Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.515
Filter
1.
Sci Rep ; 14(1): 21920, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300236

ABSTRACT

Proso millet is an important but under-researched and underutilized crop with the potential to become a future smart crop because of its climate-resilient features and high nutrient content. Assessing diversity and marker-trait associations are essential to support the genomics-assisted improvement of proso millet. This study aimed to assess the population structure and diversity of a proso millet diversity panel and identify marker-trait associations for agronomic and grain nutrient traits. In this study, genome-wide single nucleotide polymorphisms (SNPs) were identified by mapping raw genotyping-by-sequencing (GBS) data onto the proso millet genome, resulting in 5621 quality-filtered SNPs in 160 diverse accessions. The modified Roger's Distance assessment indicated an average distance of 0.268 among accessions, with the race miliaceum exhibiting the highest diversity and ovatum the lowest. Proso millet germplasm diversity was structured according to geographic centers of origin and domestication. Genome-wide association mapping identified 40 marker-trait associations (MTAs), including 34 MTAs for agronomic traits and 6 for grain nutrients; 20 of these MTAs were located within genes. Favourable alleles and phenotypic values were estimated for all MTAs. This study provides valuable insights into the population structure and diversity of proso millet, identified marker-trait associations, and reported favourable alleles and their phenotypic values for supporting genomics-assisted improvement efforts in proso millet.


Subject(s)
Chromosome Mapping , Edible Grain , Genome, Plant , Genome-Wide Association Study , Panicum , Polymorphism, Single Nucleotide , Panicum/genetics , Edible Grain/genetics , Quantitative Trait Loci , Phenotype , Genotype , Quantitative Trait, Heritable
2.
BMC Plant Biol ; 24(1): 871, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39294608

ABSTRACT

BACKGROUND: Genetic improvement for Striga hermonthica (Sh) and S. asiatica (Sa) resistance is the most economical and effective control method to enhance the productivity of maize and other major cereal crops. Hence, identification of quantitative trait loci (QTL) associated with Striga resistance and economic traits will guide the pace and precision of resistance breeding in maize. The objective of this study was to undertake a genome-wide association analysis of grain yield and Sh and Sa resistance among tropical and sub-tropical maize populations to identify putative genetic markers and genes for resistance breeding. 126 maize genotypes were evaluated under controlled environment conditions using artificial infestation of Sh and Sa. The test genotypes were profiled for grain yield (GY), Striga emergence counts at 8 (SEC8) and 10 (SEC10) weeks after planting, and Striga damage rate scores at 8 (SDR8) and 10 (SDR10) weeks after planting. Population structure analysis and genome-wide association mapping were undertaken based on 16,000 single nucleotide polymorphism (SNP) markers. RESULTS: A linkage disequilibrium (LD) analysis in 798,675 marker pairs revealed that 21.52% of pairs were in significant linkage (P < 0.001). Across the chromosomes, the LD between SNPs decayed below a critical level (r2 = 0.1) at a map distance of 0.19 Mbp. The genome-wide association study identified 50 significant loci associated with Sh resistance and 22 significant loci linked to Sa resistance, corresponding to 39 and 19 candidate genes, respectively. CONCLUSION: The study found non-significant QTL associated with dual resistance to the two examined Striga species Some of the detected genes reportedly conditioned insect and pathogen resistance, plant cell development, variable senescence, and pollen fertility. The markers detected in the present study for Sa resistance were reported for the first time. The gene Zm00001eb219710 was pleiotropic, and conditioned GY and SEC10, while Zm00001eb165170 affected SDR8 and SDR10, and Zm00001eb112030 conditioned SDR8 and SDR10 associated with Sh resistance. The candidate genes may facilitate simultaneous selection for Sh and Sa resistance and grain yield in maize after further validation and introgression in breeding pipelines. Overall, we recommend breeding maize specifically for resistance to each Striga species using germplasm adapted to the endemic region of each parasite.


