Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.780
Filter
1.
Int J Biol Macromol ; 269(Pt 1): 132107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710246

ABSTRACT

Soft assembly of peptide and curcumin (Cur) molecules enables functional integration by finding dynamic equilibrium states through non-covalent interactions. Herein, we developed two soft assembly systems, curcumin-egg white peptides (Cur-EWP) aggregations (AGs) and Cur-EWP-casein-quaternary chitosan (Cur-EWP-CA-QC) nanoparticles (NPs) to comparatively investigate their therapeutic effects on ulcerative colitis in mice and elucidate their underlying mechanism. Results revealed that Cur-EWP AGs, despite gastrointestinal tract instability, exhibited a propensity for swift accumulation within the colorectal region, enriching mucus-associated and short-chain fatty acid (SCAF)-producing bacteria, restoring the intestinal barrier damage. Whereas, Cur-EWP-CA-QC NPs, benefiting from their remarkable stability and exceptional mucosal adsorption properties, not only enhanced permeability of Cur and EWP in the small intestine to activate the immune response and boost tight junction protein expression but also, in their unabsorbed state, regulated the intestinal flora, exerting potent anti-inflammatory activity. Soft assembly of peptides and hydrophobic nutraceuticals could synergize biological activities to modulate chronic diseases.


Subject(s)
Caseins , Chitosan , Colitis, Ulcerative , Curcumin , Curcumin/pharmacology , Curcumin/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Animals , Mice , Caseins/chemistry , Caseins/pharmacology , Nanoparticles/chemistry , Peptides/pharmacology , Peptides/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Male , Gastrointestinal Microbiome/drug effects , Egg White/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
2.
J Agric Food Chem ; 72(19): 11140-11152, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703140

ABSTRACT

Recently, oral deliverable strategies of multiple nutraceuticals for ulcerative colitis (UC) mitigation have attracted increasing attention. This study aimed to fabricate facile oral assemblies loaded with egg-white-derived peptides (EWDP) and curcumin based on carboxymethyl chitosan (CMCS) and an γ-cyclodextrin metal-organic framework (MOF). Herein, outer CMCS could coassemble with EWDP (both nutraceuticals and building blocks) into cobweb-like fibrils to promote bridging with inner MOF via coordinative noncovalent interactions (hydrogen bonding, hydrophobic interaction, and electrostatic interaction). Compared with conventional γ-cyclodextrin/MOF-based composites, the above coassembly could also endow the biocompatible assemblies with superior nanoscale colloidal properties, processing applicability (curcumin storage stability, bioaccessibility, and aqueous solubility), and bioactivity. Moreover, the oral synergism of EWDP and curcumin (initially nonsynergistic) for UC mitigation was achieved by alleviating inflammatory damage and gut microbiota imbalance. Overall, the novel assemblies could be a promising amplifier and platform to facilitate oral formulations of various nutraceuticals for food processing and UC relief.


Subject(s)
Colitis, Ulcerative , Curcumin , Metal-Organic Frameworks , Peptides , Curcumin/chemistry , Curcumin/administration & dosage , Metal-Organic Frameworks/chemistry , Animals , Humans , Peptides/chemistry , Peptides/administration & dosage , Colitis, Ulcerative/drug therapy , Mice , Chitosan/chemistry , Egg White/chemistry , Polysaccharides/chemistry , Male , Administration, Oral , Drug Synergism , gamma-Cyclodextrins/chemistry , Drug Carriers/chemistry , Egg Proteins/chemistry
3.
Narra J ; 4(1): e406, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798869

