Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.988
Filter
1.
Luminescence ; 39(5): e4768, 2024 May.
Article in English | MEDLINE | ID: mdl-38719590

ABSTRACT

In this study, we synthesize nanostructured nickel oxide (NiO) and doped cobalt (Co) by combining nickel(II) chloride hexahydrate (NiCl2.6H2O) and sodium hydroxide (NaOH) as initial substances. We analyzed the characteristics of the product nanostructures, including their structure, optical properties, and magnetic properties, using various techniques such as x-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet absorption spectroscopy (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometers (VSM). The NiO nanoparticles doped with Co showed photocatalytic activity in degrading methylene blue (MB) dye in aqueous solutions. We calculated the degradation efficiencies by analyzing the UV-Vis absorption spectra at the dye's absorption wavelength of 664 nm. It was observed that the NiO-doped Co nanoparticles facilitated enhanced recombination and migration of active elements, which led to more effective degradation of organic dyes during photocatalysis. We also assessed the electrochemical properties of the materials using cyclic voltammetry (CV) and impedance spectroscopy in a 1 mol% NaOH solution. The NiO-modified electrode exhibited poor voltammogram performance due to insufficient contact between nanoparticles and the electrolyte solution. In contrast, the uncapped NiO's oxidation and reduction cyclic voltammograms displayed redox peaks at 0.36 and 0.30 V, respectively.


Subject(s)
Cobalt , Electrochemistry , Electrodes , Nanocomposites , Nickel , Nanocomposites/chemistry , Nickel/chemistry , Cobalt/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Luminescence , Microscopy, Electron, Scanning , Particle Size , Magnetic Phenomena , Nanoparticles/chemistry , Light , Catalysis , Oxides/chemistry , Methylene Blue/metabolism
2.
Ultrason Sonochem ; 105: 106858, 2024 May.
Article in English | MEDLINE | ID: mdl-38564910

ABSTRACT

Zinc sulfide/graphitic Carbon Nitride binary nanosheets were synthesized by using a novel sonochemical pathway with high electrocatalytic ability. The as- obtained samples were characterized by various analytical methods such as Transmission Electron Microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) to evaluate the properties of ZnS@CNS synthesized by this new route. Subsequently, the electrical and electrochemical performance of the proposed electrodes were characterized by using EIS and CV to establish an electroactive ability of the nanocomposites. The complete properties like structural and physical of ZnS@CNS were analyzed. As-prepared binary nanocomposite was applied towards the detection of anticancer drug (flutamide) by various electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry. The glassy carbon electrode modified with a ZnS@CNS composite demonstrates a remarkable electrocatalytic efficiency for detecting flutamide in a pH 7.0 (PBS). The composite modified electrode shows synergistic effect of ZnS and CNS catalyst. The electrochemical sensing performance of the linear range was improved significantly due to high electroactive sites and rapid electron transport pathways. Crucially, the electrochemical method was successfully demonstrated in biological fluids which reveals its potential real-time applicability in the analysis of drug.


Subject(s)
Antineoplastic Agents , Electrodes , Graphite , Nitrogen Compounds , Sulfides , Ultrasonic Waves , Zinc Compounds , Zinc Compounds/chemistry , Sulfides/chemistry , Antineoplastic Agents/chemistry , Graphite/chemistry , Flutamide/analysis , Flutamide/chemistry , Electrochemical Techniques/methods , Chemistry Techniques, Synthetic , Electrochemistry , Limit of Detection , Catalysis , Nanocomposites/chemistry , Nanostructures/chemistry
3.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674055

ABSTRACT

Polymer electrolyte was used as a medium for testing the performance of microband electrodes under conditions of linear diffusion. Cyclic voltammetry (CV) and chronoamperometry (CA) experiments were performed in a highly viscous medium, where diffusion rates are much slower than in fluid solutions. The log i vs. log v (CV) or log i vs. log t (CA) relationships with the current equation confirmed the existence of such conditions, yielding slope values that were lower than the expected 0.5. This could indicate an impure linear diffusion profile, i.e., some contribution from radial diffusion (edge effects). However, the desired value of 0.5 was obtained when performing these tests in monomeric solvents of similar viscosities, such as glycerol or propylene glycol. These results led to the conclusion that the current equations, which are based on Fick's laws, may not be applicable for polymer electrolytes, where various obstructions to free diffusion result in a more complicated process than for monomeric solvents.