Subject(s)
Edible Grain , Genome-Wide Association Study , Linkage Disequilibrium , Quantitative Trait Loci , Striga , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/parasitology , Striga/physiology , Edible Grain/genetics , Edible Grain/growth & development , Polymorphism, Single Nucleotide , Disease Resistance/genetics , Genotype , Plant Diseases/parasitology , Plant Diseases/genetics , Tropical Climate , Genetic Markers
3.
Planta ; 260(4): 99, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39294492

ABSTRACT

MAIN CONCLUSION: The review article summarizes the approaches and potential targets to address the challenges of anti-nutrient like phytic acid in millet grains for nutritional improvement. Millets are a diverse group of minor cereal grains that are agriculturally important, nutritionally rich, and the oldest cereals in the human diet. The grains are important for protein, vitamins, macro and micronutrients, fibre, and energy sources. Despite a high amount of nutrients, millet grains also contain anti-nutrients that limit the proper utilization of nutrients and finally affect their dietary quality. Our study aims to outline the genomic information to identify the target areas of research for the exploration of candidate genes for nutritional importance and show the possibilities to address the presence of anti-nutrient (phytic acid) in millets. So, the physicochemical accessibility of micronutrients increases and the agronomic traits can do better. Several strategies have been adopted to minimize the phytic acid, a predominant anti-nutrient in cereal grains. In the present review, we highlight the potential of biotechnological tools and genome editing approaches to address phytic acid in millets. It also highlights the biosynthetic pathway of phytic acid and potential targets for knockout or silencing to achieve low phytic acid content in millets.


Subject(s)
Millets , Nutritive Value , Phytic Acid , Phytic Acid/metabolism , Phytic Acid/analysis , Millets/genetics , Biotechnology/methods , Edible Grain/genetics , Edible Grain/metabolism , Edible Grain/chemistry , Gene Editing
4.
Physiol Plant ; 176(5): e14528, 2024.
Article in English | MEDLINE | ID: mdl-39284757

ABSTRACT

Grain size and shape are critical agronomic traits that directly impact rice grain yield. Identifying genes that control these traits can provide new strategies for yield improvement. In this study, we characterized a rice mutant, reduced grain length (rgl), which exhibited decreased grain length due to reduced cell proliferation. Map-based cloning identified a base deletion in OsRGL2, a gene encoding a keratin-associated protein (KAP), as the cause of the mutant phenotype. CRISPR-Cas9-generated OsRGL2 knockout mutants also displayed reduced grain length, confirming its role. OsRGL2 transcripts were detected in various tissues, with relative higher gene expression in young panicles, and OsRGL2 was localized to the plasma membrane. Overexpression of OsRGL2 increased grain size by promoting cell proliferation in the spikelet hull and significantly enhanced grain yield per plant. Importantly, OsRGL2 was found to interact with RGB1, indicating that OsRGL2 positively regulates grain size and yield through its interaction with RGB1. Additionally, OsRGL2 regulated the expression of cell cycle-related genes, further elucidating its role in grain development. These findings demonstrate that OsRGL2 is a positive regulator of grain size in rice, and manipulating its expression may offer a novel strategy for enhancing rice grain yield.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , Mutation , Oryza , Plant Proteins , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Mutation/genetics , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Keratins/metabolism , Keratins/genetics , Phenotype , Seeds/genetics , Seeds/growth & development , Seeds/metabolism
5.
Int J Mol Sci ; 25(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39273515

ABSTRACT

This study aimed to determine whether using DNA-based markers assigned to individual chromosomes would detect the genetic structures of 446 winter triticale forms originating from two breeding companies more effectively than using the entire pool of markers. After filtering for quality control parameters, 6380 codominant single nucleotide polymorphisms (SNPs) markers and 17,490 dominant diversity array technology (silicoDArT) markers were considered for analysis. The mean polymorphic information content (PIC) values varied depending on the chromosomes and ranged from 0.30 (2R) to 0.43 (7A) for the SNPs and from 0.28 (2A) to 0.35 (6R) for the silicoDArTs. The highest correlation of genetic distance (GD) matrices based on SNP markers was observed among the 5B-5R (0.642), 5B-7B (0.626), and 5A-5R (0.605) chromosomes. When silicoDArTs were used for the analysis, the strongest correlations were found between 5B-5R (0.732) and 2B-5B (0.718). A Bayesian analysis showed that SNPs (total marker pool) allowed for the identification of a more complex structure (K = 4, ΔK = 2460.2) than the analysis based on silicoDArTs (K = 2, ΔK = 128). Triticale lines formed into groups, ranging from two (most of the chromosomes) to four (7A) groups depending on the analyzed chromosome when SNP markers were used for analysis. Linkage disequilibrium (LD) varied among individual chromosomes, ranging from 0.031 for 1A to 0.228 for 7R.


