Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.234
Filter
1.
Food Res Int ; 188: 114453, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823833

ABSTRACT

In this study, whipped cream with blends of micellar casein (MCN) and whey protein (WPI) in different ratios were prepared to investigate the role of protein interfacial behavior in determining foam properties at multiple scales, using theoretical modeling, and microscopic and macroscopic analysis. Fluid force microscopy has been used for the first time as a more realistic and direct means of analyzing interfaces properties in multiphase systems. The adsorption kinetics showed that the interfacial permeability constant of WPI (4.24 × 10-4 s-1) was significantly higher than that of the MCN (2.97 × 10-4 s-1), and the WPI interfacial layer had a higher modulus of elasticity (71.38 mN/m) than that of the MCN (47.89 mN/m). This model was validated via the mechanical analysis of the fat globules in real emulsions. The WPI-stabilized fat globule was found to have a higher Young's modulus (219.67 Pa), which contributes to the integrity of its fat globule morphology. As the ratio of MCN was increased in the sample, however, both the interfacial modulus and Young's modulus decreased. Moreover, the rate of partial coalescence was found to increase, a phenomenon that decreased the stability of the emulsion and increased the rate of aeration. The mechanical analysis also revealed a higher level of adhesion between MCN-stabilized fat globule (25.16 nN), which increased fat globule aggregation and emulsion viscosity, while improving thixotropic recovery. The synergistic effect of the blended MCN and WPI provided the highest overrun, at 194.53 %. These studies elucidate the role of the interfacial behavior of proteins in determining the quality of whipped cream and provide ideas for the application of proteins in multiphase systems.


Subject(s)
Caseins , Micelles , Whey Proteins , Whey Proteins/chemistry , Caseins/chemistry , Emulsions/chemistry , Dairy Products , Lipid Droplets/chemistry , Adsorption , Kinetics , Permeability , Food Handling/methods , Glycolipids/chemistry , Elastic Modulus , Viscosity , Glycoproteins
2.
BMC Oral Health ; 24(1): 619, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807138

ABSTRACT

PURPOSE: The aim of this in vitro study was to evaluate the changes the rheological properties of some soft lining materials, to compare the rheological properties and viscoelastic behaviour at different temperatures. MATERIALS AND METHODS: Five soft lining materials (acrylic and silicone based) were used. the storage modulus (G'), loss modulus (G"), tan delta (tan δ) and complex viscosity (η') were chosen and for each material, measurements were repeated at 23, 33 and 37  °C, using an oscillating rheometer. All data were statistically analyzed using the Mann Whitney U test, Kruskal Wallis test and Conover's Multiple Comparison test at the significance level of 0.05. RESULTS: Soft lining materials had different viscoelastic properties and most of the materials showed different rheological behavior at 23, 33 and 37  °C. At the end of the test (t¹5), at all the temperatures, Sofreliner Tough M had the highest storage modulus values while Visco Gel had the highest loss Tan delta values. CONCLUSIONS: There were significant changes in the rheological parameters of all the materials. Also temperature affected the initial rheological properties, and polymerization reaction of all the materials, depending on temperature increase. CLINICAL IMPLICATIONS: Temperature affected the initial rheological properties, and polymerization reaction of soft denture liner materials, and clinical inferences should be drawn from such studies conducted. It can be recommended to utilize viscoelastic acrylic-based temporary soft lining materials with lower storage modulus, higher tan delta value, and high viscosity in situations where pain complaint persists and tissue stress is extremely significant, provided that they are replaced often.


Subject(s)
Acrylic Resins , Materials Testing , Rheology , Temperature , Viscosity , Acrylic Resins/chemistry , Elasticity , Denture Liners , Elastic Modulus , Dental Cavity Lining , Silicones/chemistry , Polymerization , Humans , Oscillometry
3.
Sci Rep ; 14(1): 11460, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769378

ABSTRACT

Arterial occlusion by thrombosis is the immediate cause of some strokes, heart attacks, and peripheral artery disease. Most prior studies assume that coagulation creates the thrombus. However, a contradiction arises as whole blood (WB) clots from coagulation are too weak to stop arterial blood pressures (> 150 mmHg). We measure the material mechanical properties of elasticity and ultimate strength for Shear-Induced Platelet Aggregation (SIPA) type clots, that form under stenotic arterial hemodynamics in comparison with coagulation clots. The ultimate strength of SIPA clots averaged 4.6 ± 1.3 kPa, while WB coagulation clots had a strength of 0.63 ± 0.3 kPa (p < 0.05). The elastic modulus of SIPA clots was 3.8 ± 1.5 kPa at 1 Hz and 0.5 mm displacement, or 2.8 times higher than WB coagulation clots (1.3 ± 1.2 kPa, p < 0.0001). This study shows that the SIPA thrombi, formed quickly under high shear hemodynamics, is seven-fold stronger and three-fold stiffer compared to WB coagulation clots. A force balance calculation shows a SIPA clot has the strength to resist arterial pressure with a short length of less than 2 mm, consistent with coronary pathology.