Subject(s)
Polymers , Solvents , Solvents/chemistry , Diffusion , Polymers/chemistry , Electrochemical Techniques/methods , Viscosity , Electrolytes/chemistry , Electrodes , Electrochemistry/methods
4.
J Inorg Biochem ; 256: 112539, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593609

ABSTRACT

Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.


Subject(s)
Azurin , Models, Molecular , Kinetics , Electrochemistry , Azurin/chemistry , Azurin/genetics , Azurin/metabolism , Actinobacteria/chemistry , Thermoplasmales/chemistry , Electron Spin Resonance Spectroscopy , Protein Structure, Tertiary , Iron/metabolism , Oxidation-Reduction , Biotechnology , Protein Stability , Conserved Sequence/genetics
5.
Biomaterials ; 309: 122575, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38677220

ABSTRACT

Platinum (Pt) is the metal of choice for electrodes in implantable neural prostheses like the cochlear implants, deep brain stimulating devices, and brain-computer interfacing technologies. However, it is well known since the 1970s that Pt dissolution occurs with electrical stimulation. More recent clinical and in vivo studies have shown signs of corrosion in explanted electrode arrays and the presence of Pt-containing particulates in tissue samples. The process of degradation and release of metallic ions and particles can significantly impact on device performance. Moreover, the effects of Pt dissolution products on tissue health and function are still largely unknown. This is due to the highly complex chemistry underlying the dissolution process and the difficulty in decoupling electrical and chemical effects on biological responses. Understanding the mechanisms and effects of Pt dissolution proves challenging as the dissolution process can be influenced by electrical, chemical, physical, and biological factors, all of them highly variable between experimental settings. By evaluating comprehensive findings on Pt dissolution mechanisms reported in the fuel cell field, this review presents a critical analysis of the possible mechanisms that drive Pt dissolution in neural stimulation in vitro and in vivo. Stimulation parameters, such as aggregate charge, charge density, and electrochemical potential can all impact the levels of dissolved Pt. However, chemical factors such as electrolyte types, dissolved gases, and pH can all influence dissolution, confounding the findings of in vitro studies with multiple variables. Biological factors, such as proteins, have been documented to exhibit a mitigating effect on the dissolution process. Other biological factors like cells and fibro-proliferative responses, such as fibrosis and gliosis, impact on electrode properties and are suspected to impact on Pt dissolution. However, the relationship between electrical properties of stimulating electrodes and Pt dissolution remains contentious. Host responses to Pt degradation products are also controversial due to the unknown chemistry of Pt compounds formed and the lack of understanding of Pt distribution in clinical scenarios. The cytotoxicity of Pt produced via electrical stimulation appears similar to Pt-based compounds, including hexachloroplatinates and chemotherapeutic agents like cisplatin. While the levels of Pt produced under clinical and acute stimulation regimes were typically an order of magnitude lower than toxic concentrations observed in vitro, further research is needed to accurately assess the mass balance and type of Pt produced during long-term stimulation and its impact on tissue response. Finally, approaches to mitigating the dissolution process are reviewed. A wide variety of approaches, including stimulation strategies, coating electrode materials, and surface modification techniques to avoid excess charge during stimulation and minimise tissue response, may ultimately support long-term and safe operation of neural stimulating devices.


Subject(s)
Platinum , Platinum/chemistry , Humans , Animals , Electrodes, Implanted , Electric Stimulation , Electrochemistry/methods , Electrodes
6.
Anal Sci ; 40(6): 1129-1141, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558384

ABSTRACT

Acetaminophen (AC) can inhibit the synthesis of prostaglandins in the body, and has antipyretic and analgesic effects. In this paper, a two-step microwave impregnation method was used to prepare anthraquinone (AQ)-doped carbon composite, which were applied to the surface modification of glassy carbon electrodes (GCE) for the determination of acetaminophen (AC) using differential pulse voltammetry (DPV). The composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and Fourier infrared spectroscopy (FT-IR). The results showed that anthraquinone was successfully modified on the surface of activated carbon. The peak current of AC increased with its concentration in the range of 0.1 µM to 700 µM (R2 = 0.998) and a detection limit of 0.05 µM was obtained with 20%AQ doped carbon electrochemical sensor (20%AQ-C/GCE). Electrochemical Impedance Spectroscopy (EIS) test results indicated that the charge transfer resistance (Rct) of 20%AQ-C/GCE is only the one-fourth of that of bare GCE. The proposed 20%AQ-C/GCE sensor has good stability, reproducibility and selectivity for the detection of AC. The sensor is also suitable for the detection of real samples, indicating its good practicality.


