Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 251: 117062, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33142614

ABSTRACT

In this study, Lactococcus lactis was embedded in a film of corn starch (NS) and carboxymethyl cellulose (CMC) prepared using a casting method. At a CMC:NS ratio of 5:5, the composite film had the best comprehensive properties. Scanning electron microscopy images clearly showed that L. lactis was effectively embedded. The film with 1.5 % L. lactis showed the best performance and the lowest water vapor transmission rate (5.54 × 10-11 g/m s Pa. In addition, the edible film retained a viable count of 5.64 log CFU/g of L. lactis when stored at 4 °C for 30 days. The composite film with 1.5 % L. lactis showed the highest release of nisin (3.35 mg/mL) and good antibacterial activity against Staphylococcus aureus (53.53 %) after 8 days. Therefore, this edible film is a viable alternative antimicrobial strategy for the active packaging of foods containing low moisture content.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Edible Films/standards , Food Packaging/methods , Lactococcus lactis/chemistry , Nisin/pharmacology , Staphylococcus aureus/drug effects , Starch/chemistry , Anti-Bacterial Agents/pharmacology , Nisin/biosynthesis , Staphylococcus aureus/growth & development
2.
Int J Biol Macromol ; 166: 288-296, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33129905

ABSTRACT

Due to the environmental pollution problems caused by plastic-based packaging, the development of edible food packaging films is imminent. However, the performance of most edible packaging films is insufficient to meet practical applications, so recent studies have focused on the research of various fillers to improve film properties. This article reviews recent applications of cellulose nanocrystals (CNC) and cellulose nanofiber (CNF) in edible food packaging films including the effect on thickness, optical properties, barrier properties, water sensitivity, mechanical properties, antioxidant and antimicrobial properties. The main conclusion of this review is that the incorporation of CNC and CNF could significantly improve the performance of edible food packaging films. Particular finding is that although CNC and CNF can be used as excellent addition to improve the performance of edible food packaging films, there is a key "optimum" concentration. In addition, we also found that CNC and CNF as excellent controlled release agents and stabilizers significantly increased the antioxidant and antibacterial properties of edible food packaging films.


Subject(s)
Cellulose/chemistry , Edible Films/standards , Nanofibers/chemistry , Nanoparticles/chemistry
3.
Int J Mol Sci ; 21(24)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302487

ABSTRACT

The aim of this study was to evaluate the effects of candelilla (CAN) or carnauba wax (CAR) incorporation on functional properties of edible sodium caseinate (CAS) films. Glycerol and Tween-80 were used as the plasticizer and the emulsifier, respectively. The results showed that the incorporation of waxes increased film opacity, total color differences (∆E), and mechanical resistance and reduced film lightness, water vapor permeability (WVP), and elongation at break. Scanning electron microscopy showed heterogeneous structure of emulsion films with regular distribution of lipid particles. A different internal arrangement was observed as a function of the film composition with both layered and incorporated film structure. Films containing candelilla wax exhibited more regular lipid reorganization, which resulted in better water vapor barrier efficacy and mechanical resistance in comparison to control films. The presence of Tween-80 resulted in better dispersion of lipid particles in film-forming solutions and lower water solubility, lightness, film opacity, and water vapor permeability, whereas the total color differences (∆E) were significantly larger and the improvement in mechanical properties was also achieved.


Subject(s)
Caseins/chemistry , Edible Films/standards , Waxes/chemistry , Lipids/chemistry , Solubility
4.
Carbohydr Polym ; 250: 116842, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33049811

ABSTRACT

The chitosan/okra powder/nano-silicon aerogel composite films were prepared by casting method and their physicochemical properties and structural characterization were studied. The results showed that the composite film had good mechanical properties, barrier properties and optical properties. The composite film has strong flexibility. The surface glossiness of C/D/S1.5:1:0.1 film was 14.4Gu. As for the antibacterial activity, all the composite films had strong antibacterial activity against Gram-negative (E. coli) and Gram-positive (S. aureus), and the inhibition zone of C/D/S1.5:1:0.10 against E. coli reached 551.96 mm2, the inhibition zone for S. aureus was 350.29 mm2. The composite film had uniform, non-porous, continuous and dense surface characteristics. The structural characterization confirmed that there was good compatibility between chitosan, okara powder and nano-silicon aerogel. In summary, the composite films had excellent performance and structure, which promoted the research of functional packaging films.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Chitosan/chemistry , Edible Films/standards , Glycine max/chemistry , Nanocomposites/administration & dosage , Silicon/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Escherichia coli/drug effects , Food Packaging/standards , Gels/chemistry , Nanocomposites/chemistry , Powders/chemistry , Staphylococcus aureus/drug effects
5.
Int J Biol Macromol ; 159: 1165-1176, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32442572

ABSTRACT

Agar is a biopolymer extracted from certain red algae. The continuous and transparent film made from agar gum is becoming a common and renewable alternative for plastic-based food packaging materials. However, plain agar film suffers from brittleness, high moisture permeability, and poor thermal stability. Considerable researches have been devoted to improving the properties of agar films to extend their applications. These include reinforcements by nanomaterials, blending with other biopolymers, and incorporating plasticizers, hydrophobic components, or antimicrobial agents into their structure. This article comprehensively reviews the functional properties and defects of edible films made from agar gum. Also, it describes various strategies and components used to make an agar film with desirable properties. Moreover, the applications of agar-based edible films with improved functionality for food packaging are discussed.


Subject(s)
Agar/chemistry , Edible Films/standards , Food Packaging/methods , Food Packaging/standards
6.
Food Sci Technol Int ; 26(7): 583-592, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32279572

ABSTRACT

Exploiting safer methods for fruit preservation such as application of edible coatings can improve shelf life, valuable characteristics, and antioxidative capacity. The current study aimed to investigate the effect of a pectin-based edible coating on antioxidative capacity of plum fruit during shelf life (19 ± 2 ℃ and 65% relative humidity for eight days). To do this, three solutions (0.5, 1, and 1.5%) of pectin, plasticized by glycerol (0.3% w/v), were applied on plum fruit and compared to a control treated with only distilled water. Ascorbic acid, total phenolics, anthocyanin and flavonoid contents, total antioxidative capacity based on 1,1-diphenyl-2-picryl-hydrazyl hydrate method, peroxidase (as an antioxidant enzyme), and polyphenol oxidase (as an oxidant enzyme) activities were recorded during this period. The results demonstrated that pectin-based edible coating was significantly effective on maintaining ascorbic acid, anthocyanin and flavonoid contents, and antioxidative capacity in plum fruits (P ≤ 0.01). The activities of enzymes were significantly affected by the coatings; peroxidase activity increased and polyphenol oxidase activity decreased (P ≤ 0.01). All pectin concentrations significantly caused higher ascorbic acid and anthocyanin contents, antioxidative capacity, and peroxidase activity but a lower polyphenol oxidase activity than the control; however, just 1 and 1.5% concentrations were effective in terms of total phenolic compounds and flavonoid content, respectively, and the other concentrations acted the same as the control. In general, the coating constituted from 1.5% pectin showed the best results for most measured parameters. Considering the influences of pectin-based edible coating on antioxidative characteristics of plum fruits, its application can be potentially regarded as a favorable method to enhance nutritional value of fruits.


Subject(s)
Edible Films , Food Preservation , Fruit , Pectins , Prunus domestica , Antioxidants/analysis , Edible Films/standards , Food Preservation/methods , Fruit/chemistry , Pectins/chemistry , Prunus domestica/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...