Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.280
Filter
1.
Cells ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38891064

ABSTRACT

Periodontal disease is characterized by inflammation and bone loss. Central to its pathogenesis is the dysregulated inflammatory response, complicating regenerative therapies. Mesenchymal stem cells (MSCs) hold significant promise in tissue repair and regeneration. This study investigated the effects of specialized pro-resolving mediators (SPMs), Resolvin E1 (RvE1) and Maresin 1 (MaR1), on the osteogenic differentiation of human bone marrow-derived MSCs under inflammatory conditions. The stem cells were treated with SPMs in the presence of lipopolysaccharide (LPS) to simulate an inflammatory environment. Osteogenic differentiation was assessed through alkaline phosphatase activity and alizarin red staining. Proteomic analysis was conducted to characterize the protein expression profile changes, focusing on proteins related to osteogenesis and osteoclastogenesis. Treatment with RvE1 and MaR1, both individually and in combination, significantly enhanced calcified deposit formation. Proteomic analysis revealed the differential expression of proteins associated with osteogenesis and osteoclastogenesis, highlighting the modulatory impact of SPMs on bone metabolism. RvE1 and MaR1 promote osteogenic differentiation of hBMMSCs in an inflammatory environment, with their combined application yielding synergistic effects. This study provides insights into the therapeutic potential of SPMs in enhancing bone regeneration, suggesting a promising avenue for developing regenerative therapies for periodontal disease and other conditions characterized by inflammation-induced bone loss.


Subject(s)
Cell Differentiation , Docosahexaenoic Acids , Eicosapentaenoic Acid , Inflammation , Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/drug effects , Humans , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/analogs & derivatives , Docosahexaenoic Acids/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Cell Differentiation/drug effects , Inflammation/pathology , Proteomics , Bone Marrow Cells/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/cytology , Lipopolysaccharides/pharmacology
2.
BMC Urol ; 24(1): 130, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907230

ABSTRACT

BACKGROUND: One of the most common, but least studied, diabetic complication is diabetic bladder dysfunction. Current therapies include glucose control and symptom-based interventions. However, efficacy of these therapies is mixed and often have undesirable side effects. Diabetes is now known to be a chronic inflammatory disease. Specialized pro-resolving mediators are a class of compounds that promote the resolution of inflammation and have been shown to be effective in treating chronic inflammatory conditions. In this study we examine the ability of resolvin E1 to improve signs of diabetic bladder dysfunction. METHODS: Male Akita mice (Type 1 diabetic) develop hyperglycemia at 4 weeks and signs of bladder underactivity by 15 weeks. Starting at 15 weeks, mice were given one or two weeks of daily resolvin E1 and compared to age-matched wild type and untreated Akita mice. RESULTS: Resolvin E1 did not affect diabetic blood glucose after one week, although there was a slight decrease after two weeks. Diabetes decreased body weight and increased bladder weights and this was not affected by resolvin E1. Evan's blue dye extravasation (an indirect index of inflammation) was dramatically suppressed after one week of resolvin E1 treatment, but, surprisingly, had returned to diabetic levels after two weeks of treatment. Using cystometry, untreated Akita mice showed signs of underactivity (increased void volumes and intercontraction intervals). One week of resolvin E1treatment restored these cystometric findings back to control levels. After two weeks of treatment, cystometric changes were changed from controls but still significantly different from untreated levels, indicating a durable treatment effect even in the presence of increased inflammation at 2 weeks. CONCLUSIONS: Resolvin E1 has a beneficial effect on diabetic bladder dysfunction in the type 1 diabetic male Akita mouse model.


Subject(s)
Diabetes Mellitus, Type 1 , Disease Models, Animal , Eicosapentaenoic Acid , Urinary Bladder , Animals , Male , Mice , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Urinary Bladder/drug effects , Urinary Bladder/physiopathology , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Urinary Bladder Diseases/drug therapy , Urinary Bladder Diseases/etiology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Mice, Inbred C57BL
3.
Nutrition ; 124: 112466, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759339