Subject(s)
Acetaminophen , Anthraquinones , Electrochemical Techniques , Electrodes , Acetaminophen/analysis , Anthraquinones/chemistry , Carbon/chemistry , Charcoal/chemistry , Limit of Detection , Electrochemistry , Surface Properties
7.
Anal Bioanal Chem ; 416(10): 2541-2551, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38451277

ABSTRACT

In this study, an online electrochemistry coupling high-performance liquid chromatography-mass spectrometry (EC-HPLC-MS) technology has been developed for simulating metabolic reactions and rapid analysis of metabolites of flavone, quercetin, and rutin, which are not only widely present compounds with pharmacological activity in nature, but also have structural similarity and variability. The simulated metabolic processes of the substrates (phase I and phase II metabolism) were implemented on the surface of glassy carbon electrode (GCE) by using different electrochemical methods. After online chromatographic separation, the products were transmitted to a mass spectrometer for detection, in order to speculate relevant reaction pathways and structural information of the reaction product. The main metabolites, including methylation, hydroxylation, hydrolysis, and conjugation reaction products, had been successfully identified through the designed in situ hyphenated technique. Furthermore, compared with metabolites produced by in vitro incubation of rat liver microsomes, it was found that the products of electrochemical simulated metabolism were more abundant with diverse metabolic pathways. The results indicated that the proposed method exhibited advantages in the sample pretreatment process and detection cycle without compromising the reliability and accuracy of the results.


Subject(s)
Flavonoids , Liquid Chromatography-Mass Spectrometry , Animals , Rats , Chromatography, High Pressure Liquid/methods , Electrochemistry , Flavonoids/metabolism , Microsomes, Liver/metabolism , Oxidation-Reduction , Reproducibility of Results
8.
Biosens Bioelectron ; 253: 116194, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38467100

ABSTRACT

The multiplexed detection of metabolites in parallel within a single biosensor plate is sufficiently valuable but also challenging. Herein, we combine the inherent light addressability of silicon with the high selectivity of enzymes, for the construction of multiplexed photoelectrochemical enzymatic biosensors. To conduct a stable electrochemistry and reagentless biosensing on silicon, a new strategy involving the immobilization of both redox mediators and enzymes using an amide bond-based hydrogel membrane was proposed. The membrane characterization results demonstrated a covalent coupling of ferrocene mediator to hydrogel, in which the mediator acted as not only a signal generator but also a renewable sacrifice agent. By adding corresponding enzymes on different spots of hydrogel membrane modified silicon and recording local photocurrents with a moveable light pointer, this biosensor setup was used successfully to detect multiple metabolites, such as lactate, glucose, and sarcosine, with good analytical performances. The limits of detection of glucose, sarcosine and lactate were found to be 179 µM, 16 µM, and 780 µM with the linear ranges of 0.5-2.5 mM, 0.3-1.5 mM, and 1.0-3.0 mM, respectively. We believe this proof-of-concept study provides a simple and rapid one-step immobilization approach for the fabrication of reagentless enzymatic assays with silicon-based light-addressable electrochemistry.