Subject(s)
Chromosomes, Plant , Polymorphism, Single Nucleotide , Genetic Markers , Chromosomes, Plant/genetics , Polyploidy , High-Throughput Nucleotide Sequencing/methods , Genetic Variation , Edible Grain/genetics , Genetics, Population/methods , Chromosome Mapping/methods , Bayes Theorem
6.
Plant Cell Rep ; 43(9): 228, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237771

ABSTRACT

KEY MESSAGE: Rice OsSPL11 activates the expression of GW5L through binding to its promoter and positively regulates grain size. Grain size (GS) is an important determinant of grain weight and yield potential in cereal. Here, we report the functional analysis of OsSPL11 in grain length (GL), grain width (GW), and 1000-grain weight (TGW). OsSPL11 mutant plants, osspl11 lines, exhibited a decrease in GL, GW, and TGW, and OsSPL11-OE lines showed an increase in GL and TGW. Expression analysis revealed that OsSPL11 was located in the nucleus and highly expressed in spikelet hull and young development grains, consistent with its function in determining GS. Further analysis confirmed that OsSPL11 directly activates the expression of GW5L to regulate GS, meanwhile OsSPL11 expression is negatively regulated by OsGBP3. Taken together, our findings demonstrate that OsSPL11 could be a key regulator of affecting GS during the spikelet hull development and facilitate the process of improving grain yield by GS modification in rice.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Mutation/genetics
7.
Funct Plant Biol ; 512024 Sep.
Article in English | MEDLINE | ID: mdl-39222468

ABSTRACT

Global agricultural production must quadruple by 2050 to fulfil the needs of a growing global population, but climate change exacerbates the difficulty. Cereals are a very important source of food for the world population. Improved cultivars are needed, with better resistance to abiotic stresses like drought, salt, and increasing temperatures, and resilience to biotic stressors like bacterial and fungal infections, and pest infestation. A popular, versatile, and helpful method for functional genomics and crop improvement is genome editing. Rapidly developing genome editing techniques including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) are very important. This review focuses on how CRISPR/Cas9 genome editing might enhance cereals' agronomic qualities in the face of climate change, providing important insights for future applications. Genome editing efforts should focus on improving characteristics that confer tolerance to conditions exacerbated by climate change (e.g. drought, salt, rising temperatures). Improved water usage efficiency, salt tolerance, and heat stress resilience are all desirable characteristics. Cultivars that are more resilient to insect infestations and a wide range of biotic stressors, such as bacterial and fungal diseases, should be created. Genome editing can precisely target genes linked to disease resistance pathways to strengthen cereals' natural defensive systems.


Subject(s)
CRISPR-Cas Systems , Edible Grain , Gene Editing , Stress, Physiological , Edible Grain/genetics , Stress, Physiological/genetics , Climate Change , Genome, Plant
8.
Physiol Plant ; 176(4): e14480, 2024.
Article in English | MEDLINE | ID: mdl-39187437

ABSTRACT

In light of the changing climate that jeopardizes future food security, genomic selection is emerging as a valuable tool for breeders to enhance genetic gains and introduce high-yielding varieties. However, predicting grain yield is challenging due to the genetic and physiological complexities involved and the effect of genetic-by-environment interactions on prediction accuracy. We utilized a chained model approach to address these challenges, breaking down the complex prediction task into simpler steps. A diversity panel with a narrow phenological range was phenotyped across three Mediterranean environments for various morpho-physiological and yield-related traits. The results indicated that a multi-environment model outperformed a single-environment model in prediction accuracy for most traits. However, prediction accuracy for grain yield was not improved. Thus, in an attempt to ameliorate the grain yield prediction accuracy, we integrated a spectral estimation of spike number, being a major wheat yield component, with genomic data. A machine learning approach was used for spike number estimation from canopy hyperspectral reflectance captured by an unmanned aerial vehicle. The spectral-based estimated spike number was utilized as a secondary trait in a multi-trait genomic selection, significantly improving grain yield prediction accuracy. Moreover, the ability to predict the spike number based on data from previous seasons implies that it could be applied to new trials at various scales, even in small plot sizes. Overall, we demonstrate here that incorporating a novel spectral-genomic chain-model workflow, which utilizes spectral-based phenotypes as a secondary trait, improves the predictive accuracy of wheat grain yield.