ABSTRACT

Patients with chronic obstructive pulmonary disease (COPD) commonly exhibit muscle atrophy and dysfunction due to a reduction in muscle mass; and protein supplements such as chicken egg whites have been reported to improve muscle mass. The aim of this study was to evaluate the impact of physical exercise and egg white supplementation on the muscle mass of COPD patients. An experimental study was conducted among stable COPD patients at Universitas Sumatra Utara Hospital Medan, Indonesia, between August and October 2022. The patients were divided into two groups, control and interventional groups, with each patient subjected to a pre- and post-muscle mass assessment. All the patients performed respiratory endurance and upper extremity muscle strength training three times/week for a total of 12 weeks. In addition, the patients in the intervention group were also given egg white supplementation (10 eggs/day) during the period of intervention in addition to the physical training. The Wilcoxon and Mann-Whitney tests were performed to identify the significance of the difference between pre- and post-intervention and between the control and intervention groups, respectively. A total of 38 COPD patients were included in the study, 19 from each group. Our data suggested no significant difference in muscle mass of the patients in the control group before and after 12 weeks of physical exercise (pre-intervention 27.37±4.54% and post-intervention 27.68±4.5% with p=0.174). However, there was a significant muscle mass increment of patients in the intervention group upon 12 weeks of physical training and egg white supplementation (pre-intervention 27.18±4.15%, post-intervention 29.95±3.76%, p<0.001). A significant difference in muscle mass was observed between patients in the control and the intervention groups (p=0.046) after the intervention. The study highlights that physical exercise in combination with egg white supplementation may serve as potential and effective non-pharmacological treatment for muscle mass restoration in COPD patients as compared to physical exercise alone.


Subject(s)
Dietary Supplements , Egg White , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/therapy , Female , Male , Middle Aged , Aged , Animals , Exercise/physiology , Chickens , Indonesia , Muscle Strength/physiology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Exercise Therapy/methods
4.
Analyst ; 149(9): 2747-2755, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38563739

ABSTRACT

Avian leukemia is an infectious tumorous disease of chickens caused by subgroup A of the avian leukemia virus (ALV-A), which mainly causes long-term viremia, slow growth, immune suppression, decreased production performance, multi-tissue tumors, and even death. The infection rate of this disease is very high in chicken herds in China, causing huge economic losses to the poultry industry every year. We successfully expressed the specific antigen protein of ALV (P27) through recombinant protein technology and screened a pair of highly sensitive monoclonal antibodies (mAbs) through mouse immunity, cell fusion, and antibody pairing. Based on this pair of antibodies, we established a dual antibody sandwich ELISA and gold nanoparticle immunochromatographic strip (AuNP-ICS) detection method. In addition, the parameters of the dual antibody sandwich ELISA and AuNP-ICS were optimized under different reaction conditions, which resulted in the minimum detection limits of 0.2 ng mL-1 and 1.53 ng ml-1, respectively. Commonly available ELISA and AuNP-ICS products on the market were compared, and we found that our established immune rapid chromatography had higher sensitivity. This established AuNP-ICS had no cross-reactivity with Influenza A (H1N1), Influenza A (H9N2), respiratory syncytial virus (RSV), varicella-zoster virus (VZV), Listeria monocytogenes listeriolysin (LLO), and Staphylococcal enterotoxin SED or SEC. Finally, the established AuNP-ICS was used to analyze 35 egg samples, and the results showed 5 positive samples and 30 negative samples. The AuNP-ICS rapid detection method established by our group had good specificity, high sensitivity, and convenience, and could be applied to the clinical sample detection of ALV-A.


Subject(s)
Avian Leukosis Virus , Chromatography, Affinity , Enzyme-Linked Immunosorbent Assay , Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Avian Leukosis Virus/isolation & purification , Avian Leukosis Virus/immunology , Chromatography, Affinity/methods , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Viral/immunology , Antigens, Viral/analysis , Egg White/chemistry , Reagent Strips , Chickens , Limit of Detection , Mice , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry
5.
Biomolecules ; 14(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38672456