Subject(s)
Biosensing Techniques , Silicon , Electrochemistry/methods , Sarcosine , Biosensing Techniques/methods , Hydrogels , Lactates , Glucose
9.
10.
Anal Chem ; 96(12): 4868-4875, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466774

ABSTRACT

Protein film electrochemistry is a technique in which an enzyme is immobilized on an electrode in a configuration that allows following the changes in turnover frequency as a response to changes in the experimental conditions. Insights into the reactivity of the enzyme can be obtained by quantitatively modeling such responses. As a consequence, the more the technique allows flexibility in changing conditions, the more useful it becomes. The most commonly used setup, based on the rotating disc electrode, allows easy stepwise increases in the concentration of nongaseous substrates, or exposure to constant concentration of dissolved gas, but does not permit to easily decrease the concentration of nongaseous substrates, or to change the concentration of dissolved gas in a stepwise fashion. To overcome the limitation by mass transport of the substrate toward the electrode when working with fast enzymes, we have designed another kind of electrochemical cell based on the wall-tube electrode (WTE). We demonstrate here that by using a system combining two syringe pumps, a commercial mixer, and the WTE, it is possible to change the concentration of species in a stepwise fashion in all directions, opening new possibilities to study redox enzymes. As a proof of concept, this device was applied to the study of the electrochemical response of the cytochrome c nitrite reductase of Desulfovibrio desulfuricans.


Subject(s)
Proteins , Electrochemistry/methods , Oxidation-Reduction , Electrodes
11.
Analyst ; 149(9): 2647-2654, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38546701

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are durable synthetic pollutants that persist in the environment and resist biodegradation. Ion-transfer electrochemistry at aqueous-organic interfaces is a simple strategy for the detection of ionised PFAS. Herein, we investigate the modulation of the ion transfer voltammetry of perfluorooctanoate (PFOA) at liquid-liquid micro-interface arrays by aqueous phase bovine serum albumin (BSA) or ß-cyclodextrin (ß-CD) and examine the determination of association constants for these binding interactions. By tracking the ion transfer current due to ionised, uncomplexed PFOA as a function of BSA or ß-CD concentration, titration curves are produced. Fitting of a binding isotherm to these data provides the association constants. The association constant of PFOA with the BSA determined in this way was ca. 105 M-1 assuming a 1 : 1 binding. Likewise, the association constant for PFOA with ß-CD was ca. 104 M-1 for a 1 : 1 ß-CD-PFOA complex. Finally, the simultaneous effect of both BSA and ß-CD on the ion transfer voltammetry of PFOA was studied, showing clearly that PFOA bound to BSA is released (de-complexed) upon addition of ß-CD. The results presented here show ion transfer voltammetry as a simple strategy for the study of molecular and biomolecular binding of ionised PFAS and is potentially useful in understanding the affinity of different PFAS with aqueous phase binding agents such as proteins and carbohydrates.


Subject(s)
Caprylates , Fluorocarbons , Serum Albumin, Bovine , beta-Cyclodextrins , Fluorocarbons/chemistry , beta-Cyclodextrins/chemistry , Caprylates/chemistry , Serum Albumin, Bovine/chemistry , Cattle , Animals , Electrochemical Techniques/methods , Electrochemistry
12.
Biosensors (Basel) ; 14(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38392021

ABSTRACT

Single-entity electrochemistry, which employs electrolysis during the collision of single particles on ultramicroelectrodes, has witnessed significant advancements in recent years, enabling the observation and characterization of individual particles. Information on a single aqueous droplet (e.g., size) can also be studied based on the redox species contained therein. Dopamine, a redox-active neurotransmitter, is usually present in intracellular vesicles. Similarly, in the current study, the electrochemical properties of neurotransmitters in submicron droplets were investigated. Because dopamine oxidation is accompanied by proton transfer, unique electrochemical properties of dopamine were observed in the droplet. We also investigated the electrochemical properties of the adsorbed droplets containing DA and the detection of oxidized dopamine by the recollision phenomenon.


Subject(s)
Dopamine , Water , Dopamine/chemistry , Electrochemistry , Oxidation-Reduction
13.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397021

ABSTRACT

Manganese(II) complexes with phenanthroline derivatives modified with different substituents were synthesized and incorporated into Nafion layers covering the surfaces of glassy carbon electrodes and were studied electrochemically. Formal potentials and apparent diffusion coefficients were calculated and discussed. The suitability for electrocatalytic oxidation of ascorbic acid and glycolic acid was examined. The surfaces of modified electrodes were characterized using atomic force microscopy.