ABSTRACT

Chronic inflammation is a hallmark of cancer cachexia. Polyunsaturated fatty acids (ω-3 PUFAs): eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are known to contribute to the reduction of inflammation, preservation of lean body mass and total body weight, and reduction of cancer-related symptoms, such as anorexia or neuropathy. This systematic review aimed to assess whether the ratio of EPA to DHA used in supplementation in cancer patients matters in the context of the resolution of inflammation and reduction of the risk of cachexia. The analysis included 20 randomized clinical trials with acceptable quality identified from the Pubmed/MEDLINE database. The significant results concerning the resolution of inflammation or improvement in nutritional status were the highest in the case of a low EPA/DHA ratio, i.e., 67%, and decreased, reaching 50% and 36% for the moderate and high ratios, respectively. Most results concerning body weight from high and moderate EPA/DHA ratios showed no benefit or were insignificant. A significant benefit in reducing any reported inflammatory markers was seen in the low EPA/DHA ratio subgroup at 63%, in the moderate at 29%, and in the high ratio subgroup at 11%. The greatest benefit in CRP reduction was obtained by patients during chemotherapy. The review questions the anticachectic and anti-inflammatory effect of ω-3 PUFAs supplementation with doses of EPA higher than DHA. A population that particularly benefits from ω-3 PUFAs supplementation are patients undergoing chemotherapy for advanced cancer.


Subject(s)
Cachexia , Dietary Supplements , Docosahexaenoic Acids , Eicosapentaenoic Acid , Inflammation , Neoplasms , Humans , Cachexia/drug therapy , Cachexia/etiology , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/pharmacology , Neoplasms/complications , Docosahexaenoic Acids/administration & dosage , Inflammation/drug therapy , Randomized Controlled Trials as Topic , Nutritional Status/drug effects
4.
Mar Drugs ; 22(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38786598

ABSTRACT

This paper aims to provide an in-depth review of the specific outcomes associated with omega-3 polyunsaturated fatty acids (PUFAs), focusing on their purported effects on post-surgical complications in trauma patients. A comprehensive investigation of omega-3 polyunsaturated fatty acids was conducted until February 2023 using the PubMed database. Surgical trauma is characterized by a disruption in immune response post surgery, known to induce systemic inflammation. Omega-3 PUFAs are believed to offer potential improvements in multiple post-surgical complications because of their anti-inflammatory and antioxidant properties. Inconsistent findings have emerged in the context of cardiac surgeries, with the route of administration playing a mediating role in these outcomes. The effects of omega-3 PUFAs on post-operative atrial fibrillation have exhibited variability across various studies. Omega-3 PUFAs have demonstrated positive effects in liver surgery outcomes and in patients with acute respiratory distress syndrome. Omega-3 is suggested to offer potential benefits, particularly in the perioperative care of patients undergoing traumatic procedures. Incorporating omega-3 in such cases is hypothesized to contribute to a reduction in certain surgical outcomes, such as hospitalization duration and length of stay in the intensive care unit. Therefore, comprehensive assessments of adverse effects can aid in identifying the presence of subtle or inconspicuous side effects associated with omega-3.


Subject(s)
Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Postoperative Complications , Humans , Postoperative Complications/prevention & control , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Eicosapentaenoic Acid/administration & dosage , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/administration & dosage , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Wounds and Injuries/surgery , Animals
5.
Nutrients ; 16(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732558

ABSTRACT

Polyunsaturated fatty acids (PUFAs) can alter adipose tissue function; however, the relative effects of plant and marine n3-PUFAs are less clear. Our objective was to directly compare the n3-PUFAs, plant-based α-linolenic acid (ALA) in flaxseed oil, and marine-based eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) in high-purity oils versus n6-PUFA containing linoleic acid (LA) for their effects on the adipose tissue and oral glucose tolerance of obese rats. Male fa/fa Zucker rats were assigned to faALA, faEPA, faDHA, and faLA groups and compared to baseline fa/fa rats (faBASE) and lean Zucker rats (lnLA). After 8 weeks, faEPA and faDHA had 11-14% lower body weight than faLA. The oral glucose tolerance and total body fat were unchanged, but faEPA had less mesenteric fat. faEPA and faDHA had fewer large adipocytes compared to faLA and faALA. EPA reduced macrophages in the adipose tissue of fa/fa rats compared to ALA and DHA, while faLA had the greatest macrophage infiltration. DHA decreased (~10-fold) T-cell infiltration compared to faBASE and faEPA, whereas faALA and faLA had an ~40% increase. The n3-PUFA diets attenuated tumour necrosis factor-α in adipose tissue compared to faBASE, while it was increased by LA in both genotypes. In conclusion, EPA and DHA target different aspects of inflammation in adipose tissue.