ABSTRACT

The chicken egg, an excellent natural source of proteins, has been an overlooked native biomaterial with remarkable physicochemical, structural, and biological properties. Recently, with significant advances in biomedical engineering, particularly in the development of 3D in vitro platforms, chicken egg materials have increasingly been investigated as biomaterials due to their distinct advantages such as their low cost, availability, easy handling, gelling ability, bioactivity, and provision of a developmentally stimulating environment for cells. In addition, the chicken egg and its by-products can improve tissue engraftment and stimulate angiogenesis, making it particularly attractive for wound healing and tissue engineering applications. Evidence suggests that the egg white (EW), egg yolk (EY), and eggshell membrane (ESM) are great biomaterial candidates for tissue engineering, as their protein composition resembles mammalian extracellular matrix proteins, ideal for cellular attachment, cellular differentiation, proliferation, and survivability. Moreover, eggshell (ES) is considered an excellent calcium resource for generating hydroxyapatite (HA), making it a promising biomaterial for bone regeneration. This review will provide researchers with a concise yet comprehensive understanding of the chicken egg structure, composition, and associated bioactive molecules in each component and introduce up-to-date tissue engineering applications of chicken eggs as biomaterials.


Subject(s)
Biocompatible Materials , Chickens , Egg Shell , Tissue Engineering , Animals , Tissue Engineering/methods , Biocompatible Materials/chemistry , Egg Shell/chemistry , Egg Yolk/chemistry , Ovum/chemistry , Humans , Egg White/chemistry
7.
Int J Biol Macromol ; 268(Pt 1): 131843, 2024 May.
Article in English | MEDLINE | ID: mdl-38663701

ABSTRACT

Highly oxidative reactive oxygen species (ROS) attack protein structure and regulate its functional properties. The molecular structures and functional characteristics of egg white (EW) protein (EWP) during 28 d of aerobic or anaerobic storage were explored to investigate the "self-driven" oxidation mechanism of liquid EW mediated by endogenous ROS signaling. Results revealed a significant increase in turbidity during the storage process, accompanied by protein crosslinking aggregation. The ROS yield initially increased and then decreased, leading to a substantial increase in carbonyl groups and tyrosine content. The free sulfhydryl groups and molecular flexibility in EWP exhibited synchronicity with ROS production, reflecting the self-repairing ability of cysteine residues in EWP. Fourier-transform infrared spectroscopy indicated stable crosslinking between EWP molecules in the early oxidation stage. However, continuous ROS attacks accelerated EWP degradation. Compared with the control group, the aerobic-stimulated EWP showed a significant decrease in foaming capacity from 30.5 % to 9.6 %, whereas the anaerobic-stimulated EWP maintained normal levels. The emulsification performance exhibited an increasing-then-decreasing trend. In conclusion, ROS acted as the predominant factor causing deterioration of liquid EW, triggering moderate oxidation that enhanced the superior foaming and emulsifying properties of EWP, and excessive oxidation diminished the functional characteristics by affecting the molecular structure.


Subject(s)
Egg White , Oxidation-Reduction , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Egg White/chemistry , Emulsions/chemistry , Egg Proteins/chemistry , Animals , Spectroscopy, Fourier Transform Infrared
8.
Food Chem ; 449: 139158, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608602

ABSTRACT

This work presents a novel use of fibrous egg white protein (FEWP) in food preservation and nutraceutical applications. In this study, food-grade FEWP was used as an encapsulating material, along with chitosan (CS), to stabilize emulsions. The emulsion system was then used as a delivery system to improve the stability of retinyl acetate (RA). The structural and functional properties, as well as the stability and rheological behavior of the FEWP/CS copolymer, was investigated. The stability of RA-enriched emulsions was also evaluated. FEWP and CS stabilized emulsions exhibited smaller particle size and enhanced stability against different ionic strengths and storage periods. Additionally, RA-encapsulated emulsions stabilized by FEWP:CS (25:1 w/w) effectively inhibited apple browning. This study provides a promising strategy for delivering antioxidant components, highlighting its potential in food preservation and nutraceutical applications.


