Family A and C, the effect of the identified variants was examined by analysis of EDAR mRNA, extracted from hair follicles from both affected and unaffected members. RESULTS: Sequence analysis revealed three possible disease-causing EDAR variants including a novel splice acceptor site variant (IVS3-1G > A) in Family A and two previously reported mutations (p.[Ala26Val], p.[Arg25*]) in the two other families. Previously, the nonsense variant p.(Arg25*) was reported only in the heterozygous state. Analysis of the RNA, extracted from hair follicles, revealed skipping of a downstream exon in EDAR and complete degradation of EDAR mRNA in affected members in family A and C, respectively. Computational modelling validated the pathogenic effect of the two variants identified in Family B and C. CONCLUSION: The three variants reported here expand the spectrum of EDAR mutations associated with HED which may further facilitate genetic counselling of families segregating with similar disorders in the Pakistani population.


Subject(s)
Consanguinity , Ectodermal Dysplasia/genetics , Edar Receptor/genetics , Edar-Associated Death Domain Protein/genetics , Adolescent , Child , Codon, Nonsense , Ectodermal Dysplasia/pathology , Female , Genes, Recessive , Homozygote , Humans , Male , Mutation, Missense , Pakistan , Pedigree , Point Mutation , RNA Splice Sites/genetics , Sequence Analysis, RNA , Young Adult
16.
Gene Expr Patterns ; 38: 119131, 2020 12.
Article in English | MEDLINE | ID: mdl-32755633

ABSTRACT

Development of the scleral ossicles, a ring of bony elements within the sclera, is directed by a series of papillae that arise from placodes in the conjunctival epithelium over a 1.5-day induction period in the chicken embryo. The regular spacing of the papillae around the corneal-scleral limbus suggests that their induction may be regulated by a reaction-diffusion mechanism, similar to other epithelial appendages. Some key placode signalling molecules, including ß-catenin, are known to be expressed throughout the induction period. However, others have been studied only at certain stages or have not been successfully detected. Here we use qPCR to study the gene expression patterns of the wingless integration (WNT)/ß-catenin, bone morphogenetic protein (BMP), ectodysplasin (EDA), fibroblast growth factor (FGF) and hedgehog (HH) signalling families in discrete regions of the eye throughout the complete conjunctival placode and papillae induction period. This comprehensive analysis revealed a variable level of gene expression within specific eye regions, with some genes exhibiting high, moderate or low changes. Most genes exhibited an initial increase in gene expression, followed by a decrease or plateau as development proceeded, suggesting that some genes are important for a brief initial period whilst the sustained elevated expression level of other genes is needed for developmental progression. The timing or magnitude of these changes, and/or the overall gene expression trend differed in the temporal, nasal and/or dorsal eye regions for some, but not all genes, demonstrating that gene expression may vary across different eye regions. Temporal and nasal EDA receptor (EDAR) had the greatest number of strong correlations (r > 0.700) with other genes and ß-catenin had the greatest number of moderate correlations (r = 0.400-0.700), while EDA had the greatest range in correlation strengths. Among the strongly correlated genes, two distinct signalling modules were identified, connected by some intermediate genes. The dynamic gene expression patterns of the five signalling pathways studied here from conjunctival placode formation through to papillae development is consistent with other epithelial appendages and confirms the presence of a conserved induction and patterning signalling network. Two unique gene expression patterns and corresponding gene interaction modules suggest functionally distinct roles throughout placode development. Furthermore, spatial differences in gene expression patterns among the temporal, nasal and dorsal regions of the eye may indicate that the expression of certain genes is influenced by mechanical forces exerted throughout development. Therefore, this study identifies key placode signalling factors and their interactions, as well as some potential region-specific features of gene expression in the scleral ossicle system and provides a basis for further exploration of the spatial expression of these genes and the patterning mechanism(s) active throughout conjunctival placode and papillae formation.