Subject(s)
Climate , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/physiology , Mediterranean Region , Genomics/methods , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/physiology , Phenotype , Machine Learning , Plant Breeding/methods
9.
Theor Appl Genet ; 137(9): 204, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141110

ABSTRACT

KEY MESSAGE: Five QTL for wheat grain protein content were identified, and the effects of two dwarfing genes Rht-B1b and Rht-D1b on grain protein content were validated in multiple populations. Grain protein content (GPC) plays an important role in wheat quality. Here, a recombinant inbred line (RIL) population derived from a cross between Yangmai 12 (YM12) and Yanzhan 1 (YZ1) was used to identify quantitative trait loci (QTL) for GPC. Two hundred and five RILs and their parents were grown in three years in randomized complete blocks each with two replications, and genotyped using the wheat 55 K SNP array. Five QTL were identified for GPC on chromosomes 1A, 1B, 2D, 4B, and 4D. Notably, QGpc.yaas-4B (co-located with Rht-B1) and QGpc.yaas-4D (co-located with Rht-D1) were consistently detected across all experiments and best linear unbiased estimating, accounting for 6.61-8.39% and 6.05-10.21% of the phenotypic variances, respectively. The effects of these two dwarfing alleles Rht-B1b and Rht-D1b on reducing GPC and plant height were validated in two additional RIL populations and one natural population. This study lays a foundation for further investigating the effects of dwarfing genes Rht-B1b and Rht-D1b on wheat GPC.


Subject(s)
Chromosome Mapping , Grain Proteins , Phenotype , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/metabolism , Grain Proteins/metabolism , Genes, Plant , Genotype , Polymorphism, Single Nucleotide , Edible Grain/genetics , Edible Grain/metabolism , Genetic Pleiotropy , Bread , Chromosomes, Plant/genetics
10.
Plant Physiol Biochem ; 215: 108989, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094478

ABSTRACT

The world population is steadily growing, exerting increasing pressure to feed in the future, which would need additional production of major crops. Challenges associated with changing and unpredicted climate (such as heat waves) are causing global food security threats. Cereal crops are a staple food for a large portion of the world's population. They are mostly affected by these environmentally generated abiotic stresses. Therefore, it is imperative to develop climate-resilient cultivars to support the sustainable production of main cereal crops (Rice, wheat, and maize). Among these stresses, heat stress causes significant losses to major cereals. These issues can be solved by comprehending the molecular mechanisms of heat stress and creating heat-tolerant varieties. Different breeding and biotechnology techniques in the last decade have been employed to develop heat-stress-tolerant varieties. However, these time-consuming techniques often lack the pace required for varietal improvement in climate change scenarios. Genome editing technologies offer precise alteration in the crop genome for developing stress-resistant cultivars. CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/Cas9), one such genome editing platform, recently got scientists' attention due to its easy procedures. It is a powerful tool for functional genomics as well as crop breeding. This review will focus on the molecular mechanism of heat stress and different targets that can be altered using CRISPR/Cas genome editing tools to generate climate-smart cereal crops. Further, heat stress signaling and essential players have been highlighted to provide a comprehensive overview of the topic.


Subject(s)
Crops, Agricultural , Edible Grain , Gene Editing , Gene Editing/methods , Edible Grain/genetics , Crops, Agricultural/genetics , Thermotolerance/genetics , Heat-Shock Response/genetics , CRISPR-Cas Systems/genetics , Genome, Plant/genetics , Plant Breeding/methods
11.
Planta ; 260(4): 78, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172243