Subject(s)
Carbon , Fluorocarbon Polymers , Phenanthrolines , Carbon/chemistry , Manganese , Electrochemistry , Electrodes
14.
Biosens Bioelectron ; 251: 116076, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38340580

ABSTRACT

Detection of extracellular vesicles (EVs), particularly small EVs (sEVs), is of great significance in exploring their physiological characteristics and clinical applications. The heterogeneity of sEVs plays a crucial role in distinguishing different types of cells and diseases. Machine learning, with its exceptional data processing capabilities, offers a solution to overcome the limitations of conventional detection methods for accurately classifying sEV subtypes and sources. Principal component analysis, linear discriminant analysis, partial least squares discriminant analysis, XGBoost, support vector machine, k-nearest neighbor, and deep learning, along with some combined methods such as principal component-linear discriminant analysis, have been successfully applied in the detection and identification of sEVs. This review focuses on machine learning-assisted detection strategies for cell identification and disease prediction via sEVs, and summarizes the integration of these strategies with surface-enhanced Raman scattering, electrochemistry, inductively coupled plasma mass spectrometry and fluorescence. The performance of different machine learning-based detection strategies is compared, and the advantages and limitations of various machine learning models are also evaluated. Finally, we discuss the merits and limitations of the current approaches and briefly outline the perspective of potential research directions in the field of sEV analysis based on machine learning.


Subject(s)
Biosensing Techniques , Extracellular Vesicles , Discriminant Analysis , Electrochemistry , Machine Learning
15.
Anal Methods ; 16(10): 1426-1438, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38385279

ABSTRACT

The detection of serum markers is important for the early diagnosis and monitoring of diseases, but conventional detection methods have the problem of low specificity or sensitivity. CRISPR/Cas13a-based biosensors have the characteristics of simple detection methods and high sensitivity, which have a certain potential to solve the problems of conventional detection. This paper focuses on the research progress of CRISPR/Cas13a-based biosensors in serum marker detection, introduces the principles and applications of fluorescence, electrochemistry, colorimetric, and other biosensors based on CRISPR/Cas13a in the detection of serum markers, compares and analyzes the differences between the above CRISPR/Cas13a-based biosensors, and looks forward to the future development direction of CRISPR/Cas13a-based biosensors.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Colorimetry , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Electrochemistry
16.
Environ Sci Technol ; 58(10): 4670-4679, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38411077

ABSTRACT

Bacteria utilize electron conduction in their communities to drive their metabolism, which has led to the development of various environmental technologies, such as electrochemical microbial systems and anaerobic digestion. It is challenging to measure the conductivity among bacterial cells when they hardly form stable biofilms on electrodes. This makes it difficult to identify the biomolecules involved in electron conduction. In the present study, we aimed to identify c-type cytochromes involved in electron conduction in Shewanella oneidensis MR-1 and examine the molecular mechanisms. We established a colony-based bioelectronic system that quantifies bacterial electrical conductivity, without the need for biofilm formation on electrodes. This system enabled the quantification of the conductivity of gene deletion mutants that scarcely form biofilms on electrodes, demonstrating that c-type cytochromes, MtrC and OmcA, are involved in electron conduction. Furthermore, the use of colonies of gene deletion mutants demonstrated that flavins participate in electron conduction by binding to OmcA, providing insight into the electron conduction pathways at the molecular level. Furthermore, phenazine-based electron transfer in Pseudomonas aeruginosa PAO1 and flavin-based electron transfer in Bacillus subtilis 3610 were confirmed, indicating that this colony-based system can be used for various bacteria, including weak electricigens.


Subject(s)
Flavins , Shewanella , Electrochemistry , Flavins/metabolism , Electrons , Cytochromes/metabolism , Electron Transport , Shewanella/chemistry , Shewanella/genetics , Shewanella/metabolism
17.
J Mater Sci Mater Med ; 35(1): 11, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300359

ABSTRACT

The study of a macromolecule derived from DPP and triphenylamine, (DPP-BisTPA) by computational chemistry, its synthesis by direct arylation, optical characterization (UV-Vis and fluorescence) and electrochemistry (cyclic voltammetry), as well as its evaluation as a generator of reactive oxygen species indirectly, through the degradation of uric acid. The results obtained by DFT using B3LYP/6-31G (d, p) and TD-DFT using CAM-B3LYP/6-31G (d, p) reveal values of energy levels of the first singlet and triplet excited state that indicate a possible intersystem crossover and the possible generation of reactive oxygen species by a type I mechanism. The compound presents an absorption region within the phototherapeutic window. The electrochemical bandgap is 1.64 eV which suggests a behavior as a semiconductor. DPP-BisTPa were processed as hemispherical nanoparticles with a size around 100 nm, and NPOs were evaluated as a photosensitizer with a ROS generation yield of 4% using a photodynamic therapy flashlight as the light source.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Amines , Electrochemistry
18.
Chemosphere ; 346: 140573, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303389