Subject(s)
Avian Proteins/genetics , Gene Expression Regulation, Developmental , Sclera/metabolism , Wnt Signaling Pathway , Animals , Avian Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Chick Embryo , Conjunctiva/embryology , Conjunctiva/metabolism , Cornea/embryology , Cornea/metabolism , Edar Receptor/genetics , Edar Receptor/metabolism , Sclera/embryology , Wnt Proteins/genetics , Wnt Proteins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
17.
Eur J Hum Genet ; 28(12): 1694-1702, 2020 12.
Article in English | MEDLINE | ID: mdl-32499598

ABSTRACT

Ectodysplasin A1 receptor (EDAR) is a TNF receptor family member with roles in the development and growth of hair, teeth and glands. A derived allele of EDAR, single-nucleotide variant rs3827760, encodes EDAR:p.(Val370Ala), a receptor with more potent signalling effects than the ancestral EDAR370Val. This allele of rs3827760 is at very high frequency in modern East Asian and Native American populations as a result of ancient positive selection and has been associated with straighter, thicker hair fibres, alteration of tooth and ear shape, reduced chin protrusion and increased fingertip sweat gland density. Here we report the characterisation of another SNV in EDAR, rs146567337, encoding EDAR:p.(Ser380Arg). The derived allele of this SNV is at its highest global frequency, of up to 5%, in populations of southern China, Vietnam, the Philippines, Malaysia and Indonesia. Using haplotype analyses, we find that the rs3827760 and rs146567337 SNVs arose on distinct haplotypes and that rs146567337 does not show the same signs of positive selection as rs3827760. From functional studies in cultured cells, we find that EDAR:p.(Ser380Arg) displays increased EDAR signalling output, at a similar level to that of EDAR:p.(Val370Ala). The existence of a second SNV with partly overlapping geographic distribution, the same in vitro functional effect and similar evolutionary age as the derived allele of rs3827760, but of independent origin and not exhibiting the same signs of strong selection, suggests a northern focus of positive selection on EDAR function in East Asia.


Subject(s)
Edar Receptor/genetics , Gain of Function Mutation , Gene Frequency , Asia, Southeastern , Edar Receptor/chemistry , Edar Receptor/metabolism , Evolution, Molecular , HEK293 Cells , HaCaT Cells , Haplotypes , Humans , Molecular Dynamics Simulation , Polymorphism, Single Nucleotide , Selection, Genetic
18.
Eur J Med Genet ; 63(9): 103926, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32325225

ABSTRACT

Tooth agenesis (TA) is the developmental absence of one or more permanent teeth. We report on 10 members of a Pakistani family afflicted with TA with variable associated features inherited in autosomal dominant fashion with full penetrance. The malformation is bilateral in the majority of cases, and hallmark feature is the absence of lateral and central incisors and canines whereas first and second premolars are involved less often. Affected individuals also have pronounced variable features associated with TA such as diastema between central incisors, overgrown labial frenum, peg-shaped lower incisors, delayed exfoliation, over-erupted upper incisors and malocclusion but have no other signs of ectodermal dysplasia. Through linkage analysis coupled with exome sequencing, we identified novel nonsense variant EDAR c.1302G>A, p.(Trp434*). The variant is deduced to create a premature termination codon that leads to the deletion of the 15 C-terminal residues. Heterozygous EDAR variants most commonly cause hypohydrotic ectodermal dysplasia, but recently one nonsense and 10 missense variants have been reported in nonsyndromic TA, some with few mild features of hypohydrotic ectodermal dysplasia. The phenotype in the family we present, the largest with EDAR-related TA reported to date, is highly variable and without any signs of ectodermal dysplasia.


Subject(s)
Anodontia/genetics , Codon, Nonsense , Edar Receptor/genetics , Adolescent , Adult , Anodontia/pathology , Child , Female , Genes, Dominant , Heterozygote , Humans , Male , Pedigree , Phenotype
19.
Chemosphere ; 239: 124747, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31514003

ABSTRACT

BACKGROUNDS: Polychlorinated biphenyls are persistent environmental pollutants associated with the onset of non-alcoholic fatty liver disease in humans, but there is limited information on the underlying mechanism. In the present study, we investigated the alterations in gene expression profiles in normal human liver cells L-02 following exposure to 2, 3, 3', 4, 4', 5 - hexachlorobiphenyl (PCB 156), a potent compound that may induce non-alcoholic fatty liver disease. METHODS: The L-02 cells were exposed to PCB 156 for 72 h and the contents of intracellular triacylglyceride and total cholesterol were subsequently measured. Microarray analysis of mRNAs and long non-coding RNAs (lncRNAs) in the cells was also performed after 3.4 µM PCB 156 treatment. RESULTS: Exposure to PCB 156 (3.4 µM, 72 h) resulted in significant increases of triacylglyceride and total cholesterol concentrations in L-02 cells. Microarray analysis identified 222 differentially expressed mRNAs and 628 differentially expressed lncRNAs. Gene Ontology and pathway analyses associated the differentially expressed mRNAs with metabolic and inflammatory processes. Moreover, lncRNA-mRNA co-expression network revealed 36 network pairs comprising 10 differentially expressed mRNAs and 34 dysregulated lncRNAs. The results of bioinformatics analysis further indicated that dysregulated lncRNA NONHSAT174696, lncRNA NONHSAT179219, and lncRNA NONHSAT161887, as the regulators of EDAR, CYP1B1, and ALDH3A1 respectively, played an important role in the PCB 156-induced lipid metabolism disorder. CONCLUSION: Our findings provide an overview of differentially expressed mRNAs and lncRNAs in L-02 cells exposed to PCB 156, and contribute to the field of polychlorinated biphenyl-induced non-alcoholic fatty liver disease.