ABSTRACT

MAIN CONCLUSION: Excess of KRP4 in the developing kernels in rice causes poor filling of the grains possibly through inhibition of CDKA;2 and CDKB;1 activity mediated by its interaction with CDKF;3. The potential yield of the rice varieties producing compact and heavy panicles bearing numerous spikelets is compromised because a high percentage of spikelets remain poorly filled, reportedly because of a high expression of KRPs that causes suppression of endosperm cell proliferation. To test the stated negative relationship between KRP expression and grain filling, Orysa;KRP4 was overexpressed under the control of seed-specific glutelin promoter in IR-64 rice variety that shows good grain filling. The transgenic lines showed more than 15-fold increase in expression of KRP4 in the spikelets concomitant with nearly 50% reduction in grain filling compared with the wild type without producing any significant changes on the other yield-related parameters like panicle length and the spikelets numbers that were respectively 30.23 ± 0.89 cm and 229.25 ± 33.72 per panicle in the wild type, suggesting a highly organ-targeted effect of the genetic transformation. Yeast two-hybrid test revealed CDKF;3 as the interacting partner of KRP4, and CDKF;3 was found to interact with CDKA;2, CDKB;1 and CDKD;1. Significant decrease in grain filling in the transgenic lines compared with the wild type due to overexpression of KRP4 could be because of suppression of the activity of CDKB;1 and CDKA;2 by inhibition of their phosphorylation directly by CDKF;3, or mediated through inhibition of phosphorylation of CDKD;1 by CDKF;3. The study thus indicated that suppression of expression of KRP(s) by genetic manipulation of their promoters could be an important way of improving the yield of the rice varieties bearing compact and heavy panicles.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Plants, Genetically Modified , Seeds , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Promoter Regions, Genetic/genetics , Two-Hybrid System Techniques , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics
12.
BMC Genom Data ; 25(1): 74, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090581

ABSTRACT

Trait heritability and the response to selection depend on genetic variation, a prerequisite to developing sorghum varieties with desirable agronomic traits and high carbon sequestration for sustainable crop production and soil health. The present study aimed to assess the extent of genetic variability and associations among agronomic and carbon storage traits in selected sorghum genotypes to identify the best candidates for production or breeding. Fifty genotypes were evaluated at Ukulinga, Bethlehem and Silverton sites in South Africa during the 2022/23 growing season. The following agronomic and carbon storage traits were collected: days to 50% heading (DTH), days to 50% maturity (DTM), plant height (PH), total plant biomass (PB), shoot biomass (SB), root biomass (RB), root-to-shoot biomass ratio (RS), grain yield (GY), harvest index (HI), shoot carbon content (SCc), root carbon content (RCc), grain carbon content (GCc), total plant carbon stock (PCs), shoot carbon stock (SCs), root carbon stock (RCs), and root-to-shoot carbon stock ratio (RCs/SCs), and grain carbon stock (GCs). Higher genotypic coefficient of variations (GCVs) were recorded for GY at 45.92%, RB (39.24%), RCs/SCs (38.45), and RCs (34.62). Higher phenotypic coefficient of variations (PCVs) were recorded for PH (68.91%), followed by GY (51.8%), RB (50.51%), RS (41.96%), RCs/SCs (44.90%), and GCs (41.90%). High broad-sense heritability and genetic advance were recorded for HI (83.76 and 24.53%), GY (78.59 and 9.98%), PB (74.14 and 13.18%) and PCs (53.63 and 37.57%), respectively, suggesting a marked genetic contribution to the traits. Grain yield exhibited positive association with HI (r = 0.76; r = 0.79), DTH (r = 0.13; r = 0.31), PH (r = 0.1; r = 0.27), PB (r = 0.01; r = 0.02), RB (r = 0.05; r = 0.06) based on genotypic and phenotypic correlations, respectively. Further, the path analysis revealed significant positive direct effects of SB (0.607) and RB (0.456) on GY. The RS exerted a positive and significant indirect effect (0.229) on grain yield through SB. The study revealed that PB, SB, RB, RS, RCs, and RCs/SCs are the principal traits when selecting sorghum genotypes with high yield and carbon storage capacity.


Subject(s)
Carbon , Genetic Variation , Genotype , Sorghum , Sorghum/genetics , Sorghum/metabolism , Sorghum/growth & development , Genetic Variation/genetics , Carbon/metabolism , Biomass , Phenotype , Edible Grain/genetics , Edible Grain/metabolism , Edible Grain/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism
13.
Plant Cell Rep ; 43(8): 207, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096362

