Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.716
Filter
1.
Bioelectrochemistry ; 158: 108726, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733722

ABSTRACT

Mucus hypersecretion resulting from excessive proliferation and metaplasia of goblet cells in the airways is the pathological foundation for Chronic obstructive pulmonary disease (COPD). Clinical trials have confirmed the clinical efficacy of pulsed electric field ablation (PFA) for COPD, but its underlying mechanisms is poorly understood. Cellular and animal models of COPD (rich in goblet cells) were established in this study to detect goblet cells' sensitivity to PFA. Schwan's equation was adopted to calculate the cells' transmembrane potential and the electroporation areas in the cell membrane. We found that goblet cells are more sensitive to low-intensity PFA (250 V/cm-500 V/cm) than BEAS-2B cells. It is attributed to the larger size of goblet cells, which allows a stronger transmembrane potential formation under the same electric field strength. Additionally, the transmembrane potential of larger-sized cells can reach the cell membrane electroporation threshold in more areas. Trypan blue staining confirmed that the cells underwent IRE rate was higher in goblet cells than in BEAS-2B cells. Animal experiments also confirmed that the airway epithelium of COPD is more sensitive to PFA. We conclude that lower-intensity PFA can selectively kill goblet cells in the COPD airway epithelium, ultimately achieving the therapeutic effect of treating COPD.


Subject(s)
Electroporation , Goblet Cells , Pulmonary Disease, Chronic Obstructive , Goblet Cells/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/therapy , Animals , Humans , Electroporation/methods , Cell Line , Membrane Potentials , Male , Ablation Techniques/methods , Electricity , Mice
2.
PLoS One ; 19(5): e0300145, 2024.
Article in English | MEDLINE | ID: mdl-38743740

ABSTRACT

Integration of renewable energy sources (RES) to the grid in today's electrical system is being encouraged to meet the increase in demand of electrical power and also overcome the environmental related problems by reducing the usage of fossil fuels. Power Quality (PQ) is a critical problem that could have an effect on utilities and consumers. PQ issues in the modern electric power system were turned on by a linkage of RES, smart grid technologies and widespread usage of power electronics equipment. Unified Power Quality Conditioner (UPQC) is widely employed for solving issues with the distribution grid caused by anomalous voltage, current, or frequency. To enhance UPQC performance, Fractional Order Proportional Integral Derivative (FOPID) is developed; nevertheless, a number of tuning parameters restricts its performance. The best solution for the FOPID controller problem is found by using a Coati Optimization Algorithm (COA) and Osprey Optimization Algorithm (OOA) are combined to make a hybrid optimization CO-OA algorithm approach to mitigate these problems. This paper proposes an improved FOPID controller to reduce PQ problems while taking load power into account. In the suggested model, a RES is connected to the grid system to supply the necessary load demand during the PQ problems period. Through the use of an enhanced FOPID controller, both current and voltage PQ concerns are separately modified. The pulse signal of UPQC was done using the optimal controller, which analyzes the error value of reference value and actual value to generate pulses. The integrated design mitigates PQ issues in a system at non-linear load and linear load conditions. The proposed model provides THD of 12.15% and 0.82% at the sag period, 10.18% and 0.48% at the swell period, and 10.07% and 1.01% at the interruption period of non-linear load condition. A comparison between the FOPID controller and the traditional PI controller was additionally taken. The results showed that the recommended improved FOPID controller for UPQC has been successful in reducing the PQ challenges in the grid-connected RESs system.


Subject(s)
Algorithms , Renewable Energy , Electric Power Supplies , Models, Theoretical , Electricity
3.
J Environ Manage ; 359: 120848, 2024 May.
Article in English | MEDLINE | ID: mdl-38696850

ABSTRACT

This study investigates the least-cost decarbonization pathways in the Finnish electricity generation industry in order to achieve the national carbon neutrality goal by 2035. Various abatement measures, such as downscaling production, capital investment, and increasing labor and intermediate inputs, are considered. The marginal abatement costs (MACs) of greenhouse gas emissions are estimated using the convex quantile regression method and applied to unique register-based firm-level greenhouse gas emission data merged with financial statement data. We adjust the MAC estimates for the sample selection bias caused by zero-emission firms by applying the two-stage Heckman correction. Our empirical findings reveal that the median MAC ranges from 0.1 to 3.5 euros per tonne of CO2 equivalent. The projected economic cost of a 90% reduction in emissions is 62 million euros, while the estimated cost of achieving zero emissions is 83 million euros.


