Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 68(37): 9906-9916, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32808779

ABSTRACT

Stereoselective syntheses of new pyranopyrans that are related to the natural product diplopyrone, which is a phytotoxin implicated in cork oak decline, have been achieved from carbohydrate starting materials in two approaches that are based on C-glycosides as key intermediates. A C-alkynyl glycoside prepared by Ferrier rearrangement was used as the precursor to a new pyranopyran alkyne that showed potent antibacterial activity against the common bacterial pathogen Edwardsiella ictaluri that causes enteric septicemia in catfish. The C-alkynyl glycoside also showed herbicidal activity. New bioassay data for the pyranopyran nitrile (4aR,6S,8aR)-6-cyano-6,8a-dihydropyrano-[3,2-b]pyran-2(4aH)-one, the most potent of the pyranopyrans synthesized to date, were obtained in greenhouse studies that revealed additional herbicidal activity. Other new analogues that were synthesized included desmethylpyranopyrans that were prepared by Isobe C-alkynylation-rearrangement/reduction and RCM-based pyranopyran construction. The antibiotic and phytotoxic activities of the new pyranopyrans synthesized in this study highlight the importance of substituents on the nonlactone ring and demonstrate the potential of such compounds as antibiotics and herbicides.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Herbicides/chemical synthesis , Herbicides/pharmacology , Pyrones/chemical synthesis , Pyrones/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Catfishes/microbiology , Digitaria/drug effects , Digitaria/growth & development , Edwardsiella ictaluri/drug effects , Edwardsiella ictaluri/growth & development , Fish Diseases/microbiology , Herbicides/chemistry , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Molecular Structure , Pyrones/chemistry , Stereoisomerism
2.
BMC Microbiol ; 19(1): 55, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30849940

ABSTRACT

BACKGROUND: Edwardsiella ictaluri is a Gram-negative facultative intracellular anaerobe and the etiologic agent of enteric septicemia of channel catfish (ESC). To the catfish industry, ESC is a devastating disease due to production losses and treatment costs. Identification of virulence mechanisms of E. ictaluri is critical to developing novel therapeutic approaches for the disease. Here, we report construction of a transposon insertion library and identification of mutated genes in growth-delayed E. ictaluri colonies. We also provide safety and efficacy of transposon insertion mutants in catfish. RESULTS: An E. ictaluri transposon insertion library with 45,000 transposants and saturating 30.92% of the TA locations present in the E. ictaluri genome was constructed. Transposon end mapping of 250 growth-delayed E. ictaluri colonies and bioinformatic analysis of sequences revealed 56 unique E. ictaluri genes interrupted by the MAR2xT7 transposon, which are involved in metabolic and cellular processes and mostly localized in the cytoplasm or cytoplasmic membrane. Of the 56 genes, 30 were associated with bacterial virulence. Safety and vaccine efficacy testing of 19 mutants showed that mutants containing transposon insertions in hypothetical protein (Eis::004), and Fe-S cluster assembly protein (IscX, Eis::039), sulfurtransferase (TusA, Eis::158), and universal stress protein A (UspA, Eis::194) were safe and provided significant protection (p < 0.05) against wild-type E. ictaluri. CONCLUSIONS: The results indicate that random transposon mutagenesis causing growth-delayed phenotype results in identification bacterial virulence genes, and attenuated strains with transposon interrupted virulence genes could be used as vaccine to activate fish immune system.


Subject(s)
Bacterial Vaccines/immunology , DNA Transposable Elements , Edwardsiella ictaluri/genetics , Enterobacteriaceae Infections/veterinary , Fish Diseases/prevention & control , Animals , Computational Biology , Edwardsiella ictaluri/growth & development , Enterobacteriaceae Infections/prevention & control , Fish Diseases/microbiology , Gene Deletion , Genome, Bacterial , Ictaluridae/microbiology , Mutagenesis , Mutation , Phenotype , Vaccines, Attenuated/immunology , Virulence/genetics
3.
Microb Pathog ; 100: 195-200, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27666508

ABSTRACT

Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen causing enteric septicemia in fish, particularly in channel catfish. Ferric iron is an essential micronutrient for bacterial survival, and some bacterial pathogens use secreted hydroxamate-type siderophores to chelate iron in host tissues. Siderophore-iron complexes are taken up by these bacteria via the ferric hydroxamate uptake (Fhu) system. In E. ictaluri, the Fhu system consists of fhuC, fhuD, fhuB, and fhuA genes. However, the importance of the Fhu system in E. ictaluri virulence has not been investigated completely. Here, we present construction of E. ictaluri fhuD and fhuB mutants (EiΔfhuD and EiΔfhuB) by in-frame gene deletion and evaluation of the mutants' virulence and immunogenicity in channel catfish fingerlings and fry. Immersion challenges showed that EiΔfhuD was not significantly attenuated (p < 0.05) in catfish fingerlings, whereas EiΔfhuB was significantly attenuated (p < 0.01). Catfish fingerlings immunized with EiΔfhuD and EiΔfhuB showed 100% and 97.62% survival, respectively. Fry immersion challenges indicated EiΔfhuB was also significantly attenuated (p < 0.05) in two-week old fry compared to the wild-type (48.96% vs. 82.14% mortalities). The survival rate in the fry vaccinated with EiΔfhuB was significantly higher (p < 0.05) than that of non-vaccinated fry (96.77% vs. 21.42% survival). Our data indicates that the fhuB gene, but not the fhuD gene, contributes to E. ictaluri virulence.