Subject(s)
Blood Coagulation , Platelet Aggregation , Thrombosis , Humans , Thrombosis/pathology , Shear Strength , Hemodynamics , Elastic Modulus , Blood Platelets/metabolism , Stress, Mechanical
4.
J Acoust Soc Am ; 155(5): 2948-2958, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38717204

ABSTRACT

Arteriosclerosis is a major risk factor for cardiovascular disease and results in arterial vessel stiffening. Velocity estimation of the pulse wave sent by the heart and propagating into the arteries is a widely accepted biomarker. This symmetrical pulse wave propagates at a speed which is related to the Young's modulus through the Moens Korteweg (MK) equation. Recently, an antisymmetric flexural wave has been observed in vivo. Unlike the symmetrical wave, it is highly dispersive. This property offers promising applications for monitoring arterial stiffness and early detection of atheromatous plaque. However, as far as it is known, no equivalent of the MK equation exists for flexural pulse waves. To bridge this gap, a beam based theory was developed, and approximate analytical solutions were reached. An experiment in soft polymer artery phantoms was built to observe the dispersion of flexural waves. A good agreement was found between the analytical expression derived from beam theory and experiments. Moreover, numerical simulations validated wave speed dependence on the elastic and geometric parameters at low frequencies. Clinical applications, such as arterial age estimation and arterial pressure measurement, are foreseen.


Subject(s)
Models, Cardiovascular , Phantoms, Imaging , Pulse Wave Analysis , Vascular Stiffness , Pulse Wave Analysis/methods , Humans , Elastic Modulus , Computer Simulation , Arteries/physiology , Arteries/physiopathology , Numerical Analysis, Computer-Assisted , Blood Flow Velocity/physiology
5.
J Mech Behav Biomed Mater ; 155: 106576, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744119

ABSTRACT

Skeletal muscle and adipose tissue are characterized by unique structural features finely tuned to meet specific functional demands. In this study, we investigated the passive mechanical properties of soleus (SOL), extensor digitorum longus (EDL) and diaphragm (DIA) muscles, as well as subcutaneous (SAT), visceral (VAT) and brown (BAT) adipose tissues from 13 C57BL/6J mice. Thereto, alongside stress-relaxation assessments we subjected isolated muscles and adipose tissues (ATs) to force-extension tests up to 10% and 30% of their optimal length, respectively. Peak passive stress was highest in the DIA, followed by the SOL and lowest in the EDL (p < 0.05). SOL displayed also the highest Young's modulus and hysteresis among muscles (p < 0.05). BAT demonstrated highest peak passive stress and Young's modulus followed by VAT (p < 0.05), while SAT showed the highest hysteresis (p < 0.05). When comparing data across all six biological specimens at fixed passive force intervals (i.e., 20-40 and 50-70 mN), skeletal muscles exhibited significantly higher peak stresses and strains than ATs (p < 0.05). Young's modulus was higher in skeletal muscles than in ATs (p < 0.05). Muscle specimens exhibited slower force relaxation in the first phase compared to ATs (p < 0.05), while there was no significant difference in behavior between muscles and AT in the second phase of relaxation. The study revealed distinctive mechanical behaviors specific to different tissues, and even between different muscles and ATs. These variations in mechanical properties are likely such to optimize the specific functions performed by each biological tissue.