ABSTRACT

KEY MESSAGE: The Osckx2 mutant accumulates cytokinin thereby enhancing panicle branching, grain yield, and drought tolerance, marked by improved survival rate, membrane integrity, and photosynthetic function. Cytokinins (CKs) are multifaceted hormones that regulate growth, development, and stress responses in plants. Cytokinins have been implicated in improved panicle architecture and grain yield; however, they are inactivated by the enzyme cytokinin oxidase (CKX). In this study, we developed a cytokinin oxidase 2 (Osckx2)-deficient mutant using CRISPR/Cas9 gene editing in indica rice and assessed its function under water-deficit and salinity conditions. Loss of OsCKX2 function increased grain number, secondary panicle branching, and overall grain yield through improved cytokinin content in the panicle tissue. Under drought conditions, the Osckx2 mutant conserved more water and demonstrated improved water-saving traits. Through reduced transpiration, Osckx2 mutants showed an improved survival response than the wild type to unset dehydration stress. Further, Osckx2 maintained chloroplast and membrane integrity and showed significantly improved photosynthetic function under drought conditions through enhanced antioxidant protection systems. The OsCKX2 function negatively affects panicle grain number and drought tolerance, with no discernible impact in response to salinity. The finding suggests the utility of the beneficial Osckx2 allele in breeding to develop climate-resilient, high-yielding cultivars for future food security.


Subject(s)
Cytokinins , Drought Resistance , Oryza , Oxidoreductases , Plant Proteins , Cytokinins/metabolism , Drought Resistance/genetics , Edible Grain/genetics , Edible Grain/growth & development , Gene Expression Regulation, Plant , Mutation/genetics , Oryza/genetics , Oryza/physiology , Oryza/growth & development , Oryza/enzymology , Oxidoreductases/genetics , Oxidoreductases/metabolism , Photosynthesis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Stress, Physiological/genetics
14.
Braz J Biol ; 84: e279154, 2024.
Article in English | MEDLINE | ID: mdl-39109712

ABSTRACT

An increase in genetic diversity of bread wheat caused by spring x winter forms leads to an alteration of genetic control of maturity time. Maturity time (MAT) is one of major yield components in wheat, which has two components: the heading date (HD) and grain-filling period (GFP). Using the Illumina Infinium 25k platform we analyzed the genetic control of the HD, GFP and MAT in the F2 and F2:3 populations from a cross between late-ripening spring/winter line 124-1 and spring wheat cultivar Novosibirskaya 31, possessing the same allelic composition of the VRN1 and PPD-D1 genes. The phenotypic evaluation of the populations studied was performed during three years. A total of 17 QTLs were mapped, out of which 4 QTLs for MAT or its components were confirmed over two years. Two common MAT and HD QTLs were identified on the 4A chromosome, and two loci controlling GFP and MAT were found on 6B chromosome. An environmentally stable HD QTL QHd.icg-7B.1 was associated with the FT-B1 gene having a non-synonymous polymorphism [G/C] in its coding region. A novel НD QTL was identified on 7D chromosome. QTL dissection allowed to propose putative genes for QMat.icg4-A and QMat.icg6-B, namely the SPL family gene (TraesCS4A02G359500) and the TCP transcription factor (TraesCS6B02G462100), respectively. The results of this study provide information for further investigation into wheat development.


Subject(s)
Phenotype , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Quantitative Trait Loci/genetics , Chromosome Mapping , Edible Grain/genetics , Time Factors , Seasons
15.
Commun Biol ; 7(1): 1001, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147896

ABSTRACT

Wheat is an important source of minerals for human nutrition and increasing grain mineral content can contribute to reducing mineral deficiencies. Here, we identify QTLs for mineral micronutrients in grain of wheat by determining the contents of six minerals in a total of eleven sample sets of three biparental populations from crosses between A.E. Watkins landraces and cv. Paragon. Twenty-three of the QTLs are mapped in two or more sample sets, with LOD scores above five in at least one set with the increasing alleles for sixteen of the QTLs being present in the landraces and seven in Paragon. Of these QTLs, the number for each mineral varies between three and five and they are located on 14 of the 21 chromosomes, with clusters on chromosomes 5A (four), 6A (three), and 7A (three). The gene content within 5 megabases of DNA on either side of the marker for the QTL with the highest LOD score is determined and the gene responsible for the strongest QTL (chromosome 5A for Ca) identified as an ATPase transporter gene (TraesCS5A02G543300) using mutagenesis. The identification of these QTLs, together with associated SNP markers and candidate genes, will facilitate the improvement of grain nutritional quality.