Subject(s)
Diterpenes , Egg White , Emulsions , Retinyl Esters , Vitamin A , Emulsions/chemistry , Diterpenes/chemistry , Retinyl Esters/chemistry , Egg White/chemistry , Vitamin A/chemistry , Particle Size , Food Preservation/methods , Egg Proteins/chemistry , Malus/chemistry , Chitosan/chemistry , Rheology , Chickens
9.
J Nucl Med Technol ; 52(1): 59-62, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443106

ABSTRACT

In 2009, the Society of Nuclear Medicine and Molecular Imaging published a standardized protocol guideline for gastric emptying scintigraphy that contains specific instructions on the exact meal and preparation procedure. Previous research has shown that the standardized meal and proper preparation of the meal for gastric emptying scintigraphy are not being adopted by some facilities. This research explores the differences of radiolabeling in the method of preparation of 99mTc-sulfur colloid (SC)-radiolabeled eggs. Methods: Liquid egg whites were mixed with 99mTc-SC before cooking in conjunction with the standardized protocol. A second sample set was prepared by adding the 99mTc-SC to eggs after they were cooked. Each sample set was placed in a solution of HCl and pepsin to simulate gestation. Radiolabeling efficacy was tested on each sample set at 2 and 4 h after gestating in HCl and pepsin. Results: 99mTc-SC added to the liquid egg whites before microwave cooking yielded radiolabeling efficacy of 70% 99mTc-SC after 2 and 4 h of simulated gastric fluid gestation. In contrast, radiolabeling after cooking the egg whites yielded 50% radiolabeling after simulated gestation. Conclusion: The results from this experiment showed that the method of mixing the 99mTc-SC with liquid egg whites before microwave cooking has higher binding efficacy than when adding 99mTc-SC onto already cooked egg whites. These results highlight the importance of following the standardized protocol for the meal preparation of a gastric emptying study.


Subject(s)
Egg White , Pepsin A , Albumins , Colloids , Sulfur
10.
Food Res Int ; 181: 114114, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448098

ABSTRACT

Hen egg white lysozyme (HEWL) is used as a food additive in China due to its outstanding antibacterial properties. It is listed as GRAS grade (generally recognized as safe) by the United States Food and Drug Administration (FDA, US) and has been extensively researched and used in food preservation. And the industrial production of HEWL already been realized. Given the complex food system that can affect the antibacterial activity of HEWL, and the limitations of HEWL itself on Gram-negative bacteria. Based on the structure and main biological characteristics of HEWL, this paper focuses on reviewing methods to enhance the stability and antibacterial properties of HEWL. Immobilization tactics such as chemically driven self-assembly, embedding and adsorption address the restriction of poor HEWL antibacterial activity effected by external factors. Both intermolecular and intramolecular modification strategies break the bactericidal deficiencies of HEWL itself. It also comprehensively analyzes the current application status and future prospects of HEWL in the food preservation. There was limited research on the biological methods in modifying HEWL. If the HEWL is genetically engineered, it can broaden its antimicrobial spectrum, improve its other biological activities, so as to further expand its application in the food industry. At present, research on HEWL mainly focused on its antibacterial properties, whereas its application in anti-inflammatory and antioxidant effects also presented great potential.


Subject(s)
Egg White , Muramidase , United States , Anti-Bacterial Agents/pharmacology , Food Preservation , Adsorption
11.
Food Chem ; 446: 138881, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38428086

ABSTRACT

Pasteurization is necessary during the production of liquid egg whites (LEW), but the thermal effects in pasteurization could cause an unavoidable loss of foaming properties of LEW. This study intended to investigate the mechanism of pasteurization processing affects the foam performance of LEW. The foaming capacity (FC) of LEW deteriorated significantly (ΔFCmax = 72.33 %) and foaming stability (FS) increased slightly (ΔFSmax = 3.64 %) under different temperature-time combinations of pasteurization conditions (P < 0.05). The increased turbidity and the decreased solubility together with the decreased absolute value of Zeta potential indicated the generation of thermally induced aggregates and the instability of the protein particles, Rheological characterization demonstrated improved viscoelasticity in pasteurization liquid egg whites (PLEW), explaining enhanced FS. The study revealed that loss in foaming properties of PLEW resulted from thermal-induced protein structural changes and aggregation, particularly affecting FC. This provided a theoretical reference for the production and processing of LEW products.