Subject(s)
Adipose Tissue , Mice, Inbred C57BL , Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/physiology , Biomechanical Phenomena , Mechanical Phenomena , Male , Stress, Mechanical , Elastic Modulus , Mechanical Tests , Materials Testing
6.
J Mech Behav Biomed Mater ; 155: 106564, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749267

ABSTRACT

Polycaprolactone (PCL) nanofibers are a promising material for biomedical applications due to their biocompatibility, slow degradation rate, and thermal stability. We electrospun PCL fibers onto a striated substrate with 12 µm wide ridges and grooves and determined their mechanical properties in an aqueous solution with a combined atomic force/inverted optical microscopy technique. Fiber diameters, D, ranged from 27 to 280 nm. The hydrated PCL fibers had an extensibility (breaking strain), εmax, of 137%. The Young's modulus, E, and tensile strength, σT, showed a strong dependence on fiber diameter, D; decreasing steeply with increasing diameter, following empirical equations E(D)=(4.3∙103∙e-D51nm+1.1∙102) MPa and σT(D)=(2.6∙103∙e-D55nm+0.6∙102) MPa. Incremental stress-strain measurements were employed to investigate the viscoelastic behavior of these fibers. The fibers exhibited stress relaxation with a fast and slow relaxation time of 3.7 ± 1.2 s and 23 ± 8 s and these experiments also allowed the determination of the elastic and viscous moduli. Cyclic stress-strain curves were used to determine that the elastic limit of the fibers, εelastic, is between 19% and 36%. These curves were also used to determine that these fibers showed small energy losses (<20%) at small strains (ε < 10%), and over 50% energy loss at large strains (ε > 50%), asymptotically approaching 61%, as Eloss=61%·(1-e-0.04*ε). Our work is the first mechanical characterization of hydrated electrospun PCL nanofibers; all previous experiments were performed on dry PCL fibers, to which we will compare our data.


Subject(s)
Materials Testing , Nanofibers , Polyesters , Stress, Mechanical , Water , Polyesters/chemistry , Nanofibers/chemistry , Water/chemistry , Mechanical Phenomena , Tensile Strength , Elastic Modulus , Viscosity , Biocompatible Materials/chemistry
7.
Commun Biol ; 7(1): 617, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778159

ABSTRACT

The question of whether material stiffness enhances cell adhesion and clustering is still open to debate. Results from the literature are seemingly contradictory, with some reports illustrating that adhesion increases with surface stiffness and others suggesting that the performance of a system of cells is curbed by high values of elasticity. To address the role of elasticity as a regulator in neuronal cell adhesion and clustering, we investigated the topological characteristics of networks of neurons on polydimethylsiloxane (PDMS) surfaces - with values of elasticity (E) varying in the 0.55-2.65 MPa range. Results illustrate that, as elasticity increases, the number of neurons adhering on the surface decreases. Notably, the small-world coefficient - a topological measure of networks - also decreases. Numerical simulations and functional multi-calcium imaging experiments further indicated that the activity of neuronal cells on soft surfaces improves for decreasing E. Experimental findings are supported by a mathematical model, that explains adhesion and clustering of cells on soft materials as a function of few parameters - including the Young's modulus and roughness of the material. Overall, results indicate that - in the considered elasticity interval - increasing the compliance of a material improves adhesion, improves clustering, and enhances communication of neurons.


Subject(s)
Cell Adhesion , Elasticity , Neurons , Neurons/physiology , Animals , Dimethylpolysiloxanes/chemistry , Surface Properties , Elastic Modulus , Cells, Cultured , Rats
8.
BMC Musculoskelet Disord ; 25(1): 400, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773411

ABSTRACT

OBJECTIVE: Muscle dysfunction caused by repetitive work or strain in the neck region can interfere muscle responses. Muscle dysfunction can be an important factor in causing cervical spondylosis. However, there has been no research on how the biomechanical properties of the upper cervical spine change when the suboccipital muscle group experiences dysfunction. The objective of this study was to investigate the biomechanical evidence for cervical spondylosis by utilizing the finite element (FE) approach, thus and to provide guidance for clinicians performing acupoint therapy. METHODS: By varying the elastic modulus of the suboccipital muscle, the four FE models of C0-C3 motion segments were reconstructed under the conditions of normal muscle function and muscle dysfunction. For the two normal condition FE models, the elastic modulus for suboccipital muscles on both sides of the C0-C3 motion segments was equal and within the normal range In one muscle dysfunction FE model, the elastic modulus on both sides was equal and greater than 37 kPa, which represented muscle hypertonia; in the other, the elastic modulus of the left and right suboccipital muscles was different, indicating muscle imbalance. The biomechanical behavior of the lateral atlantoaxial joint (LAAJ), atlanto-odontoid joint (ADJ), and intervertebral disc (IVD) was analyzed by simulations, which were carried out under the six loadings of flexion, extension, left and right lateral bending, left and right axial rotation. RESULTS: Under flexion, the maximum stress in LAAJ with muscle imbalance was higher than that with normal muscle and hypertonia, while the maximum stress in IVD in the hypertonic model was higher than that in the normal and imbalance models. The maximum stress in ADJ was the largest under extension among all loadings for all models. Muscle imbalance and hypertonia did not cause overstress and stress distribution abnormalities in ADJ. CONCLUSION: Muscle dysfunction increases the stress in LAAJ and in IVD, but it does not affect ADJ.