Subject(s)
Adipose Tissue , Docosahexaenoic Acids , Eicosapentaenoic Acid , Macrophages , Obesity , Rats, Zucker , Animals , Eicosapentaenoic Acid/pharmacology , Docosahexaenoic Acids/pharmacology , Obesity/metabolism , Male , Macrophages/metabolism , Macrophages/drug effects , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Rats , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , alpha-Linolenic Acid/pharmacology , Mesentery
6.
PLoS One ; 19(5): e0302286, 2024.
Article in English | MEDLINE | ID: mdl-38805503

ABSTRACT

Studies of the interplay between metabolism and immunity, known as immunometabolism, is steadily transforming immunological research into new understandings of how environmental cues like diet are affecting innate and adaptive immune responses. The aim of this study was to explore antiviral transcriptomic responses under various levels of polyunsaturated fatty acid. Atlantic salmon kidney cells (ASK cell line) were incubated for one week in different levels of the unsaturated n-3 eicosapentaneoic acid (EPA) resulting in cellular levels ranging from 2-20% of total fatty acid. These cells were then stimulated with the viral mimic and interferon inducer poly I:C (30 ug/ml) for 24 hours before total RNA was isolated and sequenced for transcriptomic analyses. Up to 200 uM EPA had no detrimental effects on cell viability and induced very few transcriptional changes in these cells. However, in combination with poly I:C, our results shows that the level of EPA in the cellular membranes exert profound dose dependent effects of the transcriptional profiles induced by this treatment. Metabolic pathways like autophagy, apelin and VEGF signaling were attenuated by EPA whereas transcripts related to fatty acid metabolism, ferroptosis and the PPAR signaling pathways were upregulated. These results suggests that innate antiviral responses are heavily influenced by the fatty acid profile of salmonid cells and constitute another example of the strong linkage between general metabolic pathways and inflammatory responses.


Subject(s)
Eicosapentaenoic Acid , Immunity, Innate , Kidney , Poly I-C , Salmo salar , Animals , Salmo salar/immunology , Salmo salar/genetics , Salmo salar/virology , Immunity, Innate/drug effects , Eicosapentaenoic Acid/pharmacology , Cell Line , Poly I-C/pharmacology , Kidney/drug effects , Kidney/immunology , Kidney/metabolism , Transcriptome/drug effects , Signal Transduction/drug effects , Cell Survival/drug effects , Gene Expression Profiling
7.
FASEB J ; 38(10): e23699, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38805158

ABSTRACT

This meeting report presents a consensus on the biological aspects of lipid emulsions in parenteral nutrition, emphasizing the unanimous support for the integration of lipid emulsions, particularly those containing fish oil, owing to their many potential benefits beyond caloric provision. Lipid emulsions have evolved from simple energy sources to complex formulations designed to improve safety profiles and offer therapeutic benefits. The consensus highlights the critical role of omega-3 polyunsaturated fatty acids (PUFAs), notably eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), found in fish oil and other marine oils, for their anti-inflammatory properties, muscle mass preservation, and as precursors to the specialized pro-resolving mediators (SPMs). SPMs play a significant role in immune modulation, tissue repair, and the active resolution of inflammation without impairing host defense mechanisms. The panel's agreement underscores the importance of incorporating fish oil within clinical practices to facilitate recovery in conditions like surgery, critical illness, or immobility, while cautioning against therapies that might disrupt natural inflammation resolution processes. This consensus not only reaffirms the role of specific lipid components in enhancing patient outcomes, but also suggests a shift towards nutrition-based therapeutic strategies in clinical settings, advocating for the proactive evidence-based use of lipid emulsions enriched with omega-3 PUFAs. Furthermore, we should seek to apply our knowledge concerning DHA, EPA, and their SPM derivatives, to produce more informative randomized controlled trial protocols, thus allowing more authoritative clinical recommendations.