Subject(s)
Edwardsiella ictaluri/growth & development , Ferric Compounds/metabolism , Fish Diseases/microbiology , Hydroxamic Acids/metabolism , Membrane Transport Proteins/metabolism , Virulence Factors/metabolism , Animals , Biological Transport , Edwardsiella ictaluri/genetics , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/pathology , Enterobacteriaceae Infections/veterinary , Fish Diseases/pathology , Gene Deletion , Ictaluridae , Membrane Transport Proteins/genetics , Survival Analysis , Virulence , Virulence Factors/genetics
4.
Infect Immun ; 82(6): 2329-36, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24664505

ABSTRACT

Previous in vitro work demonstrated that Edwardsiella ictaluri produces an acid-activated urease that can modulate environmental pH through the production of ammonia from urea. Additional work revealed that expression of the E. ictaluri type III secretion system (T3SS) is upregulated by acidic pH. Both the urease and the T3SS were previously shown to be essential to intracellular replication. In this work, fluorescence microscopy with LysoTracker Red DND-99 (LTR) indicated that E. ictaluri-containing vacuoles (ECV) became acidified following ingestion by head kidney-derived macrophages (HKDM). In vivo ratiometric imaging demonstrated a lowered ECV pH, which fell to as low as pH 4 but subsequently increased to pH 6 or greater. Inhibition of vacuolar H(+)-ATPases by use of the specific inhibitor bafilomycin A1 abrogated both ECV acidification and intracellular replication in HKDM. Failure of an E. ictaluri urease knockout mutant to increase the ECV pH in the in vivo ratiometric assay suggests that ammonia produced by the urease reaction mediates the pH increase. Additionally, when the specific arginase inhibitor l-norvaline was used to treat E. ictaluri-infected HKDM, the ECV failed to neutralize and E. ictaluri was unable to replicate. This indicates that the HKDM-encoded arginase enzyme produces the urea used by the E. ictaluri urease enzyme. Failure of the ECV to acidify would prevent both upregulation of the T3SS and activation of the urease enzyme, either of which would prevent E. ictaluri from replicating in HKDM. Failure of the ECV to neutralize would result in a vacuolar pH too low to support E. ictaluri replication.


Subject(s)
Edwardsiella ictaluri/pathogenicity , Enterobacteriaceae Infections/microbiology , Fish Diseases/microbiology , Hydrogen-Ion Concentration , Macrophages/microbiology , Vacuoles/physiology , Analysis of Variance , Animals , Arginase/metabolism , Disease Models, Animal , Edwardsiella ictaluri/drug effects , Edwardsiella ictaluri/growth & development , Enzyme Inhibitors/pharmacology , Ictaluridae , Microbial Sensitivity Tests , Microscopy, Fluorescence
5.
J Appl Microbiol ; 97(1): 87-92, 2004.
Article in English | MEDLINE | ID: mdl-15186445

ABSTRACT

AIM: This study was conducted to evaluate the toxic effect of gossypol from gossypol-acetic acid, and (+)- and (-)-isomers of gossypol on the growth of Edwardsiella ictaluri. METHODS AND RESULTS: Inhibitory effect of various concentrations of gossypol on the growth of E. ictaluri was determined. Bacterial recovery was performed by preincubation of bacteria in medium containing various concentrations of gossypol and subsequent activation of bacteria by inoculating on gossypol-free plates. Concentrations of racemic gossypol, (+)-gossypol and (-)-gossypol of 1.5 microg ml(-1) or higher significantly reduced the number of bacterial colonies compared with that of the control. The growth of E. ictaluri was completely inhibited on agar plates supplemented with 3 microg ml(-1), regardless of the forms of gossypol. The inhibitory effect of (+)-gossypol was higher than that of (-)-gossypol or gossypol-acetic acid. Recovery of E. ictaluri was <50% for all three forms of gossypol at concentrations of 5 microg ml(-1). Bacterial recovery remained relatively constant (6.5%) at gossypol concentrations from 10 to 100 microg ml(-1). Complete killing of E. ictaluri was not reached at gossypol levels up to 100 microg ml(-1). CONCLUSION: Gossypol-acetic acid, and (+)- and (-)-optical isomers have anti-bacterial effect against E. ictaluri. The results suggest the action is bacteriostatic rather than bactericidal. SIGNIFICANCE AND IMPACT OF THE STUDY: The therapeutic effect of gossypol against E. ictaluri may be useful in controlling enteric septicaemia of catfish.


Subject(s)
Anti-Bacterial Agents/pharmacology , Edwardsiella ictaluri/drug effects , Gossypol/pharmacology , Bacteriological Techniques , Edwardsiella ictaluri/growth & development , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...