Subject(s)
Minerals , Quantitative Trait Loci , Triticum , Triticum/genetics , Minerals/analysis , Minerals/metabolism , Humans , Edible Grain/genetics , Chromosome Mapping , Polymorphism, Single Nucleotide , Chromosomes, Plant/genetics
16.
Physiol Plant ; 176(4): e14469, 2024.
Article in English | MEDLINE | ID: mdl-39129660

ABSTRACT

Poor grain filling in inferior spikelets (IS), which is influenced by the remobilization of nonstructural carbohydrates (NSC) stored in the sheath and internode of rice plants, limits the expected high yield of large-panicle rice. NSC remobilization from the sheath to the panicle is regulated by the T6P/SnRK1 pathway. However, in large-panicle rice, it is unclear whether IS grain filling is related to the NSC remobilization mediated by T6P/SnRK1 signaling. In this study, two large-panicle cultivars-W1844 and CJ03-with distinct differences in IS grain filling were used to explore the physiological mechanism mediating IS development. Compared to W1844, CJ03 IS showed lower expression of the genes related to sucrose uploading, later sucrose peaking, and delayed starch accumulation. In the CJ03, low OsSUTs expression and NSC output, transport rate, and contribution rate were detected in the sheaths and internodes. These results suggest that poor NSC remobilization results in insufficient assimilate supply for the IS, and consequently, poor IS grain filling. Furthermore, poor NSC remobilization coincided with the increased T6P content and decreased SnRK1 activity during grain filling in CJ03 IS. The expression levels of genes related to T6P metabolism and those encoding the catalytic subunit of SnRK1 were consistent with the observed T6P content and SnRK1 activity in the sheaths and internodes. Therefore, IS grain filling is potentially affected by T6P/SnRK1 signaling-mediated NSC remobilization in large-panicle rice.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Starch/metabolism , Sucrose/metabolism , Carbohydrate Metabolism/genetics , Edible Grain/genetics , Edible Grain/metabolism , Edible Grain/growth & development , Seeds/genetics , Seeds/metabolism , Seeds/growth & development
17.
Sci Rep ; 14(1): 18024, 2024 08 04.
Article in English | MEDLINE | ID: mdl-39098874

ABSTRACT

Developing high-yielding rice varieties that possess favorable agronomic characteristics and enhanced grain Zn content is crucial in ensuring food security and addressing nutritional needs. This research employed ICIM, IM, and multi-parent population QTL mapping methods to identify important genetic regions associated with traits such as DF, PH, NT, NP, PL, YLD, TGW, GL, GW, Zn, and Fe. Two populations of recombinant inbred lines consisting of 373 lines were phenotyped for agronomic, yield and grain micronutrient traits for three seasons at IRRI, and genotyped by sequencing. Most of the traits demonstrated moderate to high broad-sense heritability. There was a positive relationship between Zn and Fe contents. The principal components and correlation results revealed a significant negative association between YLD and Zn/Fe. ICIM identified 81 QTLs, while IM detected 36 QTLs across populations. The multi-parent population analysis detected 27 QTLs with six of them consistently detected across seasons. We shortlisted eight candidate genes associated with yield QTLs, 19 genes with QTLs for agronomic traits, and 26 genes with Zn and Fe QTLs. Notable candidate genes included CL4 and d35 for YLD, dh1 for DF, OsIRX10, HDT702, sd1 for PH, OsD27 for NP, whereas WFP and OsIPI1 were associated with PL, OsRSR1 and OsMTP1 were associated to TGW. The OsNAS1, OsRZFP34, OsHMP5, OsMTP7, OsC3H33, and OsHMA1 were associated with Fe and Zn QTLs. We identified promising RILs with acceptable yield potential and high grain Zn content from each population. The major effect QTLs, genes and high Zn RILs identified in our study are useful for efficient Zn biofortification of rice.