Subject(s)
Inflammation , Humans , Inflammation/metabolism , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-3/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Eicosapentaenoic Acid/therapeutic use , Eicosapentaenoic Acid/pharmacology , Parenteral Nutrition/methods , Fish Oils/therapeutic use , Docosahexaenoic Acids/therapeutic use , Fat Emulsions, Intravenous/therapeutic use , Animals
8.
Cell Death Dis ; 15(5): 324, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724533

ABSTRACT

Severe aplastic anemia (SAA) is a rare, fatal disease characterized by severe cytopenias and loss of hematopoietic stem cells (HSCs). Immune-mediated destruction and inflammation are known drivers of SAA, however, the underlying mechanisms driving persistent inflammation are unknown. Current treatments for SAA rely on immunosuppressive therapies or HSC transplantation, however, these treatments are not always effective. Using an established mouse model of SAA, we observed a significant increase in apoptotic cells within the bone marrow (BM) and impaired efferocytosis in SAA mice, relative to radiation controls. Single-cell transcriptomic analysis revealed heterogeneity among BM monocytes and unique populations emerged during SAA characterized by increased inflammatory signatures and significantly increased expression of Sirpa and Cd47. CD47, a "don't eat me" signal, was increased on both live and apoptotic BM cells, concurrent with markedly increased expression of signal regulatory protein alpha (SIRPα) on monocytes. Functionally, SIRPα blockade improved cell clearance and reduced accumulation of CD47-positive apoptotic cells. Lipidomic analysis revealed a reduction in the precursors of specialized pro-resolving lipid mediators (SPMs) and increased prostaglandins in the BM during SAA, indicative of impaired inflammation resolution. Specifically, 18-HEPE, a precursor of E-series resolvins, was significantly reduced in SAA-induced mice relative to radiation controls. Treatment of SAA mice with Resolvin E1 (RvE1) improved efferocytic function, BM cellularity, platelet output, and survival. Our data suggest that impaired efferocytosis and inflammation resolution contributes to SAA progression and demonstrate that SPMs, such as RvE1, offer new and/or complementary treatments for SAA that do not rely on immune suppression.


Subject(s)
Anemia, Aplastic , CD47 Antigen , Eicosapentaenoic Acid , Animals , Anemia, Aplastic/pathology , Mice , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Apoptosis/drug effects , Phagocytosis/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Monocytes/metabolism , Monocytes/drug effects , Inflammation/pathology , Male , Efferocytosis
9.
Integr Cancer Ther ; 23: 15347354241243024, 2024.
Article in English | MEDLINE | ID: mdl-38708673

ABSTRACT

Colorectal cancer (CRC) is the third leading cause of cancer-related death in the world. Multiple evidence suggests that there is an association between excess fat consumption and the risk of CRC. The long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential for human health, and both in vitro and in vivo studies have shown that these fatty acids can prevent CRC development through various molecular mechanisms. These include the modulation of arachidonic acid (AA) derived prostaglandin synthesis, alteration of growth signaling pathways, arrest of the cell cycle, induction of cell apoptosis, suppression of angiogenesis and modulation of inflammatory response. Human clinical studies found that LC n-3 PUFA combined with chemotherapeutic agents can improve the efficacy of treatment and reduce the dosage of chemotherapy and associated side effects. In this review, we discuss comprehensively the anti-cancer effects of LC n-3 PUFA on CRC, with a main focus on the underlying molecular mechanisms.


Subject(s)
Colorectal Neoplasms , Fatty Acids, Omega-3 , Humans , Colorectal Neoplasms/drug therapy , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/administration & dosage , Animals , Apoptosis/drug effects , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/administration & dosage , Signal Transduction/drug effects , Docosahexaenoic Acids/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
10.
Int J Biol Macromol ; 268(Pt 2): 131547, 2024 May.
Article in English | MEDLINE | ID: mdl-38641281

ABSTRACT

Eicosapentaenoic acid regulates glucose uptake in skeletal muscle and significantly affects whole-body energy metabolism. However, the underlying molecular mechanism remains unclear. Here we report that eicosapentaenoic acid activates phosphoglycerate mutase 2, which mediates the conversion of 2-phosphoglycerate into 3-phosphoglycerate. This enzyme plays a pivotal role in glycerol degradation, thereby facilitating the proliferation and differentiation of satellite cells in skeletal muscle. Interestingly, phosphoglycerate mutase 2 inhibits mitochondrial metabolism, promoting the formation of fast-type muscle fibers. Treatment with eicosapentaenoic acid and phosphoglycerate mutase 2 knockdown induced opposite transcriptomic changes, most of which were enriched in the PI3K-AKT signaling pathway. Phosphoglycerate mutase 2 activated the PI3K-AKT signaling pathway, which inhibited the phosphorylation of FOXO1, and, in turn, inhibited mitochondrial function and promoted the formation of fast-type muscle fibers. Our results suggest that eicosapentaenoic acid promotes skeletal muscle growth and regulates glucose metabolism by targeting phosphoglycerate mutase 2 and activating the PI3K/AKT signaling pathway.