Subject(s)
Egg White , Pasteurization , Pasteurization/methods , Egg White/chemistry , Protein Aggregates , Eggs , Solubility
12.
Int J Biol Macromol ; 266(Pt 2): 131267, 2024 May.
Article in English | MEDLINE | ID: mdl-38556233

ABSTRACT

This study aims to develop ultrasound-assisted acid-induced egg white protein (EWP)-soy protein isolate (SPI) composite gels and to investigate the mechanistic relationship between the co-aggregation behavior of composite proteins and gel properties through aggregation kinetics monitored continuously by turbidity. The results showed that the inclusion of EWP caused the attenuation of gel properties and maximum aggregation (Amax) because EWP could aggregate with SPI at a higher rate (Kapp), which impeded the interaction between SPI and the formation of a continuous gelling network. In the EWP-dominated system, SPI with higher molecular weights also increased the fractal dimension of gels. Ultrasound improved properties of composite gels, especially the SPI-dominated system. After ultrasound treatment, the small, uniform size of co-aggregates and the decrease in potential led to an increase in the aggregation rate and formation of dense particles, consistent with an increase in gelation rate and texture properties. Excessively fast aggregation generated coarse chains and more pores. Still, the exposure of free sulfhydryl groups assisted the gel structure units to form a compact network through disulfide bonding. On the whole, the study could provide theoretical support for a deeper understanding on the interaction mechanism and gelation of composite proteins.


Subject(s)
Gels , Soybean Proteins , Gels/chemistry , Kinetics , Soybean Proteins/chemistry , Glycine max/chemistry , Ultrasonic Waves , Egg White/chemistry , Protein Aggregates , Egg Proteins/chemistry
13.
Int J Biol Macromol ; 262(Pt 1): 129973, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325697

ABSTRACT

The formation of the egg white precipitate (EWP) during dilution poses challenges in food processing. In this paper, the effects of 90 W and 360 W ultrasonic intensities on the inhibition of EWP formation were investigated. The findings revealed that 360 W sonication effectively disrupted protein aggregates, decreasing the dry matter of EWP by 5.24 %, particle size by 57.86 %, and viscosity by 82.28 %. Furthermore, the ultrasonic pretreatment unfolded protein structures and increased the content of ß-sheet structures. Combined with quantitative proteomics and intermolecular forces analysis, the mechanism by which ultrasonic pretreatment inhibited water-diluted EWP formation by altering protein interactions was proposed: ultrasonic pretreatment disrupted electrostatic interactions centered on lysozyme, as well as hydrogen-bonding interactions between ovomucin and water. In conclusion, our research provides valuable insights into the application of ultrasonic pretreatment as a means to control and improve the quality of egg white-based products.


Subject(s)
Egg Proteins , Egg White , Egg Proteins/chemistry , Egg White/chemistry , Water , Ultrasonics , Proteomics
14.
Int J Biol Macromol ; 262(Pt 1): 130002, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331060

ABSTRACT

Salt content is a crucial indicator of the maturity and internal quality of salted duck eggs (SDEs) during the pickling process. However, there is currently no valid and rapid method available for accurately detecting salt content. In the present study, we utilized hyperspectral imaging to no-destructively determine the salt content in egg yolks, egg whites, and whole eggs during the curing period. Firstly, principal component analysis was applied to explain the characteristics of egg yolk and white morphology transformation of SDEs with different maturities during curing. Secondly, sensitive spectral factors representative of changes in the salt content of SDEs were extracted by three spectral transformations (Savitzky-Golay SG, continuum removal CR, and first-order derivation FD) and three approaches of selecting characteristic wavelengths (successive projection algorithm SPA, uninformative variables elimination UVE and competitive adaptive reweighting sampling algorithm CARS). The results of the PLSR model suggested that the optimal models for predicting salt content in egg yolks, whites, and whole eggs were SG-UVE-PLSR (predicted coefficient of determination Rp2=0.912, predicted standard deviation SEp=0.151, residual prediction deviation RPD = 3.371), CR-CARS-PLSR (Rp2=0.873, SEp=0.862, RPD = 2.806), and CR-UVE-PLSR (Rp2=0.877, SEp=0.680, RPD = 2.851), respectively. Eventually, the optimal prediction model for the salt content of the whole egg was employed to a pixel spectral matrix to calculate the salt content values of pixel points on the hyperspectral image of SDEs. Additionally, pseudo-color techniques were employed to visualize the spatial distribution of predicted salt content. This work will provide a theoretical foundation for rapidly detecting maturity and enabling high-throughput quality sorting of SDEs.