Subject(s)
Liver/drug effects , Polychlorinated Biphenyls/toxicity , Transcriptome/drug effects , Aldehyde Dehydrogenase/genetics , Cell Line , Cholesterol/metabolism , Cytochrome P-450 CYP1B1/genetics , Edar Receptor/genetics , Gene Expression Profiling , Humans , Liver/cytology , Liver/physiology , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/pathology , Oligonucleotide Array Sequence Analysis , RNA, Long Noncoding , RNA, Messenger/metabolism , Toxicity Tests , Triglycerides/metabolism
20.
Orphanet J Rare Dis ; 14(1): 281, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796081

ABSTRACT

BACKGROUND: Ectodermal dysplasias (ED) are a group of genetic conditions affecting the development and/or homeostasis of two or more ectodermal derivatives. An attenuated phenotype is considered a non-syndromic trait when the patient is affected by only one impaired ectodermal structure, such as in non-syndromic tooth agenesis (NSTA) disorder. Hypohidrotic ectodermal dysplasia (HED) is the most highly represented ED. X-linked hypohidrotic ectodermal dysplasia (XLHED) is the most common subtype, with an incidence of 1/50,000-100,000 males, and is associated with the EDA gene (Xq12-q13.1); the dominant and recessive subtypes involve the EDAR (2q13) and EDARADD (1q42.3) genes, respectively. The WNT10A gene (2q35) is associated more frequently with NSTA. Our goal was to determine the mutational spectrum in a cohort of 72 Spanish patients affected by one or more ectodermal derivative impairments referred to as HED (63/72) or NSTA (9 /72) to establish the prevalence of the allelic variants of the four most frequently associated genes. Sanger sequencing of the EDA, EDAR, EDARADD and WNT10A genes and multiplex ligation-dependent probe amplification (MLPA) were performed. RESULTS: A total of 61 children and 11 adults, comprising 50 males and 22 females, were included. The average ages were 5.4 and 40.2 years for children and adults, respectively. A molecular basis was identified in 51/72 patients, including 47/63 HED patients, for whom EDA was the most frequently involved gene, and 4/9 NSTA patients, most of whom had variants of WNT10A. Among all the patients, 37/51 had variants of EDA, 8/51 had variants of the WNT10A gene, 4/51 had variants of EDAR and 5/51 had variants of EDARADD. In 42/51 of cases, the variants were inherited according to an X-linked pattern (27/42), with the remaining showing an autosomal dominant (10/42) or autosomal recessive (5/42) pattern. Among the NSTA patients, 3/9 carried pathogenic variants of WNT10A and 1/9 carried EDA variants. A total of 60 variants were detected in 51 patients, 46 of which were different, and out of these 46 variants, 12 were novel. CONCLUSIONS: This is the only molecular study conducted to date in the Spanish population affected by ED. The EDA, EDAR, EDARADD and WNT10A genes constitute the molecular basis in 70.8% of patients with a 74.6% yield in HED and 44.4% in NSTA. Twelve novel variants were identified. The WNT10A gene has been confirmed as the second molecular candidate that has been identified and accounts for one-half of non-EDA patients and one-third of NSTA patients. Further studies using next generation sequencing (NGS) will help to identify other contributory genes in the remaining uncharacterized Spanish patients.


Subject(s)
Ectodermal Dysplasia 1, Anhidrotic/genetics , Ectodermal Dysplasia/genetics , Edar Receptor/genetics , Edar-Associated Death Domain Protein/genetics , Wnt Proteins/genetics , Adolescent , Adult , Anodontia/genetics , Child , Child, Preschool , DNA Copy Number Variations/genetics , Exons/genetics , Female , Humans , Infant , Infant, Newborn , Introns/genetics , Male , Middle Aged , Spain , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...