Subject(s)
Eicosapentaenoic Acid , Muscle, Skeletal , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Male , Mice , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Eicosapentaenoic Acid/pharmacology , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Muscle Development/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphoglycerate Mutase/metabolism , Phosphoglycerate Mutase/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Swine
11.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612589

ABSTRACT

Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people.


Subject(s)
Fatty Acids, Omega-3 , Polycyclic Aromatic Hydrocarbons , Humans , Adult , Mice , Animals , Fatty Acids, Omega-3/pharmacology , DNA Adducts , Carcinogenesis , Cell Transformation, Neoplastic , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology
12.
Nutrients ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612996

ABSTRACT

Managing atherosclerotic cardiovascular disease (ASCVD) often involves a combination of lifestyle modifications and medications aiming to decrease the risk of cardiovascular outcomes, such as myocardial infarction and stroke. The aim of this article is to discuss possible omega-3 (n-3) fatty acid-statin interactions in the prevention and treatment of ASCVD and to provide evidence to consider for clinical practice, highlighting novel insights in this field. Statins and n-3 fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) are commonly used to control cardiovascular risk factors in order to treat ASCVD. Statins are an important lipid-lowering therapy, primarily targeting low-density lipoprotein cholesterol (LDL-C) levels, while n-3 fatty acids address triglyceride (TG) concentrations. Both statins and n-3 fatty acids have pleiotropic actions which overlap, including improving endothelial function, modulation of inflammation, and stabilizing atherosclerotic plaques. Thus, both statins and n-3 fatty acids potentially mitigate the residual cardiovascular risk that remains beyond lipid lowering, such as persistent inflammation. EPA and DHA are both substrates for the synthesis of so-called specialized pro-resolving mediators (SPMs), a relatively recently recognized feature of their ability to combat inflammation. Interestingly, statins seem to have the ability to promote the production of some SPMs, suggesting a largely unrecognized interaction between statins and n-3 fatty acids with relevance to the control of inflammation. Although n-3 fatty acids are the major substrates for the production of SPMs, these signaling molecules may have additional therapeutic benefits beyond those provided by the precursor n-3 fatty acids themselves. In this article, we discuss the accumulating evidence that supports SPMs as a novel therapeutic tool and the possible statin-n-3 fatty acid interactions relevant to the prevention and treatment of ASCVD.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Fatty Acids, Omega-3 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Fatty Acids , Inflammation
13.
J Nutr Biochem ; 130: 109648, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38631512

ABSTRACT

Insulin resistance (IR) is a global health challenge, often initiated by dysfunctional adipose tissue. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may have different effects on IR, but the mechanisms are unknown. This study aims to evaluate the protective effect of EPA and DHA against IR in a high-fat diet (HFD) mice model and investigate whether EPA and DHA alter IR modulate the G-protein-poupled receptor 120/peroxisome proliferator-activated receptor γ (GPR120/PPARγ) pathway in macrophages and adipocytes, which may affect IR in adipocytes. The findings of this study show that 4% DHA had a better effect in improving IR and reducing inflammatory cytokines in adipose tissue of mice. Additionally, in the cell experiment, the use of AH7614 (a GPR120 antagonist) inhibited the glucose consumption increase and the increasable expression of PPARγ and insulin signaling molecules mediated by DHA in adipocytes. Furthermore, GW9662 (a PPARγ antagonist) hindered the upregulation of glucose consumption and insulin signaling molecule expression induced by EPA and DHA in adipocytes. DHA exhibited significant effects in reducing the number of migrated cells and inflammation. The compounds AH7614 and GW9662 hindered the suppressive effects of EPA and DHA on macrophage-induced IR in adipocytes. These findings suggest that DHA has a stronger potential in improving IR in adipocytes through the GPR120/PPARγ pathway in macrophages, when compared to EPA.