Subject(s)
Ducks , Egg White , Animals , Hyperspectral Imaging , Eggs , Egg Yolk , Sodium Chloride
15.
Int J Food Microbiol ; 414: 110619, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38367341

ABSTRACT

Salmonella is the most frequently reported cause of foodborne outbreaks with known origin in Europe, with eggs and egg products standing out as the most frequent food source (when it was known). The growth and survival of Salmonella in eggs and egg products have been extensively studied and, recently, it has been reported that factors such as the initial concentration and thermal history of the egg product can also influence its growth capability. Therefore, the objective of this study was to define the boundary zones of the growth/no growth domain of Salmonella Enteritidis (4 strains) as a function of temperature (low temperature boundary) and the initial concentration in different egg products. A series of polynomial logistic regression equations were successfully adjusted, allowing the study of these factors and their interaction on the probability of growth of S. Enteritidis in these products. Results obtained indicate that the minimum growth temperatures of Salmonella Enteritidis are higher in egg white (9.5-18.3 °C) than in egg yolk (7.1-7.8 °C) or liquid whole egg (7.2-7.9 °C). Results also demonstrate that in raw liquid whole egg and raw and pasteurized egg white, the minimum growth temperature of Salmonella Enteritidis does depend on the initial concentration. Similarly, the previous thermal history of the egg product only influenced the minimum growth temperature in some of them. On the other hand, large differences in the minimum growth temperatures among strains were observed in some products (up to approx. 6 °C in egg white). Finally, it should be noted that none of the strains grew at 5 °C under any of the conditions assayed. Therefore, storage of egg products (particularly whole liquid egg and egg yolk) below this temperature might be regarded/proposed as a good management approach. Our experimental approach has allowed us to provide a more accurate prediction of S. Enteritidis minimum growth temperatures in egg products by taking into account additional factors (initial concentration and thermal history) while also providing a quantification of the intra-specie variability. This would be of high relevance for improving the safety of egg products.


Subject(s)
Egg Yolk , Salmonella enteritidis , Animals , Temperature , Egg White , Eggs , Food Microbiology , Colony Count, Microbial , Chickens
16.
J Agric Food Chem ; 72(8): 4100-4115, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38373195

ABSTRACT

Wound healing is a multiphase process with a complex repair mechanism; trauma-repairing products with safety and high efficiency have a great market demand. Egg white peptides (EWP) have various physiological regulatory functions and have been proven efficient in ameliorating skin damage. However, their underlying regulation mechanism has not been revealed. This study further evaluated the EWP ameliorating mechanism by conducting a full-thickness skin wound model. Results demonstrated that EWP administration significantly inhibited the expression of pro-inflammatory and shortened the inflammatory phase. Besides, EWP can accelerate the secretion of growth factors (PDGF, VEGF, and TGF-ß1) in skin tissue, significantly increasing the regeneration of granulation tissue and endothelium in the proliferation phase, thereby promoting wound healing. After 400 mg/kg EWP interventions for 13 days postoperation, the wound healing rate reached 90%. The combination of transcriptomic and proteomic analyses demonstrated the ameliorating efficiency effects of EWP on wound healing. EWP mainly participates in the functional network with the PI3K-AKT signaling pathway as the core to accelerate wound healing. These findings suggest a promising EWP-based strategy for accelerating wound healing.