Subject(s)
Electricity , Finland , Greenhouse Gases/analysis , Carbon Dioxide/analysis
4.
PLoS One ; 19(5): e0299371, 2024.
Article in English | MEDLINE | ID: mdl-38696473

ABSTRACT

Electric machines emulators (EMEs) based on hardware-in-the-loop (HIL), which effectively act as emulators to mimic the actual motor behavior of Interior Permanent Magnet (IPM) machines. EME is frequently used to evaluate motor controller and motor control methodologies prior to development. The inverse magnetization motor model, which is used as the basis for real-time simulation in this paper's proposal for an electric machine emulator system based on HIL, uses FEA to create the motor model data. The nonlinear features of the motor may be successfully replicated with this motor model, and the accuracy of the electric machine emulator can be enhanced by using a straightforward and trustworthy motor controller. The real-time simulation tool typhoon HIL is used in the study to develop a hardware-in-the-loop simulation platform for an IPM electric machines emulator.


Subject(s)
Computer Simulation , Models, Theoretical , Electricity
5.
Molecules ; 29(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38792161

ABSTRACT

Olive oil production is characterized by large amounts of waste, and yet is considerably highly valued. Olive pomace can serve as a cheap source of bioactive compounds (BACs) with important antioxidant activity. Novel technologies like Pulsed Electric Fields (PEF) and High Pressure (HP) and microwave (MW) processing are considered green alternatives for the recovery of BACs. Different microwave (150-600 W), PEF (1-5 kV/cm field strength, 100-1500 pulses/15 µs width), and HP (250-650 MPa) conditions, in various product/solvent ratios, methanol concentrations, extraction temperatures, and processing times were investigated. Results indicated that the optimal MW extraction conditions were 300 W at 50 °C for 5 min using 60% v/v methanol with a product/solvent ratio of 1:10 g/mL. Similarly, the mix of 40% v/v methanol with olive pomace, treated at 650 MPa for the time needed for pressure build-up (1 min) were considered as optimal extraction conditions in the case of HP, while for PEF the optimal conditions were 60% v/v methanol with a product/solvent ratio of 1:10 g/mL, treated at 5000 pulses, followed by 1 h extraction under stirring conditions. Therefore, these alternative extraction technologies could assist the conventional practice in minimizing waste production and simultaneously align with the requirements of the circular bioeconomy concept.


Subject(s)
Antioxidants , Electricity , Microwaves , Olea , Pressure , Olea/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/chemistry , Solvents/chemistry , Olive Oil/chemistry , Methanol/chemistry
6.
Biosensors (Basel) ; 14(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38785698

ABSTRACT

Wastewater pipelines are present everywhere in urban areas. Wastewater is a preferable fuel for renewable electricity generation from microbial fuel cells. Here, we created an integrated microbial fuel cell pipeline (MFCP) that could be connected to wastewater pipelines and work as an organic content biosensor and energy harvesting device at domestic waste-treatment plants. The MFCP used a pipeline-like terracotta-based membrane, which provided structural support for the MFCP. In addition, the anode and cathode were attached to the inside and outside of the terracotta membrane, respectively. Co-MnO2 was used as a catalyst to improve the performance of the MFCP cathode. The experimental data showed a good linear relationship between wastewater chemical oxygen demand (COD) concentration and the MFCP output voltage in a COD range of 200-1900 mg/L. This result implies the potential of using the MFCP as a sensor to detect the organic content of the wastewater inside the wastewater pipeline. Furthermore, the MFCP can be used as a long-lasting sustainable energy harvester with a maximum power density of 400 mW/m2 harvested from 1900 mg/L COD wastewater at 25 °C.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Electrodes , Wastewater , Biological Oxygen Demand Analysis , Electricity , Oxides/chemistry , Manganese Compounds/chemistry
7.
J Mech Behav Biomed Mater ; 155: 106573, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744117