Subject(s)
Adipose Tissue , Diet, High-Fat , Docosahexaenoic Acids , Eicosapentaenoic Acid , Inflammation , Insulin Resistance , Mice, Inbred C57BL , PPAR gamma , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Docosahexaenoic Acids/pharmacology , PPAR gamma/metabolism , Eicosapentaenoic Acid/pharmacology , Receptors, G-Protein-Coupled/metabolism , Mice , Male , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Diet, High-Fat/adverse effects , Inflammation/metabolism , Signal Transduction/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , 3T3-L1 Cells , Macrophages/metabolism , Macrophages/drug effects , RAW 264.7 Cells , Anilides/pharmacology , Biphenyl Compounds , Phenylpropionates
14.
Food Funct ; 15(10): 5251-5271, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38680120

ABSTRACT

Diabetes-associated cognitive dysfunction (DCD) is a severe complication of diabetes mellitus (DM), threatening the life quality of the diabetic population. However, there is still a lack of effective approaches for its intervention. Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid that was not previously investigated for its effect on DCD. In this study, EPA was found to improve DCD in a mouse model of type 2 DM (T2DM) induced by streptozotocin and a high-fat diet, exhibiting profound protective effects on cognitive dysfunction, neuronal loss, and cerebral oxidative stress and inflammation. While EPA did not attenuate advanced glycation end product-induced neuron injury, we hypothesized that EPA might protect neurons by regulating microglia polarization, the effect of which was confirmed by the co-culture of neurons and lipopolysaccharide-stimulated microglia. RNA sequencing identified nuclear factor-erythroid-2-related factor 2 (NRF2) antioxidant signaling as a major target of EPA in microglia. Mechanistically, EPA increased sequestosome-1 (SQSTM1 or P62) levels that might structurally inhibit Kelch-like ECH associated protein 1 (KEAP1), leading to nuclear translocation of NRF2. P62 and NRF2 predominantly mediated EPA's effect since the knockdown of P62 or NRF2 abolished EPA's protective effect on microglial oxidative stress and inflammation and sequential neuron injuries. Moreover, the regulation of P62/KEPA1/NRF2 axes by EPA was confirmed in the hippocampi of diabetic mice. The present work presents EPA as an effective nutritional approach and microglial P62/KEAP1/NRF2 as molecular targets for the intervention of DCD.


Subject(s)
Cognitive Dysfunction , Eicosapentaenoic Acid , Kelch-Like ECH-Associated Protein 1 , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Signal Transduction , Animals , Eicosapentaenoic Acid/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/metabolism , Male , Signal Transduction/drug effects , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Oxidative Stress/drug effects , Diabetes Mellitus, Experimental/complications , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124242, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38581725

ABSTRACT

The regular overconsumption of high-energy food (rich in lipids and sugars) results in elevated nutrient absorption in intestine and consequently excessive accumulation of lipids in many organs e.g.: liver, adipose tissue, muscles. In the long term this can lead to obesity and obesity-associated diseases e.g. type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease, inflammatory bowel disease (IBD). In the presented paper based on RI data we have proved that Raman maps can be used successfully for subcellular structures visualization and analysis of fatty acids impact on morphology and chemical composition of human colon single cells - normal and cancer. Based on Raman data we have investigated the changes related to endoplasmic reticulum, mitochondria, lipid droplets and nucleus. Analysis of ratios calculated based on Raman bands typical for proteins (1256, 1656 cm-1), lipids (1304, 1444 cm-1) and nucleic acids (750 cm-1) has confirmed for endoplasmic reticulum the increased activity of this organelle in lipoproteins synthesis upon FAs supplementation; for LDs the changes of desaturation of accumulated lipids with the highest unsaturation level for CaCo-2 cells upon EPA supplementation; for mitochondria the stronger effect of FAs supplementation was observed for CaCo-2 cells confirming the increased activity of this organelle responsible for energy production necessary for tumor development; the weakest impact of FAs supplementation was observed for nucleus for both types of cells and both types of acids. Fluorescence imaging was used for the investigations of changes in LDs/ER morphology. Our measurements have shown the increased area of LDs/ER for CaCo-2 cancer cells, and the strongest effect was noticed for CaCo-2 cells upon EPA supplementation. The increased participation of lipid structures for all types of cells upon FAs supplementation has been confirmed also by AFM studies. The lowest YM values have been observed for CaCo-2 cells including samples treated with FAs.