Subject(s)
Cervical Vertebrae , Finite Element Analysis , Humans , Biomechanical Phenomena , Cervical Vertebrae/physiopathology , Spondylosis/physiopathology , Neck Muscles/physiopathology , Elastic Modulus , Range of Motion, Articular/physiology , Atlanto-Axial Joint/physiopathology , Muscle Hypertonia/physiopathology , Muscle Hypertonia/etiology
9.
Food Res Int ; 187: 114425, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763673

ABSTRACT

In this study, composite gel was prepared from konjac glucomannan (KGM) and fibrin (FN). Composite gels with different concentration ratios were compared in terms of their mechanical properties, rheological properties, water retention, degradation rate, microstructure and biocompatibility. The results showed that the composite gels had better gel strength and other properties than non-composite gels. In particular, composite hydrogels with low Young's modulus formed when the KGM concentration was 0.8% and the FN concentration was 1.2%. The two components were cross linked through hydrogen-bond interaction, which formed a more stable gel structure with excellent water retention and in-vitro degradation rates, which were conducive to myogenic differentiation of ectomesenchymal stem cells (EMSCs). KGM-FN composite gel was applied to the preparation of cell-culture meat, which had similar texture properties and main nutrients to animal meat as well as higher content of dry base protein and dry base carbohydrate.


Subject(s)
Fibrin , Hydrogels , Mannans , Rheology , Mannans/chemistry , Hydrogels/chemistry , Fibrin/chemistry , Animals , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells , Meat , Cell Differentiation , Elastic Modulus , Cell Culture Techniques
10.
Acta Biomater ; 181: 469-482, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723926

ABSTRACT

Medium-entropy alloys (MEAs) typically exhibit outstanding mechanical properties, but their high Young's modulus results in restricted clinical applications. Mismatched Young's modulus between implant materials and human bones can lead to "stress shielding" effects, leading to implant failure. In contrast, ß-Ti alloys demonstrate a lower Young's modulus compared to MEAs, albeit with lower strength. In the present study, based on the bimodal grain size distribution (BGSD) strategy, a series of high-performance TiZrNbTa/Ti composites are obtained by combining TiZrNbTa MEA powders with nano-scale grain sizes and commercially pure Ti (CP-Ti) powders with micro-scale grain sizes. Concurrently, Zr, Nb, and Ta that are ß-Ti stabilizer elements diffuse into Ti, inducing an isomorphous transformation in Ti from the high Young's modulus α-Ti phase to the low Young's modulus ß-Ti phase at room temperature, optimizing the mechanical biocompatibility. The TiZrNbTa/ß-Ti composite demonstrates a yield strength of 1490 ± 83 MPa, ductility of 20.7 % ± 2.9 %, and Young's modulus of 87.6 ± 1.6 GPa. Notably, the yield strength of the TiZrNbTa/ß-Ti composite surpasses that of sintered CP-Ti by 2.6-fold, and its ductility outperforms TiZrNbTa MEA by 2.3-fold. The Young's modulus of the TiZrNbTa/ß-Ti composite is reduced by 28 % and 36 % compared to sintered CP-Ti and TiZrNbTa MEA, respectively. Additionally, it demonstrates superior biocompatibility compared to CP-Ti plate, sintered CP-Ti, and TiZrNbTa MEA. With a good combination of mechanical properties and biocompatibility, the TiZrNbTa/ß-Ti composite exhibits significant potential for clinical applications as metallic biomaterials. STATEMENT OF SIGNIFICANCE: This work combines TiZrNbTa MEA with nano-grains and commercially pure Ti with micro-grains to fabricate a TiZrNbTa/ß-Ti composite with bimodal grain-size, which achieves a yield strength of 1490 ± 83 MPa and a ductility of 20.7 % ± 2.9 %. Adhering to the ISO 10993-5 standard, the TiZrNbTa/ß-Ti composite qualifies as a non-cytotoxic material, achieving a Class 0 cytotoxicity rating and demonstrating outstanding biocompatibility akin to commercially pure Ti. Drawing on element diffusion, Zr, Nb, and Ta serve not only as solvent atoms to achieve solid-solution strengthening but also as stabilizers for the transformation of the ß-Ti crystal structure. This work offers a novel avenue for designing advanced biomedical Ti alloys with elevated strength and plasticity alongside a reduced Young's modulus.


Subject(s)
Alloys , Biocompatible Materials , Materials Testing , Titanium , Titanium/chemistry , Titanium/pharmacology , Alloys/chemistry , Alloys/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Elastic Modulus , Humans , Niobium/chemistry , Niobium/pharmacology , Zirconium/chemistry , Zirconium/pharmacology , Phase Transition , Mice
11.
PLoS One ; 19(5): e0302778, 2024.
Article in English | MEDLINE | ID: mdl-38713687

ABSTRACT

INTRODUCTION: Magnetic resonance-guided focused ultrasound (MRgFUS) has been demonstrated to be able to thermally ablate tendons with the aim to non-invasively disrupt tendon contractures in the clinical setting. However, the biomechanical changes of tendons permitting this disrupting is poorly understood. We aim to obtain a dose-dependent biomechanical response of tendons following magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation. METHODS: Ex vivo porcine tendons (n = 72) were embedded in an agar phantom and randomly assigned to 12 groups based on MRgFUS treatment. The treatment time was 10, 20, or 30s, and the applied acoustic power was 25, 50, 75, or 100W. Following each MRgFUS treatment, tendons underwent biomechanical tensile testing on an Instron machine, which calculated stress-strain curves during tendon elongation. Rupture rate, maximum treatment temperature, Young's modulus and ultimate strength were analyzed for each treatment energy. RESULTS: The study revealed a dose-dependent response, with tendons rupturing in over 50% of cases when energy delivery exceeded 1000J and 100% disruption at energy levels beyond 2000J. The achieved temperatures during MRgFUS were directly proportional to energy delivery. The highest recorded temperature was 56.8°C ± 9.34 (3000J), while the lowest recorded temperate was 18.6°C ± 0.6 (control). The Young's modulus was highest in the control group (47.3 MPa ± 6.5) and lowest in the 3000J group (13.2 MPa ± 5.9). There was no statistically significant difference in ultimate strength between treatment groups. CONCLUSION: This study establishes crucial thresholds for reliable and repeatable disruption of tendons, laying the groundwork for future in vivo optimization. The findings prompt further exploration of MRgFUS as a non-invasive modality for tendon disruption, offering hope for improved outcomes in patients with musculotendinous contractures.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Tendons , Animals , Swine , Tendons/surgery , Tendons/physiology , Tendons/diagnostic imaging , Biomechanical Phenomena , High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging/methods , Tensile Strength , Elastic Modulus
12.
Skin Res Technol ; 30(5): e13740, 2024 May.
Article in English | MEDLINE | ID: mdl-38720488

ABSTRACT

BACKGROUND: The human nail has a three-layered structure. Although it would be useful to quantitatively evaluate the changes in deformability of the nail due to various surface treatments, few studies have been conducted. METHODS: The effects of two types of surface treatment-a chemically acting nail softener and a physically acting nail strengthener-on the deformability of human fingernails were investigated. The Young's modulus of each plate of the nail samples before and after softening treatment was determined by nanoindentation. The Young's modulus of the strengthener was determined by conducting a three-point bending test on a polyethylene sheet coated with the strengthener. RESULTS: Young's modulus decreased in order from the top plate against the softening treatment time, and the structural elasticity for bending deformation (SEB) of the nail sample, which expresses the deformability against bending deformation independent of its external dimensions, decreased to 60% after 6 h of treatment. The Young's modulus of the nail strengthener was 244.5 MPa, which is less than 10% of the SEB of the nail. When the nail strengthener was applied to the nail surface, the SEB decreased to 73%, whereas the flexural rigidity increased to 117%. CONCLUSION: Changes in nail deformability caused by various surface treatments for softening and hardening were quantitatively evaluated successfully.


Subject(s)
Elastic Modulus , Nails , Surface Properties , Humans , Elastic Modulus/physiology , Nails/physiology , Female , Elasticity/physiology , Adult
13.
Nano Lett ; 24(21): 6376-6385, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743504

ABSTRACT

The fibrous extracellular matrix (ECM) is vital for tissue regeneration and impacts implanted device treatments. Previous research on fibrous biomaterials shows varying cellular reactions to surface orientation, often due to unclear interactions between surface topography and substrate elasticity. Our study addresses this gap by achieving the rapid creation of hydrogels with diverse fibrous topographies and varying substrate moduli through a surface printing strategy. Cells exhibit heightened traction force on nanopatterned soft hydrogels, particularly with randomly distributed patterns compared with regular soft hydrogels. Meanwhile, on stiff hydrogels featuring an aligned topography, optimal cellular mechanosensing is observed compared to random topography. Mechanistic investigations highlight that cellular force-sensing and adhesion are influenced by the interplay of pattern deformability and focal adhesion orientation, subsequently mediating stem cell differentiation. Our findings highlight the importance of combining substrate modulus and topography to guide cellular behavior in designing advanced tissue engineering biomaterials.


Subject(s)
Cell Adhesion , Extracellular Matrix , Hydrogels , Hydrogels/chemistry , Extracellular Matrix/chemistry , Humans , Biocompatible Materials/chemistry , Surface Properties , Tissue Engineering/methods , Mechanotransduction, Cellular , Cell Differentiation , Focal Adhesions , Animals , Elastic Modulus , Mesenchymal Stem Cells/cytology
14.
ACS Appl Mater Interfaces ; 16(21): 27164-27176, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38750662

ABSTRACT

Macrophages are involved in every stage of the innate/inflammatory immune responses in the body tissues, including the resolution of the reaction, and they do so in close collaboration with the extracellular matrix (ECM). Simplified substrates with nanotopographical features attempt to mimic the structural properties of the ECM to clarify the functional features of the interaction of the ECM with macrophages. We still have a limited understanding of the macrophage behavior upon interaction with disordered nanotopography, especially with features smaller than 10 nm. Here, we combine atomic force microscopy (AFM), finite element modeling (FEM), and quantitative biochemical approaches in order to understand the mechanotransduction from the nanostructured surface into cellular responses. AFM experiments show a decrease of macrophage stiffness, measured with the Young's modulus, as a biomechanical response to a nanostructured (ns-) ZrOx surface. FEM experiments suggest that ZrOx surfaces with increasing roughness represent weaker mechanical boundary conditions. The mechanical cues from the substrate are transduced into the cell through the formation of integrin-regulated focal adhesions and cytoskeletal reorganization, which, in turn, modulate cell biomechanics by downregulating cell stiffness. Surface nanotopography and consequent biomechanical response impact the overall behavior of macrophages by increasing movement and phagocytic ability without significantly influencing their inflammatory behavior. Our study suggests a strong potential of surface nanotopography for the regulation of macrophage functions, which implies a prospective application relative to coating technology for biomedical devices.


Subject(s)
Macrophages , Surface Properties , Macrophages/cytology , Mice , Animals , Microscopy, Atomic Force , Nanostructures/chemistry , RAW 264.7 Cells , Extracellular Matrix/chemistry , Finite Element Analysis , Biomechanical Phenomena , Mechanotransduction, Cellular/physiology , Phagocytosis , Elastic Modulus
15.
Int J Prosthodont ; 37(7): 187-193, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38787583

ABSTRACT

PURPOSE: To characterize material changes that may occur in virgin cobalt-chromium (Co-Cr) alloy powder when it is blended with alloy powders that have been reused multiple times. MATERIALS AND METHODS: Initially, 20 kg of virgin Co-Cr powder was loaded into a laser-sintering device. The tensile test specimens were fabricated in the first (Group 1), fourth (Group 2), seventh (Group 3), tenth (Group 4), and thirteenth (Group 5) production cycles (N = 15). Prior to fabricating the specimens, powder alloy samples were collected from the powder bed for analysis. The tensile strength, elastic modulus, and percent elongation were calculated with tensile testing. Scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM/EDS) and laser particle size distribution (LPSD) were used to analyze the alloy powder samples. The fracture surface of one tensile test specimen from each group was examined via SEM/EDS. One-way ANOVA followed by Dunnett T3 test was used for statistical analysis (α = .05). RESULTS: No difference was observed between groups in terms of tensile strength. A statistically significant difference was observed between Groups 1 and 2 in terms of percent elongation. Groups 2 and 4 were statistically significantly different in terms of both elastic modulus and percent elongation (P ≤ .05). SEM images of the powder alloy showed noticeable differences with increasing numbers of cycles. SEM images and the EDS analysis of the fractured specimens were in accordance with the strength data. CONCLUSIONS: Reusing Co-Cr alloy powder increased the particle size distribution. However, there was no correlation between increased cycle number and the mechanical properties of the powder.


Subject(s)
Chromium Alloys , Materials Testing , Microscopy, Electron, Scanning , Particle Size , Powders , Tensile Strength , Chromium Alloys/chemistry , Elastic Modulus , Spectrometry, X-Ray Emission , In Vitro Techniques , Surface Properties
16.
PLoS One ; 19(5): e0302729, 2024.
Article in English | MEDLINE | ID: mdl-38743667

ABSTRACT

The constitutive model and modulus parameter equivalence of shape memory alloy composites (SMAC) serve as the foundation for the structural dynamic modeling of composite materials, which has a direct impact on the dynamic characteristics and modeling accuracy of SMAC. This article proposes a homogenization method for SMA composites considering interfacial phases, models the interface stress transfer of three-phase cylinders physically, and derives the axial and shear stresses of SMA fiber phase, interfacial phase, and matrix phase mathematically. The homogenization method and stress expression were then used to determine the macroscopic effective modulus of SMAC as well as the stress characteristics of the fiber phase and interface phase of SMA. The findings demonstrate the significance of volume fraction and tensile pre-strain in stress transfer between the fiber phase and interface phase at high temperatures. The maximum axial stress in the fiber phase is 705.05 MPa when the SMA is fully austenitic and the pre-strain increases to 5%. At 10% volume fraction of SMA, the fiber phase's maximum axial stress can reach 1000 MPa. Ultimately, an experimental verification of the theoretical calculation method's accuracy for the effective modulus of SMAC lays the groundwork for the dynamic modeling of SMAC structures.


Subject(s)
Alloys , Stress, Mechanical , Tensile Strength , Alloys/chemistry , Materials Testing/methods , Elastic Modulus , Smart Materials/chemistry , Models, Theoretical
17.
Biomed Mater ; 19(3)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38636492

ABSTRACT

Three-dimensional (3D) printing has emerged as a transformative technology for tissue engineering, enabling the production of structures that closely emulate the intricate architecture and mechanical properties of native biological tissues. However, the fabrication of complex microstructures with high accuracy using biocompatible, degradable thermoplastic elastomers poses significant technical obstacles. This is primarily due to the inherent soft-matter nature of such materials, which complicates real-time control of micro-squeezing, resulting in low fidelity or even failure. In this study, we employ Poly (L-lactide-co-ϵ-caprolactone) (PLCL) as a model material and introduce a novel framework for high-precision 3D printing based on the material plasticization process. This approach significantly enhances the dynamic responsiveness of the start-stop transition during printing, thereby reducing harmful errors by up to 93%. Leveraging this enhanced material, we have efficiently fabricated arrays of multi-branched vascular scaffolds that exhibit exceptional morphological fidelity and possess elastic moduli that faithfully approximate the physiological modulus spectrum of native blood vessels, ranging from 2.5 to 45 MPa. The methodology we propose for the compatibilization and modification of elastomeric materials addresses the challenge of real-time precision control, representing a significant advancement in the domain of melt polymer 3D printing. This innovation holds considerable promise for the creation of detailed multi-branch vascular scaffolds and other sophisticated organotypic structures critical to advancing tissue engineering and regenerative medicine.


Subject(s)
Biocompatible Materials , Elastomers , Polyesters , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Elastomers/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Polyesters/chemistry , Biocompatible Materials/chemistry , Elastic Modulus , Materials Testing , Humans , Stress, Mechanical , Blood Vessels , Blood Vessel Prosthesis
18.
Scand J Med Sci Sports ; 34(5): e14638, 2024 May.
Article in English | MEDLINE | ID: mdl-38671559

ABSTRACT

This study aimed to examine the temporal dynamics of muscle-tendon adaptation and whether differences between their sensitivity to mechano-metabolic stimuli would lead to non-uniform changes within the triceps surae (TS) muscle-tendon unit (MTU). Twelve young adults completed a 12-week training intervention of unilateral isometric cyclic plantarflexion contractions at 80% of maximal voluntary contraction until failure to induce a high TS activity and hence metabolic stress. Each participant trained one limb at a short (plantarflexed position, 115°: PF) and the other at a long (dorsiflexed position, 85°: DF) MTU length to vary the mechanical load. MTU mechanical, morphological, and material properties were assessed biweekly via simultaneous ultrasonography-dynamometry and magnetic resonance imaging. Our hypothesis that tendon would be more sensitive to the operating magnitude of tendon strain but less to metabolic stress exercise was confirmed as tendon stiffness, Young's modulus, and tendon size were only increased in the DF condition following the intervention. The PF leg demonstrated a continuous increment in maximal AT strain (i.e., higher mechanical demand) over time along with lack of adaptation in its biomechanical properties. The premise that skeletal muscle adapts at a higher rate than tendon and does not require high mechanical load to hypertrophy or increase its force potential during exercise was verified as the adaptive changes in morphological and mechanical properties of the muscle did not differ between DF and PF. Such differences in muscle-tendon sensitivity to mechano-metabolic stimuli may temporarily increase MTU imbalances that could have implications for the risk of tendon overuse injury.


Subject(s)
Adaptation, Physiological , Magnetic Resonance Imaging , Muscle, Skeletal , Tendons , Ultrasonography , Humans , Male , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Tendons/physiology , Tendons/diagnostic imaging , Adaptation, Physiological/physiology , Biomechanical Phenomena , Adult , Female , Isometric Contraction/physiology , Elastic Modulus/physiology
19.
Comput Biol Med ; 174: 108405, 2024 May.
Article in English | MEDLINE | ID: mdl-38613890

ABSTRACT

BACKGROUND: Uncemented femoral stem insertion into the bone is achieved by applying successive impacts on an inserter tool called "ancillary". Impact analysis has shown to be a promising technique to monitor the implant insertion and to improve its primary stability. METHOD: This study aims to provide a better understanding of the dynamic phenomena occurring between the hammer, the ancillary, the implant and the bone during femoral stem insertion, to validate the use of impact analyses for implant insertion monitoring. A dynamic 3-D finite element model of the femoral stem insertion via an impaction protocol is proposed. The influence of the trabecular bone Young's modulus (Et), the interference fit (IF), the friction coefficient at the bone-implant interface (µ) and the impact velocity (v0) on the implant insertion and on the impact force signal is evaluated. RESULTS: For all configurations, a decrease of the time difference between the two first peaks of the impact force signal is observed throughout the femoral stem insertion, up to a threshold value of 0.23 ms. The number of impacts required to reach this value depends on Et, v0 and IF and varies between 3 and 8 for the set of parameters considered herein. The bone-implant contact ratio reached after ten impacts varies between 60% and 98%, increases as a function of v0 and decreases as a function of IF, µ and Et. CONCLUSION: This study confirms the potential of an impact analyses-based method to monitor implant insertion and to retrieve bone-implant contact properties.


Subject(s)
Femur , Finite Element Analysis , Humans , Femur/physiology , Hip Prosthesis , Models, Biological , Biomechanical Phenomena/physiology , Elastic Modulus
20.
Int J Biol Macromol ; 267(Pt 2): 131726, 2024 May.
Article in English | MEDLINE | ID: mdl-38688791

ABSTRACT

The characteristics of multi-hydroxyl structure and strong hydrogen bonding in polyvinyl alcohol (PVA) make its melting point close to its decomposition temperature, causing melt-processing difficulty. In this work, following the plasticization of small-molecule primary plasticizer acetamide, lignin was demonstrated as a green secondary plasticizer in realizing the melt processing and simultaneous reinforcement of PVA. During the plasticization process, lignin was able to combine with the hydroxyl groups of PVA, so as to destroy the hydrogen bonds and regularity of the PVA chains. The synergistic plasticization effect of lignin dramatically reduced the melting point of PVA from 185 °C to 151 °C. The thermal processing window of PVA composites was expanded from 50 °C to roughly 80 °C after introducing lignin. In contrast to acetamide, the addition of lignin significantly increased the tensile strength and Young's modulus of the composites to 71 MPa and 1.34 GPa, respectively. Meanwhile, lignin helped to hinder the migration of acetamide via hydrogen bonds. With the addition of lignin, the composites also displayed enhanced hydrophobicity and excellent UV shielding performance. The strategy of synergistic plasticization of lignin provides a feasible basis for the practical application of lignin in melt-processable PVA materials with good comprehensive properties.


Subject(s)
Lignin , Plasticizers , Polyvinyl Alcohol , Tensile Strength , Lignin/chemistry , Polyvinyl Alcohol/chemistry , Plasticizers/chemistry , Hydrogen Bonding , Temperature , Elastic Modulus , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...