Subject(s)
Chromosome Mapping , Oryza , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Oryza/genetics , Genetic Linkage , Phenotype , Zinc/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Genotype
18.
Sci Adv ; 10(34): eadp0345, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39178266

ABSTRACT

The regulation of leaf senescence and disease resistance plays a crucial role in determining rice grain yield and quality, which are important to meet the ever-increasing food demands of the world. Here, we identified an atypical Dof transcriptional factor OsDes1 that contributes to the stay-green phenotype, grain yield, and disease resistance in rice. The expression level of OsDes1 is positively associated with stay-green in natural variations of japonica rice, suggesting that OsDes1 would be alternatively used in breeding programs. Mechanistically, OsDes1 targets the promoter of the Rieske FeS protein gene OsPetC to activate its expression and interacts with OsPetC to protect against its degradation, thus promoting stay-green and ultimately improving the grain yield. OsDes1 also binds to the promoter region of defense-related genes, such as OsPR1b, and activates their expression, leading to enhanced disease resistance. These findings offer a potential strategy for breeding rice to enhance grain yield and disease resistance.


Subject(s)
Disease Resistance , Edible Grain , Gene Expression Regulation, Plant , Oryza , Plant Diseases , Plant Proteins , Transcription Factors , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Disease Resistance/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Edible Grain/genetics , Plant Diseases/genetics , Promoter Regions, Genetic , Phenotype
19.
Funct Plant Biol ; 512024 Aug.
Article in English | MEDLINE | ID: mdl-39190770

ABSTRACT

Heterosis is a crucial factor in enhancing crop yield, particularly in sorghum (Sorghum bicolor ). This research utilised six sorghum restorer lines, six sorghum sterile lines, and 36 hybrid combinations created through the NCII incomplete double-row hybridisation method. We evaluated the performance of F1 generation hybrids for leaf photosynthesis-related parameters, carbon metabolism-related enzymes, and their correlation with yield traits during the flowering stage. Results showed that hybrid sorghum exhibited significant high-parent heterosis in net photosynthetic rate (P n ), transpiration rate (T r ), stomatal conductance (G s ), apparent leaf meat conductance (AMC), ribulose-1,5-bisphosphate (RuBP) carboxylase, phosphoenolpyruvate (PEP) carboxylase, and sucrose phosphate synthase (SPS). Conversely, inter-cellular carbon dioxide concentration (C i ), instantaneous water uses efficiency (WUE), and sucrose synthase (SuSy) displayed mostly negative heterosis. Traits such as 1000-grain weight (TGW), grain weight per spike (GWPS), and dry matter content (DMC) exhibited significant high-parent heterosis, with TGW reaching the highest value of 82.54%. P n demonstrated positive correlations with T r , C i , G s , RuBP carboxylase, PEP carboxylase, GWPS, TGW, and DMC, suggesting that T r , C i , and G s could aid in identifying high-photosynthesis sorghum varieties. Concurrently, P n could help select carbon-efficient sorghum varieties due to its close relationship with yield. Overall, the F1 generation of sorghum hybrids displayed notable heterosis during anthesis. Combined with field performance, P n at athesis can serve as a valuable indicator for early prediction of the yield potential of the F1 generation of sorghum hybrids and for screening carbon-efficient sorghum varieties.


Subject(s)
Hybrid Vigor , Photosynthesis , Sorghum , Sorghum/genetics , Sorghum/metabolism , Sorghum/physiology , Sorghum/growth & development , Hybrid Vigor/genetics , Hybridization, Genetic , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Edible Grain/genetics , Edible Grain/metabolism
20.
BMC Genomics ; 25(1): 795, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174916

ABSTRACT

BACKGROUND: Bread wheat (Triticum aestivum L.) endosperm contains starch and proteins, which determine the final yield, quality, and nutritional value of wheat grain. The preferentially expressed endosperm genes can precisely provide targets in the endosperm for improving wheat grain quality and nutrition using modern bioengineering technologies. However, the genes specifically expressed in developing endosperms remain largely unknown. RESULTS: In this study, 315 preferentially expressed endosperm genes (PEEGs) in the spring wheat landrace, Chinese Spring, were screened using data obtained from an open bioinformatics database, which reveals a unique grain reserve deposition process and special signal transduction in a developing wheat endosperm. Furthermore, transcription and accumulation of storage proteins in the wheat cultivar, XC26 were evaluated. The results revealed that 315 PEEG plays a critical role in storage protein fragment deposition and is a potential candidate for modifying grain quality and nutrition. CONCLUSION: These results provide new insights into endosperm development and candidate genes and promoters for improving wheat grain quality through genetic engineering and plant breeding techniques.


Subject(s)
Edible Grain , Endosperm , Gene Expression Regulation, Plant , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Endosperm/genetics , Endosperm/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Edible Grain/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL