Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.516
Filter
1.
Sensors (Basel) ; 24(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39000818

ABSTRACT

BACKGROUND: the feasibility of the capacitance method for detecting the water content in standing tree trunks was investigated using capacitance-based equipment that was designed for measuring the water content of standing tree trunks. METHODS: In laboratory experiments, the best insertion depth of the probe for standing wood was determined by measurement experiments conducted at various depths. The bark was to be peeled when specimens and standing wood were being measured. The actual water content of the test object was obtained by specimens being weighed and the standing wood being weighed after the wood core was extracted. RESULTS: A forecast of the moisture content of standing wood within a range of 0 to 180% was achieved by the measuring instrument. The feasibility of the device for basswood and fir trees is preliminarily studied. When compared to the drying method, the average error of the test results was found to be less than 8%, with basswood at 7.75%, and fir at 7.35%. CONCLUSIONS: It was concluded that the measuring instrument has a wide measuring range and is suitable for measuring wood with low moisture content, as well as standing timber with high moisture content. The measuring instrument, being small in size, easy to carry, and capable of switching modes, is considered to have a good application prospect in the field of forest precision monitoring and quality improvement.


Subject(s)
Electric Capacitance , Trees , Water , Wood , Water/chemistry , Wood/chemistry
2.
Environ Sci Pollut Res Int ; 31(32): 45295-45309, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963623

ABSTRACT

Manganese oxide is a potential agent in the field of energy storage owing to its changeable redox characteristics, high theoretical specific capacitance and valence shells for charge transfer. On the other hand, due to huge surface area, affordability, customisable composition, layered structure and high theoretical specific capacitance, layered double hydroxides, or LDHs, have drawn a lot of interest. This study employs a three-electrode setup to investigate the supercapacitive performance of λ-manganese dioxide/Cu-Al LDH composite at different compositional ratios. To enhance the adhesive and conductivity capabilities, 10% of CNT additive and PVDF binder are added for the composites. Out of all the composites, the one with the greatest weight percentage of λ-manganese dioxide shows the best electrode performance with a superior specific capacitance of 164 F/g at a scan rate of 10 mV/s. Additionally, using a symmetrical two-electrode setup, the best-performing electrode is examined. The result shows an exceptional potential window of 2.7 V in a basic electrolyte, a power density of 4.04 kW/kg at 3 A/g, an energy density of 20.32 Wh/kg at 1 A/g, and a specific capacitance of 37 F/g.


Subject(s)
Copper , Electric Capacitance , Electrodes , Hydroxides , Manganese Compounds , Oxidation-Reduction , Oxides , Manganese Compounds/chemistry , Oxides/chemistry , Hydroxides/chemistry , Copper/chemistry , Aluminum/chemistry
3.
Sci Rep ; 14(1): 15797, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982105

ABSTRACT

This work presents a novel and versatile approach to employ textile capacitive sensing as an effective solution for capturing human body movement through fashionable and everyday-life garments. Conductive textile patches are utilized for sensing the movement, working without the need for strain or direct body contact, wherefore the patches can sense only from their deformation within the garment. This principle allows the sensing area to be decoupled from the wearer's body for improved wearing comfort and more pleasant integration. We demonstrate our technology based on multiple prototypes which have been developed by an interdisciplinary team of electrical engineers, computer scientists, digital artists, and smart fashion designers through several iterations to seamlessly incorporate the technology of capacitive sensing with corresponding design considerations into textile materials. The resulting accumulation of textile capacitive sensing wearables showcases the versatile application possibilities of our technology from single-joint angle measurements towards multi-joint body part tracking.


Subject(s)
Movement , Textiles , Wearable Electronic Devices , Humans , Electric Capacitance , Equipment Design
4.
Int J Biol Macromol ; 273(Pt 1): 132962, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848827

ABSTRACT

The preparation of natural polymer-based highly conductive hydrogels with reliable durability for applications in supercapacitors (SCs) is still challenging. Herein, a facile method to prepare alkaline lignin (AL)-based polypyrrole (PPy)-rich, high-conductive PPy@AL/PEGDGE gel was reported, where AL was used as a dopant, polyethylene glycol diglycidyl ether (PEGDGE) as a cross-linking agent, and PPy as a conducting polymer. The PPy@AL/PEGDGE gel electrode materials with hollow structures were prepared by electrochemical deposition and chemical etching method and then assembled into sandwich-shaped SCs. Cyclic voltammetry (CV), galvanotactic charge discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests of the PPy@AL/PEGDGE SCs were performed. The results demonstrated that the SCs can achieve a conductivity of 25.9 S·m-1 and a specific capacitance of 175 F·g-1, which was 127.4 % higher compared to pure PPy (77 F·g-1) electrode. The highest energy density and power density for the SCs were obtained at 23.06 Wh·kg-1 and 5376 W·kg-1, respectively. In addition, the cycling performance was also higher than that of pure PPy assembled SCs (50 %), and the capacitance retention rate can reach 72.3 % after 1000 cycles. The electrode materials are expected to be used as sensor and SCs devices.


Subject(s)
Electric Capacitance , Electrodes , Hydrogels , Lignin , Polymers , Pyrroles , Pyrroles/chemistry , Lignin/chemistry , Polymers/chemistry , Hydrogels/chemistry , Electric Conductivity , Electrochemical Techniques/methods
5.
Int J Biol Macromol ; 273(Pt 1): 132994, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862050

ABSTRACT

As flexible electronics devices for energy storage, mechanical energy collection and self-powered sensing, stretchable flexible supercapacitor and triboelectric nanogenerator (TENG) have attracted extensive attention. However, it is difficult to satisfy the requirements of high safety and resistance to extreme conditions. Dual roles of mechanical and electrical enhancement of inorganic salt are put forward, and a carrageenan (CG) enhanced poly (N-hydroxyethyl acrylamide)/CG/lithium chloride/glycerol (PCLG) conductive gel is prepared by designing hydrogen bonding self-crosslinking and chain entanglement. A high concentration and rapid deposition strategy is proposed to prepare a PCLG gel-based stretchable flexible all-in-one supercapacitor for energy storage, and a single electrode PCLG gel-based TENG is designed for mechanical energy collection, self-powered strain and tactile sensing. The supercapacitor has high capacitance, excellent cycling stability. The TENG possesses efficient energy harvesting with high and stable output voltage and power density, and sensitive and stable self-powered strain and tactile sensing without external power supply. Even under extreme conditions such as low temperatures, self-healing after damage, prolonged placement, deformation, post-deformation, multiple continuous work, pinprick and burning, the supercapacitor and TENG still have excellent properties. Therefore, we provide novel ideas to design flexible supercapacitor and TENG used under extreme conditions for future wearable electronics.


Subject(s)
Carrageenan , Electric Capacitance , Electric Power Supplies , Gels , Carrageenan/chemistry , Gels/chemistry , Wearable Electronic Devices , Nanotechnology
6.
Int J Biol Macromol ; 273(Pt 1): 133017, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876242

ABSTRACT

Supercapacitors are the preferred option for supporting renewable energy sources owing to many benefits, including fast charging, long life, high energy and power density, and saving energy. While electrode materials with environmentally friendly preparation, high performance, and low cost are important research directions of supercapacitors. At present, the growing global population and the increasingly pressing issue of environmental pollution have drawn the focus of numerous researchers worldwide to the development and utilization of renewable biomass resources. Lignin, a renewable aromatic polymer, has reserves second only to cellulose in nature. Ten million tonnes of industrial lignin are produced in pulp and paper mills annually, most of which are disposed of as waste or burned for fuel, seriously depleting natural resources and polluting the environment. One practical strategy to accomplish sustainable development is to employ lignin resources to create high-value materials. Based on the high carbon content and rich functional groups of lignin, the lignin-based carbon materials generated after carbonization treatment display specific electrochemical properties as electrode materials. Nevertheless, low electrochemical activity of untreated lignin precludes it from achieving its full potential for application in energy storage. Heteroatom doping is a common modification method that aims to improve the electrochemical performance of the electrode materials by optimizing the structure of the lignin, improving its pore structure and increasing the number of active sites on its surface. This paper aims to establish theoretical foundations for design, preparation, and optimizing the performance of heteroatom-doped lignin-based carbon materials, as well as for developing high-value-added lignin materials. The most reported the mechanism of supercapacitors, the doping process involving various types of heteroatoms, and the analysis of how heteroatoms affect the performance of lignin-based carbon materials are also detailed in this review.


Subject(s)
Carbon , Electric Capacitance , Electrodes , Lignin , Lignin/chemistry , Carbon/chemistry
7.
Int J Biol Macromol ; 273(Pt 2): 133203, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38885860

ABSTRACT

This study investigates the performance of biopolymer electrolytes based on chitosan and dextran for energy storage applications. The optimization of ion transport and performance of electric double-layer capacitors EDCL using these electrolytes, incorporating different concentrations of glycerol as a plasticizer and TiO2 as nanoparticles, is explored. Impedance measurements indicate a notable reduction in charge transfer resistance with the addition of TiO2. DC conductivity estimates from AC spectra plateau regions reach up to 5.6 × 10-4 S/cm. The electric bulk resistance Rb obtained from the Nyquist plots exhibits a substantial decrease with increasing plasticizer concentration, further enhanced by the addition of the nanoparticles. Specifically, Rb decreases from ∼20 kΩ to 287 Ω when glycerol concentration increases from 10 % to 40 % and further drops to 30 Ω with the introduction of TiO2. Specific capacitance obtained from cyclic voltammetry shows a notable increase as the scan rate decreases, indicating improved efficiency and stability of ion transport. The TiO2-enriched EDCL achieves 12.3 F/g specific capacitance at 20 mV/s scan rate, with high ion conductivity and extended electrochemical stability. These results suggest the great potential of plasticizer and TiO2 with biopolymers in improving the performance of energy storage systems.


Subject(s)
Chitosan , Dextrans , Electrolytes , Ion Transport , Titanium , Titanium/chemistry , Chitosan/chemistry , Electrolytes/chemistry , Dextrans/chemistry , Electric Capacitance , Electric Conductivity , Plasticizers/chemistry
8.
Int J Biol Macromol ; 273(Pt 2): 133037, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38897523

ABSTRACT

With the development of renewable energy technologies, the demand for efficient energy storage systems is growing. Supercapacitors have attracted considerable attention as efficient electrical energy storage devices because of their excellent power density, fast charging and discharging capabilities, and long cycle life. Carbon nanofibers are widely used as electrode materials in supercapacitors because of their excellent mechanical properties, electrical conductivity, and light weight. Although environmental factors are increasingly driving the application of circular economy concepts in materials science, lignin is an underutilized but promising environmentally benign electrode material for supercapacitors. Lignin-based carbon nanofibers are ideal for preparing high-performance supercapacitor electrode materials owing to their unique chemical stability, abundance, and environmental friendliness. Electrospinning is a well-known technique for producing large quantities of uniform lignin-based nanofibers, and is the simplest method for the large-scale production of lignin-based carbon nanofibers with specific diameters. This paper reviews the latest research progress in the preparation of lignin-based carbon nanofibers using the electrospinning technology, discusses the prospects of their application in supercapacitors, and analyzes the current challenges and future development directions. This is expected to have an enlightening effect on subsequent research.


Subject(s)
Carbon , Electric Capacitance , Lignin , Nanofibers , Lignin/chemistry , Nanofibers/chemistry , Carbon/chemistry , Electrodes , Electrochemical Techniques/methods
9.
ACS Appl Mater Interfaces ; 16(26): 34042-34056, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38887945

ABSTRACT

Flexible capacitive pressure sensors based on ionic hydrogels (IHs) have garnered significant attention in the field of wearable technology. However, the vulnerability of traditional single-network hydrogels to mechanical damage and the complexity associated with preparing double-network hydrogels present challenges in developing a highly sensitive, easily prepared, and durable IH-based flexible capacitive pressure sensor. This study introduces a novel multicross-linked dual-network IH achieved through the physical and chemical cross-linking of polymers polyvinyl alcohol (PVA) and chitosan (CS), ionic solution H3PO4, and cross-linking agent gum arabic. Flexible capacitive pressure sensors, characterized by high sensitivity and a broad pressure range, are fabricated by employing mesh as templates to design cut-corner cube microstructures with high uniformity and controllability on the IHs. The sensor exhibits high sensitivity across a wide pressure range (0-290 kPa) and with excellent features such as high resolution (∼1.3 Pa), fast response-recovery time (∼11 ms), and repeatable compression stability at 25 kPa (>2000 cycles). The IHs as a dielectric layer demonstrate long-term water retention properties, enabling exposure to air for up to 100 days. Additionally, the developed sensor shows the ability to accurately measure the pulse wave within the small pressure range. By combining the pulse wave acquired by the sensor with a trained neural network model, we achieve successful blood pressure (BP) prediction, meeting the standards set by the Association for the Advancement of Medical Instrumentation and the British Hypertension Society. Ultimately, the sensor proposed in this study holds promising prospects for broad applications in high-precision wearable medical electronic devices.


Subject(s)
Hydrogels , Wearable Electronic Devices , Hydrogels/chemistry , Humans , Polyvinyl Alcohol/chemistry , Chitosan/chemistry , Electric Capacitance , Blood Pressure Determination/instrumentation , Blood Pressure , Pressure
10.
Biosens Bioelectron ; 260: 116462, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38833834

ABSTRACT

Design and intelligent use renewable natural bioenergy is an important challenge. Electric microorganism-based materials are being serve as an important part of bioenergy devices for energy release and collection, calling for suitable skeleton materials to anchor live microbes. Herein we verified the feasibility of constructing bio-abiotic hybrid living materials based on the combination of gelatin, Li-ions and exoelectrogenic bacteria Shewanella oneidensis manganese-reducing-1 (MR-1). The gelatin-based mesh contains abundant pores, allowing microbes to dock and small molecules to diffuse. The hybrid materials hold plentiful electronegative groups, which effectively anchor Li-ions and facilitate their transition. Moreover, the electrochemical characteristics of the materials can be modulated through changing the ratios of gelatin, bacteria and Li-ions. Based on the gelatin-Li-ion-microorganism hybrid materials, a bifunctional device was fabricated, which could play dual roles alternatively, generation of electricity as a microbial fuel cell and energy storage as a pseudocapacitor. The capacitance and the maximum voltage output of the device reaches 68 F g-1 and 0.67 V, respectively. This system is a new platform and fresh start to fabricate bio-abiotic living materials for microbial electron storage and transfer. We expect the setup will extend to other living systems and devices for synthetic biological energy conversion.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Hydrogels , Shewanella , Bioelectric Energy Sources/microbiology , Shewanella/chemistry , Shewanella/metabolism , Hydrogels/chemistry , Biosensing Techniques/methods , Gelatin/chemistry , Lithium/chemistry , Electrochemical Techniques/methods , Equipment Design , Electric Capacitance
11.
Int J Biol Macromol ; 272(Pt 2): 132871, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862321

ABSTRACT

Fabrication of sustainable bio-based malleable thermosets (BMTs) with excellent mechanical properties and reprocessing ability for applications in electronic devices has attracted more and more attention but remains significant challenges. Herein, the BMTs with excellent mechanical robustness and reprocessing ability were fabricated via integrating with radical polymerization and Schiff-base chemistry, and employed as the flexible substrate to prepare the capacitive sensor. To prepare the BMTs, an elastic bio-copolymer derived from plant oil and 5-hydroxymethylfurfural was first synthesized, and then used to fabricate the dynamic crosslinked BMTs through Schiff-base chemistry with the amino-modified cellulose and polyether amine. The synergistic effect of rigid cellulose backbone and the construction of dynamic covalent crosslinking network not only achieved high tensile strength (8.61 MPa) and toughness (3.77 MJ/m3) but also endowed the BMTs with excellent reprocessing ability with high mechanical toughness recovery efficiency of 104.8 %. More importantly, the BMTs were used as substrates to fabricate the capacitive sensor through the CO2-laser irradiation technique. The resultant capacitive sensor displayed excellent and sensitive humidity sensing performance, which allowed it to be successfully applied in human health monitoring. This work paved a promising way for the preparation of mechanical robustness malleable bio-thermosets for electronic devices.


Subject(s)
Cellulose , Furaldehyde , Plant Oils , Cellulose/chemistry , Furaldehyde/chemistry , Furaldehyde/analogs & derivatives , Plant Oils/chemistry , Electric Capacitance , Temperature , Tensile Strength , Humans
12.
Biomacromolecules ; 25(6): 3651-3660, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38785044

ABSTRACT

The desire for healthy living has created a crucial need for portable flexible health-monitoring devices based on biomaterials. Toward this end, we report a microsphere-structured hydrogel that uses bovine serum albumin (BSA) as a dielectric layer for capacitive pressure sensors. We developed a theoretical model that describes how stacking dielectric layers of spheres affects the performance of capacitive sensors. We also prepared a prototype sensor featuring the unique microsphere structure to create capacitive sensors with high sensitivity (360.91 strain sensitivity), excellent cyclical stability, and a long service life (over 5000 stretching-compression cycles). Furthermore, the design of the hydrogel sensor allows for easy integration into fabrics to create devices such as smart wristbands, which can collect a diverse range of health data. Thus, BSA-hydrogel-based sensors not only provide safe wearable devices but also advance the performance of high-sensitivity capacitive sensors.


Subject(s)
Hydrogels , Microspheres , Serum Albumin, Bovine , Wearable Electronic Devices , Serum Albumin, Bovine/chemistry , Hydrogels/chemistry , Humans , Electric Capacitance , Animals , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Cattle
13.
J Mater Chem B ; 12(23): 5749-5757, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38771646

ABSTRACT

With the advancement in the field of biomedical research, there is a growing demand for biodegradable electronic devices. Biodegradable supercapacitors (SCs) have emerged as an ideal solution for mitigating the risks associated with secondary surgeries, reducing patient discomfort, and promoting environmental sustainability. In this study, MoNx@Mo-foil was prepared as an active material for biodegradable supercapacitors through high-temperature and nitridation processes. The composite electrode exhibited superior electrochemical performance in both aqueous and solid-state electrolytes. In the case of the solid-state electrolyte, the MoNx@Mo-foil composite electrode-based device demonstrated excellent cycling stability and electrochemical performance. Additionally, the composite electrode exhibited rapid and complete biodegradability in a 3% H2O2 solution. Through detailed experimental analysis and performance testing, we verified the potential application of the MoNx@Mo-foil composite electrode in biodegradable supercapacitors. This work provides a new choice of degradable material for developing biomedical electronic devices.


Subject(s)
Electric Capacitance , Electrodes , Humans , Molybdenum/chemistry , Electrochemical Techniques , Biocompatible Materials/chemistry , Particle Size , Surface Properties
14.
Bioresour Technol ; 403: 130865, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801954

ABSTRACT

N-doped porous biochar is a promising carbon material for supercapacitor electrodes due to its developed pore structure and high chemical activity which greatly affect the capacitive performance. Predicting the capacitance and exploring the most influential factors are of great significance because it can not only avoid the trial-and-error experiments but also provide guidance for the synthesis of biochar with the aim of capacitance enhancement. In this study, a CNN model with ReLU activation function was established using DenseNet architecture for specific capacitance prediction. The importance and impacts of the physiochemical properties of N-doped porous biochar to the capacitance were revealed. With the guidance of the model, N-doped porous biochar samples with high capacitance were synthesized, the data of which were further used for model validation. This study provides not only a deep learning model which can be used in practice for capacitance prediction but also directions for the synthesis of N-doped porous biochar with high capacitive performance.


Subject(s)
Charcoal , Deep Learning , Electric Capacitance , Nitrogen , Charcoal/chemistry , Nitrogen/chemistry , Porosity , Electrodes
15.
Chemosphere ; 361: 142400, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38789052

ABSTRACT

Supercapacitor electrodes (SCs) of carbon-based materials with flexible structures and morphologies have demonstrated excellent electrical conductivity and chemical stability. Herein, a clean and cost-effective method for producing a 3D self-doped honeycomb-like carbonaceous material with KOH activation from bio-waste oyster shells (BWOSs) is described. A remarkable performance was achieved by the excellent hierarchical structured carbon (HSC-750), which has a large surface area and a reasonably high packing density. The enhanced BWOSs-derived HSC-750 shows an ultrahigh specific capacitance of 525 F/g at 0.5 A g-1 in 3 M KOH electrolyte, as well as high specific surface area (2377 m2 g-1), pore volume (1.35 cm3 g-1), nitrogen (4.70%), and oxygen (10.58%) doping contents. The SCs also exhibit exceptional cyclic stability, maintaining 98.5% of their capacitance after 10,000 charge/discharge cycles. The two-electrode approach provides a super high energy density of 28 Wh kg-1 at a power density of 250 W kg-1 in an alkaline solution, with remarkable cyclability after 10,000 cycles. The study demonstrates the innovative HSC synthesis from BWOSs precursor and cost-effective fabrication of 3D N/O self-doped heteroatom HSC for flexible energy storage.


Subject(s)
Carbon , Electric Capacitance , Electrodes , Nitrogen , Porosity , Carbon/chemistry , Nitrogen/chemistry , Animals , Oxygen/chemistry , Ostreidae/chemistry , Electric Conductivity
16.
Int J Biol Macromol ; 271(Pt 2): 132585, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38810849

ABSTRACT

Benefiting from the tissue-like mechanical properties, conductive hydrogels have emerged as a promising candidate for manufacturing wearable electronics. However, the high water content within hydrogels will inevitably freeze at subzero temperature, causing a degradation or loss of functionality, which severely prevent their practical application in wearable electronics. Herein, an anti-freezing hydrogel integrating high conductivity, superior stretchability, and robust adhesion was fabricated by dissolving choline chloride and gallium in gelatin/guar gum network using borax as the cross-linker. Based on the synergistic effect of dynamic borate ester bonds and hydrogen bonds, the hydrogel exhibited rapid self-healing property and excellent fatigue resistance. Profiting from these fascinating characteristics, the hydrogel was assembled as strain sensor to precisely detect various human activities with high strain sensitivity and fast response time. Meanwhile, the hydrogel was demonstrated high sensitivity and rapid response to temperature, which can be used as thermal sensor to monitor temperature. Moreover, the conductive hydrogel was encapsulated into supercapacitors with high areal capacitance and favorable cycle stability. Importantly, the flexible sensor and supercapacitors still maintain stable sensing performance and good electrochemical performance even at subzero temperature. Therefore, our work broaden hydrogels application in intelligent wearable devices and energy storage in extreme environments.


Subject(s)
Electric Conductivity , Gelatin , Hydrogels , Wearable Electronic Devices , Hydrogels/chemistry , Gelatin/chemistry , Freezing , Plant Gums/chemistry , Electric Capacitance , Mannans/chemistry , Humans , Metals/chemistry
17.
Int J Biol Macromol ; 270(Pt 2): 132191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729466

ABSTRACT

Obtaining lignin-based graphite-like microcrystallites at a relatively low carbonization temperature is still very challenging. In this work, we report a new method based on condensed structures, for regulating graphite-like microcrystalline structures via the incorporation of 4,4'-diphenylmethane diisocyanate (MDI) into the main structure of lignin. The effects of MDI on the thermal properties of lignin and the graphite-like microcrystalline structure of lignin-based ultrafine carbon fibers were extensively studied and investigated. The incorporation of MDI decreased the thermal stability of lignin, increased the carbon yield and enhanced the formation of graphite-like microcrystallites, which are beneficial for reducing energy consumption during the preparation of lignin-based carbon fibers. The modified lignin-based ultrafine carbon fibers (M-LCFs) demonstrated satisfactory electrochemical performance, including high specific capacitance, low charge transfer resistance, and good cycle performance. The M-LCFs-3/2 electrode had a specific capacitance of 241.3 F g-1 at a current density of 0.5 A g-1, and a residual ratio of 90.2 % after 2000 charge and discharge cycles. This study provides a new approach to control the graphite-like microcrystalline structure and electrochemical performance while also optimizing the temperature.