Subject(s)
Colonic Neoplasms , Eicosapentaenoic Acid , Spectrum Analysis, Raman , Humans , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/chemistry , Caco-2 Cells , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Linoleic Acid/pharmacology , Linoleic Acid/chemistry , Colon/drug effects , Colon/metabolism , Colon/pathology , Microscopy, Fluorescence
16.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474148

ABSTRACT

Pain is an unpleasant sensory and emotional experience accompanied by tissue injury. Often, an individual's experience can be influenced by different physiological, psychological, and social factors. Fibromyalgia, one of the most difficult-to-treat types of pain, is characterized by general muscle pain accompanied by obesity, fatigue, sleep, and memory and psychological concerns. Fibromyalgia increases nociceptive sensations via central sensitization in the brain and spinal cord level. We used intermittent cold stress to create a mouse fibromyalgia pain model via a von Frey test (day 0: 3.69 ± 0.14 g; day 5: 2.13 ± 0.12 g). Mechanical pain could be reversed by eicosapentaenoic acid (EPA) administration (day 0: 3.72 ± 0.14 g; day 5: 3.69 ± 0.13 g). A similar trend could also be observed for thermal hyperalgesia. The levels of elements in the transient receptor potential V1 (TRPV1) signaling pathway were increased in the ascending pain pathway, including the thalamus, medial prefrontal cortex, somatosensory cortex, anterior cingulate cortex, and cerebellum. EPA intake significantly attenuated this overexpression. A novel chemogenetics method was used to inhibit SSC and ACC activities, which presented an analgesic effect through the TRPV1 downstream pathway. The present results provide insights into the role of the TRPV1 signaling pathway for fibromyalgia and its potential as a clinical target.


Subject(s)
Fibromyalgia , Animals , Mice , Brain , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Fibromyalgia/drug therapy , Hyperalgesia/drug therapy , Pain
17.
Front Endocrinol (Lausanne) ; 15: 1368853, 2024.
Article in English | MEDLINE | ID: mdl-38501107

ABSTRACT

Background: Monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) have been reported to combat saturated fatty acid (SFA)-induced cellular damage, however, their clinical effects on patients with metabolic diseases such as diabetes and hyperlipidemia are still controversial. Since comparative studies of the effects of these two types of unsaturated fatty acids (UFAs) are still limited. In this study, we aimed to compare the protective effects of various UFAs on pancreatic islets under the stress of SFA-induced metabolic disorder and lipotoxicity. Methods: Rat insulinoma cell line INS-1E were treated with palmitic acid (PA) with or without UFAs including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA), and oleic acid (OA) to determine cell viability, apoptosis, endoplasmic reticulum (ER) stress, and inflammatory. In vivo, male C57BL/6 mice were fed a 60% high-fat diet (HFD) for 12 w. Then the lard in HFD was partially replaced with fish oil (FO) and olive oil (OO) at low or high proportions of energy (5% or 20%) to observe the ameliorative effects of the UFA supplement. Results: All UFAs significantly improved PA-induced cell viability impairment in INS-1E cells, and their alleviation on PA induced apoptosis, ER stress and inflammation were confirmed. Particularly, OA had better effects than EPA, DHA, and AA on attenuating cellular ER stress. In vivo, the diets with a low proportion of UFAs (5% of energy) had limited effects on HFD induced metabolic disorder, except for a slight improved intraperitoneal glucose tolerance in obese mice. However, when fed diets containing a high proportion of UFAs (20% of energy), both the FO and OO groups exhibited substantially improved glucose and lipid metabolism, such as decrease in total cholesterol (TC), low-density lipoprotein (LDL), fasting blood glucose (FBG), and fasting blood insulin (FBI)) and improvement of insulin sensitivity evidenced by intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (IPITT). Unexpectedly, FO resulted in abnormal elevation of the liver function index aspartate aminotransferase (AST) in serum. Pathologically, OO attenuated HFD-induced compensatory hyperplasia of pancreatic islets, while this effect was not obvious in the FO group. Conclusions: Both MUFAs and PUFAs can effectively protect islet ß cells from SFA-induced cellular lipotoxicity. In particular, both OA in vitro and OO in vivo showed superior activities on protecting islets function and enhance insulin sensitivity, suggesting that MUFAs might have greater potential for nutritional intervention on diabetes.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Insulins , Humans , Rats , Mice , Animals , Male , Fatty Acids, Monounsaturated , Mice, Inbred C57BL , Fatty Acids, Unsaturated/pharmacology , Fatty Acids , Palmitic Acid , Eicosapentaenoic Acid/pharmacology , Glucose
18.
Methods Mol Biol ; 2761: 209-229, 2024.
Article in English | MEDLINE | ID: mdl-38427239