Subject(s)
Proto-Oncogene Proteins c-akt , Wound Healing , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proteomics , Egg White , Cell Proliferation , Cell Movement , Peptides/pharmacology , Gene Expression Profiling
17.
Neurochem Res ; 49(6): 1603-1615, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38353895

ABSTRACT

We aimed to investigate whether the consumption of Egg White Hydrolysate (EWH) acts on nervous system disorders induced by exposure to Cadmium (Cd) in rats. Male Wistar rats were divided into (a) Control (Ct): H2O by gavage for 28 days + H2O (i.p. - 15th - 28th day); (b) Cadmium (Cd): H2O by gavage + CdCl2 - 1 mg/kg/day (i.p. - 15th - 28th day); (c) EWH 14d: EWH 1 g/kg/day by gavage for 14 days + H2O (i.p.- 15th - 28th day); (d) Cd + EWH cotreatment (Cd + EWHco): CdCl2 + EWH for 14 days; (e) EWH 28d: EWH for 28 days; (f) EWHpre + Cd: EWH (1st - 28th day) + CdCl2 (15th - 28th day). At the beginning and the end of treatment, neuromotor performance (Neurological Deficit Scale); motor function (Rota-Rod test); ability to move and explore (Open Field test); thermal sensitivity (Hot Plate test); and state of anxiety (Elevated Maze test) were tested. The antioxidant status in the cerebral cortex and the striatum were biochemically analyzed. Cd induces anxiety, and neuromotor, and thermal sensitivity deficits. EWH consumption prevented anxiety, neuromotor deficits, and alterations in thermal sensitivity, avoiding neuromotor deficits both when the administration was performed before or during Cd exposure. Both modes of administration reduced the levels of reactive species, and the lipid peroxidation increased by Cd and improved the striatum's antioxidant capacity. Pretreatment proved to be beneficial in preventing the reduction of SOD activity in the cortex. EWH could be used as a functional food with antioxidant properties capable of preventing neurological damage induced by Cd.


Subject(s)
Cadmium , Egg White , Oxidative Stress , Rats, Wistar , Animals , Male , Oxidative Stress/drug effects , Cadmium/toxicity , Egg White/chemistry , Rats , Antioxidants/pharmacology , Antioxidants/therapeutic use , Nervous System Diseases/chemically induced , Nervous System Diseases/prevention & control , Nervous System Diseases/drug therapy , Protein Hydrolysates/pharmacology , Protein Hydrolysates/therapeutic use , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology
18.
Br J Nutr ; 131(11): 1827-1840, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38410884

ABSTRACT

The purpose of this study was to investigate the effect of an egg white hydrolysate (EWH) to protect white adipose tissue damage from cardiometabolic changes induced by severe hypertension. Male Wistar rats were uninephrectomised and divided: SHAM (weekly subcutaneous vehicle (mineral oil + propylene glycol, 1:1)), SHAM + EWH (subcutaneous vehicle plus EWH via gavage, 1 g/kg per day), DOCA (deoxycorticosterone acetate diluted in vehicle subcutaneously weekly in subsequent doses of 20 mg/kg -1st week, 12 mg/kg - 2­3th week, and 6 mg/kg -4­8th week, respectively, plus 1 % NaCl and 0·2 % KCl in drinking water), and DOCA + EWH. Body weight gain, food and water intake, glucose and lipid metabolism were evaluated. Oxidative stress was assessed by biochemical assay and immunofluorescence for NOX-1, nuclear factor kappa B (NFκB), and caspase-3 in retroperitoneal white adipose tissue (rtWAT). Proinflammatory cytokines (IL-6 and 1ß), CD163+ macrophage infiltration, and immunohistochemistry for TNFα and uncoupling protein-1 were evaluated, as well as histological analysis on rtWAT. Glutathione peroxidase and reductase were also determined in plasma. EWH showed hypocholesterolemic, antioxidant, anti-inflammatory, and anti-apoptotic properties in the arterial hypertension DOCA-salt model. The results demonstrated the presence of functional changes in adipose tissue function by a decrease in macrophage infiltration and in the fluorescence intensity of NFκB, NOX-1, and caspase-3. A reduction of proinflammatory cytokines and restoration of antioxidant enzymatic activity and mitochondrial oxidative damage by reducing uncoupling protein-1 fluorescence intensity were also observed. EWH could be used as a potential alternative therapeutic strategy in the treatment of cardiometabolic complications associated with malignant secondary arterial hypertension.