ABSTRACT

The concentration of the polymer in the electrospinning solution greatly influences the mechanical behaviour of electrospun vascular grafts due to the influence on scaffold morphology. The scaffold morphology (fiber diameter, fiber orientation and inter-fiber voids) of the grafts plays an important role in their behaviour during use. Even though manual methods and complex algorithms have been used so far for characterisation of the morphology of electrospun architecture, they still have several drawbacks that limit their reliability. This study therefore uses conventional, statistical region merging and a hybrid image segmentation algorithm, to characterise the morphology of the electrospun vascular grafts. Consequently, vascular grafts were fabricated using an in-house electrospinning equipment using three polymer material concentration levels (14%, 16% and 18%) of medical-grade thermoplastic polyurethane (Pellethane®). The image thresholding and segementation algorithms were then used for segmentation of SEM images extracted from the polymer grafts and then morphological parameters were investigated in terms of fiber diameter, fiber orientation, and interfiber spaces (pore area and porosity). The results indicate that electrospun image segmentation was "best" when the hybrid algorithm and the conventional algorithm was used, which implied that fiber property values computed from the hybrid algorithm were closed to the manually measurements especially for the 14% PU with fiber diameter 2.2%, fiber orientation 7.6% and porosity at 1.9%. However there was higher disperity between the manual and hybrid algorithm. This suggests more fiber uniformity in the 14%PU potentially affected the accuracy of the hybrid algorithm.


Subject(s)
Polyurethanes , Polyurethanes/chemistry , Materials Testing , Algorithms , Blood Vessel Prosthesis , Image Processing, Computer-Assisted , Porosity , Tissue Scaffolds/chemistry , Mechanical Phenomena , Electricity
8.
ACS Appl Mater Interfaces ; 16(21): 27705-27713, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748054

ABSTRACT

Vascular stenting is a common procedure used to treat diseased blood vessels by opening the narrowed vessel lumen and restoring blood flow to ischemic tissues in the heart and other organs. In this work, we report a novel piezoelectric stent featuring a zigzag shape fabricated by fused deposition modeling three-dimensional (3D) printing with a built-in electric field. The piezoelectric composite was made of potassium sodium niobite microparticles and poly(vinylidene fluoride-co-hexafluoropropylene), complementing each other with good piezoelectric performance and mechanical resilience. The in situ poling yielded an appreciable piezoelectricity (d33 ∼ 4.2 pC N-1) of the as-printed stents. In vitro testing revealed that materials are nontoxic to vascular cells and have low thrombotic potential. Under stimulated blood pressure fluctuation, the as-printed piezoelectric stent was able to generate peak-to-peak voltage from 0.07 to 0.15 V corresponding to pressure changes from 20 to 120 Psi, giving a sensitivity of 7.02 × 10-4 V Psi-1. Biocompatible piezoelectric stents bring potential opportunities for the real-time monitoring of blood vessels or enabling therapeutic functions.


Subject(s)
Printing, Three-Dimensional , Stents , Humans , Electricity , Pressure , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Polyvinyls/chemistry
9.
Environ Sci Technol ; 58(21): 9187-9199, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38691631

ABSTRACT

The coal-dominated electricity system, alongside increasing industrial electricity demand, places China into a dilemma between industrialization and environmental impacts. A practical solution is to exploit air quality and health cobenefits of industrial energy efficiency measures, which has not yet been integrated into China's energy transition strategy. This research examines the pivotal role of industrial electricity savings in accelerating coal plant retirements and assesses the nexus of energy-pollution-health by modeling nationwide coal-fired plants at individual unit level. It shows that minimizing electricity needs by implementing more efficient technologies leads to the phaseout of 1279 hyper-polluting units (subcritical, <300 MW) by 2040, advancing the retirement of these units by an average of 7 years (3-16 years). The retirements at different locations yield varying levels of air quality improvements (9-17%), across six power grids. Reduced exposure to PM2.5 could avoid 123,100 pollution-related cumulative deaths over the next 20 years from 2020, of which ∼75% occur in the Central, East, and North grids, particularly coal-intensive and populous provinces (e.g., Shandong and Jiangsu). These findings provide key indicators to support geographically specific policymaking and lay out a rationale for decision-makers to incorporate multiple benefits into early coal phaseout strategies to avoid lock-in risk.