ABSTRACT

Omega-3 fatty acids play a seminal role in maintaining the structural and functional integrity of the nervous system. These specialized molecules function as precursors for many lipid-based biological messengers. Also, studies suggest the role of these fatty acids in regulating healthy sleep cycles, cognitive ability, brain development, etc. Dietary intake of essential poly unsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are foundational to the optimal working of the nervous system. Besides regulating health, these biomolecules have great therapeutic value in treating several diseases, particularly nervous system diseases and disorders. Many recent studies conclusively demonstrated the beneficial effects of Omega-3 fatty acids in treating depression, neuropsychiatric disorders, neurodegenerative disorders, neurochemical disorders, and many other illnesses associated with the nervous system. This chapter summates the multifaceted role of poly unsaturated fatty acids, especially Omega-3 fatty acids (EPA and DHA), in the neuronal health and functioning. The importance of dietary intake of these essential fatty acids, their recommended dosages, bioavailability, the mechanism of their action, and therapeutic values are extensively discussed.


Subject(s)
Fatty Acids, Omega-3 , Fatty Acids, Omega-3/pharmacology , Eicosapentaenoic Acid/pharmacology , Docosahexaenoic Acids/pharmacology , Fatty Acids, Unsaturated , Fatty Acids , Brain
19.
Biotechnol J ; 19(3): e2300612, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472102

ABSTRACT

Schizochytrium sp. is a heterotrophic microorganism capable of accumulating polyunsaturated fatty acids and has achieved industrial production of docosahexaenoic acid (DHA). It also has the potential for eicosapentaenoic acid (EPA) production. In this study, it was found that the cell growth, lipid synthesis and fatty acid composition of Schizochytrium sp. were significantly affected by the level of cobalamin in the medium, especially with regard to the content of EPA in the fatty acids. The content of EPA in the fatty acids increased 17.91 times, reaching 12.00%, but cell growth and lipid synthesis were significantly inhibited under cobalamin deficiency. The response mechanism for this phenomenon was revealed through combined lipidomic and transcriptomic analysis. Although cell growth was inhibited under cobalamin deficiency, the genes encoding key enzymes in central carbon metabolism were still up-regulated to provide precursors (Acetyl-CoA) and reducing power (NADPH) for the synthesis and accumulation of fatty acids. Moreover, the main lipid subclasses observed during cobalamin deficiency were glycerolipids (including glycerophospholipids), with EPA primarily distributed in them. The genes involved in the biosynthesis of these lipid subclasses were significantly up-regulated, such as the key enzymes in the Kennedy pathway for the synthesis of triglycerides. Thus, this study provided insights into the specific response of Schizochytrium sp. to cobalamin deficiency and identified a subset of new genes that can be engineered for modification.


Subject(s)
Eicosapentaenoic Acid , Lipidomics , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/pharmacology , Fatty Acids , Gene Expression Profiling , Vitamin B 12
20.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473995

ABSTRACT

Vascular endothelial growth factor (VEGF) induces monocyte chemoattractant protein-1 (MCP-1) and plays an important role in vascular inflammation and atherosclerosis. We investigated the mechanisms of VEGF-induced MCP-1 expression and the effects of eicosapentaenoic acid (EPA) in human umbilical vein endothelial cells (HUVECs). Real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) demonstrated that VEGF enhanced MCP-1 gene expression and protein secretion in HUVECs. Western immunoblot analysis revealed that VEGF induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and inhibitor of nuclear factor (NF)-κB (IκB). Treatment with pharmacological inhibitors of p38 MAPK (SB203580) or NF-κB (BAY11-7085) significantly suppressed VEGF-induced MCP-1 in HUVECs. EPA inhibited VEGF-induced MCP-1 mRNA, protein secretion, phosphorylation of p38 MAPK, and the translocation of phospho-p65 to the nucleus. Additionally, VEGF also stimulated gene expressions of interleukin (IL)-6 and IL-8, which were suppressed by SB203580, BAY11-7085, and EPA. The present study has demonstrated that VEGF-induced activation of MCP-1, IL-6, and IL-8 involves the p38 MAPK and NF-κB signaling pathways and that EPA inhibits VEGF-induced MCP-1, IL-6, and IL-8 via suppressing these signaling pathways. This study supports EPA as a beneficial anti-inflammatory and anti-atherogenic drug to reduce the VEGF-induced activation of proinflammatory cytokine and chemokines.


Subject(s)
Chemokine CCL2 , Interleukin-6 , Humans , Chemokine CCL2/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , NF-kappa B/metabolism , Vascular Endothelial Growth Factor A/metabolism , Eicosapentaenoic Acid/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...