Subject(s)
Carbon Fiber , Graphite , Lignin , Lignin/chemistry , Graphite/chemistry , Carbon Fiber/chemistry , Crystallization , Temperature , Electric Capacitance , Electrodes , Carbon/chemistry
18.
Int J Biol Macromol ; 270(Pt 1): 132150, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729470

ABSTRACT

The escalating industrialization trend underscores the imperative for sustainable waste management practices. The present investigation explores a sustainable methodology for managing the waste generated from the kraft process by directly converting it into activated carbon (BLAC) through a cost-effective hydrothermal-assisted activation method. The research involved a comparative analysis of BLAC with acid-washed black liquor lignin-derived activated carbon (ABLAC) and commercial lignin-derived activated carbon (SALAC). The analysis revealed that BLAC possesses a well-developed micro and mesoporous structure, yielding a significantly higher surface area of 2277.2 m2/g as compared to ABLAC (1260 m2/g) and SALAC (1558.4 m2/g). The presence of inherent alkali in the black liquor is the main factor influencing the surface area of the BLAC. Furthermore, it demonstrated impressive electrochemical performance, showing a specific capacitance value of 871.4 F/g at 1 A/g current density, positioning it as a formidable electrode material for supercapacitor applications. The proposed direct conversion strategy will eliminate the need for high-temperature pre­carbonization and additional lignin extraction, reducing chemical usage and presenting a greener approach.


Subject(s)
Charcoal , Electric Capacitance , Electrodes , Lignin , Lignin/chemistry , Charcoal/chemistry , Porosity
19.
Biosensors (Basel) ; 14(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38785715

ABSTRACT

Electrochemical impedance spectroscopy (EIS) is becoming more and more relevant for the characterization of biosensors employing interdigitated electrodes. We compare four different sensor topologies for an exemplary use case of ion sensing to extract recommendations for the design optimizations of impedimetric biosensors. Therefore, we first extract how sensor design parameters affect the sensor capacitance using analytical calculations and finite element (FEM) simulations. Moreover, we develop equivalent circuit models for our sensor topologies and validate them using FEM simulations. As a result, the impedimetric sensor response is better understood, and sensitive and selective frequency ranges can be determined for a given sensor topology. From this, we extract design optimizations for different sensing principles.


Subject(s)
Biosensing Techniques , Dielectric Spectroscopy , Electric Capacitance , Electrodes , Ions , Finite Element Analysis
20.
PLoS One ; 19(5): e0298776, 2024.
Article in English | MEDLINE | ID: mdl-38805499

ABSTRACT

The output signals in natural dyes-based solar cells (DSSC) can be either rising or decaying depending on the type of ions present in the system; these ions called added ions, are introduced by the additives: mordant and brighteners. The photon-dye interaction produces electrons, which eventually reach the electrode giving place to a superficially charged electrode in contact with an electrolyte where are the added ions. This combination produces, automatically, an electrical double-layer EDL structure which has important effects on the performance of the system: a) the added ions control, to a large extent, the initial shape of the output signal, giving rise to rising or decaying profiles; b) it is possible to store large amounts of energy and charge at high electric fields. This structure is found in many other systems that have a surface charged in contact with an electrolyte like piezoelectric materials in human body. This assertion was supported by determining important parameters such as the force between charged surfaces on both sides of the interface, the charge density, the energy density, and the capacitance. The Debye length has very small values then, many important quantities depend on this; it is possible to obtain large values for energy UDL ~ 3.6x105 Jm-3 and charge density ρDL ≈ 1.1x107 Cm-3 for double layer capacitors; these values are orders of magnitude larger than the corresponding values for electrostatic capacitors: Uelec ≈ 4.5x10-3 Jm-3 and ρelec ≈ 1.2 Cm-3. A non-linear model was also developed to fit unstable oscillations found in the output profiles produced by abrupt lighting.


Subject(s)
Coloring Agents , Electric Capacitance , Solar Energy , Coloring Agents/chemistry , Electric Power Supplies , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...