Subject(s)
Air Pollution , Coal , Electricity , Power Plants , China , Humans , Air Pollutants
10.
Water Res ; 257: 121720, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728780

ABSTRACT

This study designs a novel electroneutralization desalination cell using reaction heat from acidic-alkaline wastewater neutralization to desalinate wastewater and generates chemoelectric power. Several key performance indicators are measured in terms of the energy, environmental and economic aspects of the system, including the ionic flux, the electrical energy produced, the electrical energy consumption for desalination, parasitic losses, overall energy conversion efficiency and desalination performance. The maximum peak power density is ∼31.5 mW/cm2 at 83.5 mA/cm2 and the desalination efficiency is 62 % using brine. The overall energy conversion efficiency is ∼81.8 % and the desalination followed the zero-order reaction. Assuming a 1.5 million litres per day treatment capacity integrated with reverse osmosis, the system has environmental and economic benefits, with 44.5 kg-CO2eq greenhouse gas emissions per cubic meter of treated brine, and a discounted payback period of 4.2 years. This study demonstrates a pioneering electroneutralization technique for self-sufficient brine valorization and wastewater reclamation.


Subject(s)
Wastewater , Water Purification , Water Purification/methods , Wastewater/chemistry , Salinity , Electricity , Waste Disposal, Fluid/methods , Salts/chemistry , Osmosis
11.
PLoS One ; 19(5): e0302068, 2024.
Article in English | MEDLINE | ID: mdl-38758945

ABSTRACT

The electric power sector is the primary contributor to carbon emissions in China. Considering the context of dual carbon goals, this paper examines carbon emissions within China's electricity sector. The research utilizes the LMDI approach for methodological rigor. The results show that the cumulative contribution of economies scale, power consumption factors and energy structure are 114.91%, 85.17% and 0.94%, which contribute to the increase of carbon emissions, the cumulative contribution of power generation efficiency and ratio of power dissipation to generation factor are -19.15% and -0.01%, which promotes the carbon reduction. The decomposition analysis highlights the significant influence of economic scale on carbon emissions in the electricity industry, among the seven factors investigated. Meanwhile, STIRPAT model, Logistic model and GM(1,1) model are used to predict carbon emissions, the average relative error between actual carbon emissions and the predicted values are 0.23%, 8.72% and 7.05%, which indicates that STIRPAT model is more suitable for medium- to long-term predictions. Based on these findings, the paper proposes practical suggestions to reduce carbon emissions and achieve the dual carbon goals of the power industry.


Subject(s)
Carbon , Electricity , China , Carbon/analysis , Industry , Power Plants , Models, Theoretical
12.
PLoS One ; 19(5): e0298572, 2024.
Article in English | MEDLINE | ID: mdl-38758947

ABSTRACT

Aiming at the problem of load increase in distribution network and low satisfaction of vehicle owners caused by disorderly charging of electric vehicles, an optimal scheduling model of electric vehicles considering the comprehensive satisfaction of vehicle owners is proposed. In this model, the dynamic electricity price and charging and discharging state of electric vehicles are taken as decision variables, and the income of electric vehicle charging stations, the comprehensive satisfaction of vehicle owners considering economic benefits and the load fluctuation of electric vehicles are taken as optimization objectives. The improved NSGA-III algorithm (DJM-NSGA-III) based on dynamic opposition-based learning strategy, Jaya algorithm and Manhattan distance is used to solve the problems of low initial population quality, easy to fall into local optimal solution and ignoring potential optimal solution when NSGA-III algorithm is used to solve the multi-objective and high-dimensional scheduling model. The experimental results show that the proposed method can improve the owner's satisfaction while improving the income of the charging station, effectively alleviate the conflict of interest between the two, and maintain the safe and stable operation of the distribution network.


Subject(s)
Algorithms , Electricity , Automobiles , Humans , Models, Theoretical
13.
Proc Natl Acad Sci U S A ; 121(22): e2320338121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768355

ABSTRACT

Electric school buses have been proposed as an alternative to reduce the health and climate impacts of the current U.S. school bus fleet, of which a substantial share are highly polluting old diesel vehicles. However, the climate and health benefits of electric school buses are not well known. As they are substantially more costly than diesel buses, assessing their benefits is needed to inform policy decisions. We assess the health benefits of electric school buses in the United States from reduced adult mortality and childhood asthma onset risks due to exposure to ambient fine particulate matter (PM2.5). We also evaluate climate benefits from reduced greenhouse-gas emissions. We find that replacing the average diesel bus in the U.S. fleet in 2017 with an electric bus yields $84,200 in total benefits. Climate benefits amount to $40,400/bus, whereas health benefits amount to $43,800/bus due to 4.42*10-3 fewer PM2.5-attributable deaths ($40,000 of total) and 7.42*10-3 fewer PM2.5-attributable new childhood asthma cases ($3,700 of total). However, health benefits of electric buses vary substantially by driving location and model year (MY) of the diesel buses they replace. Replacing old, MY 2005 diesel buses in large cities yields $207,200/bus in health benefits and is likely cost-beneficial, although other policies that accelerate fleet turnover in these areas deserve consideration. Electric school buses driven in rural areas achieve small health benefits from reduced exposure to ambient PM2.5. Further research assessing benefits of reduced exposure to in-cabin air pollution among children riding buses would be valuable to inform policy decisions.


Subject(s)
Air Pollution , Motor Vehicles , Particulate Matter , Schools , Vehicle Emissions , Humans , United States , Vehicle Emissions/prevention & control , Particulate Matter/adverse effects , Asthma/epidemiology , Asthma/etiology , Asthma/mortality , Child , Air Pollutants/adverse effects , Air Pollutants/analysis , Environmental Exposure/adverse effects , Electricity , Adult
14.
Ecotoxicol Environ Saf ; 277: 116373, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38653023

ABSTRACT

Cr (VI) is extremely harmful to both the environment and human health, and it can linger in the environment for a very long period. In this research, the Leersia hexandra Swartz constructed wetland-microbial fuel cell (CW-MFC) system was constructed to purify Cr (VI) wastewater. By comparing with the constructed wetland (CW) system, the system electricity generation, pollutants removal, Cr enrichment, and morphological transformation of the system were discussed. The results demonstrated that the L. hexandra CW-MFC system promoted removal of pollutants and production of electricity of the system. The maximum voltage of the system was 499 mV, the COD and Cr (VI) removal efficiency was 93.73% and 97.00%. At the same time, it enhanced the substrate and L. hexandra ability to absorb Cr and change it morphologically transformation. Additionally, the results of XPS and XANES showed that the majority of the Cr in the L. hexandra and substrate was present as Cr (III). In the L. hexandra CW-MFC system, Geobacter also functioned as the primary metal catabolic reducing and electrogenic bacteria. As a result, L. hexandra CW-MFC system possesses the added benefit of removing Cr (VI) while producing energy compared to the traditional CW system.


Subject(s)
Bioelectric Energy Sources , Chromium , Wastewater , Water Pollutants, Chemical , Wetlands , Wastewater/chemistry , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Hydrocharitaceae , Geobacter/metabolism , Electricity
15.
PLoS One ; 19(4): e0298866, 2024.
Article in English | MEDLINE | ID: mdl-38687720

ABSTRACT

We demonstrate that applying electric field pulses to hepatocytes, in vitro, in the presence of enhanced green fluorescent protein (EGFP)-expressing adeno-associated virus (AAV8) vectors reduces the viral dosage required for a given transduction level by more than 50-fold, compared to hepatocytes exposed to AAV8-EGFP vectors without electric field pulse exposure. We conducted 48 experimental observations across 8 exposure conditions in standard well plates. The electric pulse exposures involved single 80-ms pulses with 375 V/cm field intensity. Our study suggests that electric pulse exposure results in enhanced EGFP expression in cells, indicative of increased transduction efficiency. The enhanced transduction observed in our study, if translated successfully to an in vivo setting, would be a promising indication of potential reduction in the required dose of AAV vectors. Understanding the effects of electric field pulses on AAV transduction in vitro is an important preliminary step.


Subject(s)
Dependovirus , Genetic Vectors , Green Fluorescent Proteins , Transduction, Genetic , Dependovirus/genetics , Humans , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Genetic Vectors/genetics , Hep G2 Cells , Hepatocytes/metabolism , Electricity
16.
J Environ Manage ; 358: 120802, 2024 May.
Article in English | MEDLINE | ID: mdl-38599084

ABSTRACT

This study quantifies the financial and environmental impacts of a microalgal bioenergy system that attempts to maximize circular flows by recovering and reusing the carbon, nutrients, and water within the system. The system produces microalgal biomass using liquid digestate of an anaerobic digester that processes 45 metric tons of food waste and generates 28.6 m3 of permeate daily in California, and three energy production scenarios from the biomass are considered: producing biodiesel, electricity, and both. In all scenarios, the resulting energy products delivered only modest reductions in environmental impacts as measured by carbon dioxide equivalent emissions. The carbon intensities (CIs) of biodiesel from this study were 91.0 gCO2e/MJ and 93.3 gCO2e/MJ, which were lower than 94.71 gCO2e/MJ of conventional petroleum diesel, and the CI of electricity from this study was 70.6 gCO2e/MJ, lower than the average electricity grid CI in California (82.92 gCO2e/MJ). The economic analysis results show that generating electricity alone can be profitable, while biodiesel produced via this system is not cost competitive with conventional diesel due to high capital expenses. Thus, generating electricity in lieu of biodiesel appears to be a better option to maximize the use of waste flows and supply lower-carbon energy.


Subject(s)
Biofuels , Microalgae , Anaerobiosis , Biomass , Recycling , California , Electricity , Carbon Dioxide/analysis
17.
J Environ Manage ; 358: 120861, 2024 May.
Article in English | MEDLINE | ID: mdl-38603848

ABSTRACT

In electric vehicles, the Heating, Ventilation and Air-Conditioning (HVAC) function is often performed by a heat pump. Heating and cooling the cabin air drains energy directly from the vehicle's battery. In addition, these vehicles may operate in environments with high level of air pollution. In the cabin, passengers are confined to a small space where particles and harmful gases can accumulate. In addition, the ventilation system must also handle the air which does not enter the cabin through blower operation. This "infiltration" is a function of the vehicle speed and allows pollution to enter the cabin without being filtered or thermally treated. The objective of the study is to optimize the competing goals of the HVAC system: achieving the best air quality while maintaining good thermal comfort, at minimum energy costs. A system simulation tool is calibrated to represent the heating and cooling of an electric car. With this model, the influence of key factors is evaluated. Depending on ambient conditions and other parameters (number of occupants, vehicle speed, etc.), the blower flow rate and recirculation ratio can be adjusted to reach the objectives. The management of the proportion of fresh and recirculated air allows to regulate the humidity and carbon dioxide levels. Optimum controls are proposed as good trade-offs to reduce the power consumption, while maintaining a safe and comfortable environment for occupants. Compared to the full fresh air mode, the driving range gains are estimated in cold (-15 °C) and hot (30 °C) scenarios at 9 and 26 km respectively.


Subject(s)
Air Conditioning , Air Pollution , Ventilation , Air Pollution/prevention & control , Electricity , Carbon Dioxide/analysis
18.
Bioresour Technol ; 400: 130693, 2024 May.
Article in English | MEDLINE | ID: mdl-38608785

ABSTRACT

The synchronous bioelectricity generation and dissimilatory nitrate reduction to ammonium (DNRA) pathway in Klebsiella variicola C1 was investigated. The presence of bioelectricity facilitated cell growth on the anodic biofilms, consequently enhancing the nitrate removal efficiency decreasing total nitrogen levels and causing a negligible accumulation of NO2- in the supernatant. Genomic analysis revealed that K. variicola C1 possessed a complete DNRA pathway and largely annotated electron shuttles. The up-regulated expression of genes narG and nirB, encoding nitrite oxidoreductase and nitrite reductase respectively, was closely associated with increased extracellular electron transfer (EET). High-throughput sequencing analysis was employed to investigate the impact of bioelectricity on microbial community composition within cathodic biofilms. Results indicated that Halomonas, Marinobacter and Prolixibacteraceae were enriched at the cathode electrodes. In conclusion, the integration of a DNRA strain with MFC facilitated the efficient removal of wastewater containing high concentrations of NO3- and enabled the environmentally friendly recovery of NH4+.


Subject(s)
Ammonium Compounds , Bioelectric Energy Sources , Biofilms , Electrodes , Nitrates , Bioelectric Energy Sources/microbiology , Nitrates/metabolism , Ammonium Compounds/metabolism , Klebsiella/metabolism , Klebsiella/genetics , Wastewater/microbiology , Microbiota/physiology , Oxidation-Reduction , Electricity
19.
Food Chem ; 449: 139304, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608611

ABSTRACT

To evaluate the effect of high voltage pulsed electric field (PEF) treatment (10-20 kV/cm, 5-15 min) on the structural characteristics and sensitization of crude extracts of arginine kinase from Fenneropenaeus chinensis. By simulated in vitro gastric juice digestion (SGF), intestinal juice digestion (SIF) and enzyme-linked immunosorbent assay (ELISA), AK sensitization was reduced by 42.5% when treated for 10 min at an electric field intensity of 15 kV/cm. After PEF treatment, the α-helix content decreased, and the α-helix content gradually changed to ß-sheet and ß-turn. Compared to the untreated group, the surface hydrophobicity increased and the sulfhydryl content decreased. SEM and AFM analyses showed that the treated sample surface formed a dense porous structure and increased roughness. The protein content, dielectric properties, and amino acid content of sample also changed significantly with the changes in the treatment conditions. Non-thermal PEF has potential applications in the development of hypoallergenic foods.


Subject(s)
Arginine Kinase , Penaeidae , Animals , Arginine Kinase/chemistry , Arginine Kinase/immunology , Arginine Kinase/metabolism , Penaeidae/chemistry , Penaeidae/enzymology , Penaeidae/immunology , Electricity , Hydrophobic and Hydrophilic Interactions , Insect Proteins/chemistry , Insect Proteins/metabolism , Humans , Allergens/chemistry , Allergens/immunology
20.
Bioprocess Biosyst Eng ; 47(6): 903-917, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630261

ABSTRACT

In the present study, the potential of Pseudomonas citronellolis 620C strain was evaluated, for the first time, to generate electricity in a standard, double chamber microbial fuel cell (MFC), with oily wastewater (OW) being the fuel at 43.625 mg/L initial chemical oxygen demand (COD). Both electrochemical and physicochemical results suggested that this P. citronellolis strain utilized efficiently the OW substrate and generated electricity in the MFC setup reaching 0.05 mW/m2 maximum power. COD removal was remarkable reaching 83.6 ± 0.1%, while qualitative and quantitative gas chromatography/mass spectrometry (GC/MS) analysis of the OW total petroleum and polycyclic aromatic hydrocarbons, and fatty acids revealed high degradation capacity. It was also determined that P. citronellolis 620C produced pyocyanin as electron shuttle in the anodic MFC chamber. To the authors' best knowledge, this is the first study showing (phenazine-based) pyocyanin production from a species other than P. aeruginosa and, also, the first time that P. citronellolis 620C has been shown to produce electricity in a MFC. The production of pyocyanin, in combination with the formation of biofilm in the MFC anode, as observed with scanning electron microscopy (SEM) analysis, makes this P. citronellolis strain an attractive and promising candidate for wider MFC applications.


Subject(s)
Bioelectric Energy Sources , Pseudomonas , Pyocyanine , Wastewater , Bioelectric Energy Sources/microbiology , Pyocyanine/biosynthesis , Pyocyanine/metabolism , Wastewater/microbiology , Pseudomonas/metabolism , Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...