Subject(s)
Adipose Tissue, White , Desoxycorticosterone Acetate , Egg White , Oxidative Stress , Rats, Wistar , Animals , Male , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Oxidative Stress/drug effects , Egg White/chemistry , Rats , Hypertension/metabolism , Hypertension/chemically induced , Protein Hydrolysates/pharmacology , Lipid Metabolism/drug effects , Uncoupling Protein 1/metabolism , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/drug effects
19.
J Food Prot ; 87(4): 100246, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369191

ABSTRACT

Manual separation of egg yolk from egg white using the eggshell is common practice in private households. For this, the egg is cracked and both components are separated by passing the egg yolk back and forth between the two halves of the eggshell, allowing the egg white to drip down while the egg yolk remains in the shell. During this process, the egg content naturally gets in contact with the outside of the eggshell, which might lead to a cross-contamination with its microorganisms, thus was correspondingly assessed in this study. Campylobacter jejuni is one of the most important zoonotic pathogens that can be found on eggshells. Therefore, this bacterium was used to artificially contaminate the eggshells (n = 22) with concentrations of 3.1 ± 0.6 log10 cfu/g. After separating the egg yolk from the egg white, cross-contamination was determined using culture and qPCR. Altogether, cross-contaminations with C. jejuni were found in 15 egg white (68%) and in three egg yolk (14%) samples. Afterward, 90 eggs from 30 egg packs from different producers in and around Munich (Germany) were obtained for field study purposes. To address the problem of culturing due to a possible viable but nonculturable (VBNC) status of C. jejuni, a method to differentiate viable and dead C. jejuni on eggshell using 10 µM propidium monoazide (PMA) and qPCR was developed. As a result, seven egg packs (23%) were positive for C. jejuni. Of these, only one (3%) was contaminated with viable cells, but still in a concentration of 3.3 log10 cells/g shell. According to these results and considering that eggshells might also be naturally contaminated with other pathogens, the authors recommend avoiding the manual separation technique of egg white and yolk by the eggshell. Especially if raw egg white or yolk is used for preparation of not sufficiently heated foods, where contaminating pathogens are not inactivated during processing, this technique might be a safety hazard for the consumer.


Subject(s)
Azides , Campylobacter jejuni , Propidium/analogs & derivatives , Animals , Egg Shell/microbiology , Egg White , Eggs , Egg Yolk
20.
Int J Biol Macromol ; 259(Pt 2): 129297, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211927

ABSTRACT

Importance of metal ion selectivity in biomolecules and their key role in proteins are widely explored. However, understanding the thermodynamics of how hydrated metal ions alter the protein hydration and their conformation is also important. In this study, the interaction of some biologically important Ca2+, Mn2+, Co2+, Cu2+, and Zn2+ ions with hen egg white lysozyme at pH 2.1, 3.0, 4.5 and 7.4 has been investigated. Intrinsic fluorescence studies have been employed for metal ion-induced protein conformational changes analysis. Thermostability based on protein hydration has been investigated using differential scanning calorimetry (DSC). Thermodynamic parameters emphasizing on metal ion-protein binding mechanistic insights have been well discussed using isothermal titration calorimetry (ITC). Overall, these experiments have reported that their interactions are pH-dependent and entropically driven. This research also reports the strongly hydrated metal ions as water structure breaker unlike osmolytes based on DSC studies. These experimental results have highlighted higher concentrations of different metal ions effect on the protein hydration and thermostability which might be helpful in understanding their interactions in aqueous solutions.


Subject(s)
Egg White , Muramidase , Muramidase/metabolism , Metals/metabolism , Proteins , Thermodynamics , Ions , Calorimetry/methods , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...