Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 97(2): e0181622, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36651746

ABSTRACT

Foamy viruses (FVs) are ideal models for studying the long-term evolutionary history between viruses and their hosts. Currently, FVs have been documented in nearly all major taxa of vertebrates, but evidence is lacking for true FV infiltration in cartilaginous fish, the most basal living vertebrates with jaws. Here, we screened 11 available genomes and 10 transcriptome sequence assemblies of cartilaginous fish and revealed a novel endogenous foamy virus, termed cartilaginous fish endogenous foamy virus (CFEFV), in the genomes of sharks and rays. Genomic analysis of CFEFVs revealed feature motifs that were retained among canonical FVs. Phylogenetic analysis using polymerase sequences revealed the rooting nature of CFEFVs to vertebrate FVs, indicating their deep origin. Interestingly, three viral lineages were found in a shark (Scyliorhinus torazame), one of which was clustered with ray-finned fish foamy-like viruses, indicating that multiple episodes of viral infiltrations had occurred in this species. These findings fill a major gap in the Spumaretrovirinae taxon and reveal the aquatic origin of FVs found in terrestrial vertebrates. IMPORTANCE Although foamy viruses (FVs) have been found in major branches of vertebrates, the presence of these viruses in cartilaginous fish, the most basal living vertebrates with jaws, remains to be explored. This study revealed a collection of cartilaginous endogenous FVs in sharks and rays through in silico genomic mining. These viruses were rooted in the polymerase (POL) phylogeny, indicating the ancient aquatic origin of FVs. However, their envelope (ENV) protein grouped with those of amphibian FVs, suggesting different evolutionary histories of different FV genes. Overall, we provide the last missing gap for the taxonomic investigation of Spumaretrovirinae and provide concrete support for the aquatic origin of FVs.


Subject(s)
Elasmobranchii , Spumavirus , Animals , Phylogeny , Spumavirus/classification , Spumavirus/genetics , Elasmobranchii/virology , Genome/genetics
2.
mBio ; 9(3)2018 05 15.
Article in English | MEDLINE | ID: mdl-29764943

ABSTRACT

Only eight families of double-stranded DNA (dsDNA) viruses are known to infect vertebrate animals. During an investigation of papillomatous skin disease in an elasmobranch species, the giant guitarfish (Rhynchobatus djiddensis), a novel virus, distinct from all known viral families in regard to particle size, morphology, genome organization, and helicase phylogeny was discovered. Large inclusion bodies containing 75-nm icosahedral viral particles were present within epithelial cell nuclei in the proliferative skin lesions. Deep metagenomic sequencing revealed a 22-kb circular dsDNA viral genome, tentatively named guitarfish "adomavirus" (GAdoV), with only distant homology to two other fish viruses, Japanese eel endothelial cell-infecting virus (JEECV) and a recently reported marbled eel virus. Phylogenetic analysis of the helicase domain places the guitarfish virus in a novel clade that is equidistant between members of the Papillomaviridae and Polyomaviridae families. Specific PCR, quantitative PCR, and in situ hybridization were used to detect, quantify, and confirm that GAdoV DNA was localized to affected epithelial cell nuclei. Changes in the viral titer, as well as the presence of a hybridization signal, coincided with the progression and then final resolution of gross and microscopic lesions. The results indicate that GAdoV is the causative agent of the proliferative skin lesions.IMPORTANCE Cartilaginous fish, including the sharks and rays, evolved from ancestral fish species at least 400 million years ago. Even though they are the descendants of one of the most ancient vertebrate lineages, reports of viral diseases in these species are rare and poorly documented. Deep sequencing revealed a highly divergent virus, tentatively named guitarfish adomavirus, that is distantly related to known papillomaviruses and polyomaviruses. Out of the eight predicted viral genes, only the helicase could be identified as viral by sequence homology searches (BLAST), exemplifying the difficulties of discovering novel viruses within seas of unidentifiable "dark matter" associated with deep sequencing data. The novel adomavirus represents the first viral genome shown to cause clinical disease in a cartilaginous fish species, the giant guitarfish. Our findings demonstrate that emerging fish viruses are fertile ground to expand our understanding of viral evolution in vertebrates.


Subject(s)
DNA Viruses/genetics , DNA Viruses/isolation & purification , Elasmobranchii/virology , Fish Diseases/virology , Skin Diseases/veterinary , Animals , DNA Viruses/classification , Genome, Viral , High-Throughput Nucleotide Sequencing , Phylogeny , Skin Diseases/virology , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...