ABSTRACT

Availability of raw materials in the chemical industry is related to the selection of the chemical processes in which they are used as well as to the efficiency, cost, and eventual evolution to more competitive dynamics of transformation technologies. In general terms however, any chemically transforming technology starts with the extraction, purification, design, manufacture, use, and disposal of materials. It is important to create a new paradigm towards green chemistry, sustainability, and circular economy in the chemical sciences that help to better employ, reuse, and recycle the materials used in every aspect of modern life. Electrochemistry is a growing field of knowledge that can help with these issues to reduce solid waste and the impact of chemical processes on the environment. Several electrochemical studies in the last decades have benefited the recovery of important chemical compounds and elements through electrodeposition, electrowinning, electrocoagulation, electrodialysis, and other processes. The use of living organisms and microorganisms using an electrochemical perspective (known as bioelectrochemistry), is also calling attention to "mining", through plants and microorganisms, essential chemical elements. New process design or the optimization of the current technologies is a major necessity to enhance production and minimize the use of raw materials along with less generation of wastes and secondary by-products. In this context, this contribution aims to show an up-to-date scenario of both environmental electrochemical and bioelectrochemical processes for the extraction, use, recovery and recycling of materials in a circular economy model.


Subject(s)
Recycling , Waste Management , Electrochemistry , Mining , Solid Waste , Technology
19.
Food Chem ; 444: 138674, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38335687

ABSTRACT

To develop rapid detection techniques for liquid eggs' adulteration, three types of adulterations were considered: water dilution, manipulation of yolk ratio in whole egg, and blending different varieties of egg white or yolk. Objective: Establish detection techniques utilizing colorimetry, electrochemistry, and interfacial fingerprinting for these adulterations, respectively. Results: Colorimetry allows for detection (1 min·sample-1) of water dilution through linear (R2 ≥ 0.984) and exponential fitting (R2 ≥ 0.992); Electrochemistry enables detection (6 min·sample-1, R2 ≥ 0.979) of the adulteration of yolk ratio in whole egg; Interfacial fingerprinting technique effectively detects (detection duration: 10 min·sample-1, detection limit: 1.0-10.0 wt%) the adulteration of different varieties of egg white. Subsequently, through 3D-fluorescence microscopy (interface height variation: 22.49-573.45 µm), interfacial tension variation (65.54-35.48 mN·m-1), contact angle variation (89.7°-32.9°), particle size range (free water: 0.94-14.29 µm; protein aggregation: 6.57-10.76 µm), and etc., interfacial fingerprinting mechanism was elucidated. This research contributes novel insights into the detection of adulteration in liquid eggs.


Subject(s)
Chickens , Colorimetry , Animals , Electrochemistry , Eggs/analysis , Water , Egg Yolk
20.
Mikrochim Acta ; 191(3): 137, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38358570

ABSTRACT

An innovative electrochemical sensor is introduced that utilizes bipolar electrochemistry on a paper substrate for detecting glucose in sweat. The sensor employs a three-dimensional porous nanocomposite (MXene/NiSm-LDH) formed by decorating nickel-samarium nanoparticles with double-layer MXene hydroxide. These specially designed electrodes exhibit exceptional electrocatalytic activity during glucose oxidation. The glucose sensing mechanism involves enzyme-free oxidation of the analyte within the sensor cell, achieved by applying an appropriate potential. This leads to the reduction of K3Fe(CN)6 in the reporter cell, and the resulting current serves as the response signal. By optimizing various parameters, the measurement platform enables the accurate determination of sweat glucose concentrations within a linear range of 10 to 200 µM. The limit of detection (LOD) for glucose is 3.6 µM (S/N = 3), indicating a sensitive and reliable detection capability. Real samples were analysed  to validate the sensor's efficiency, and the results obtained were both promising and encouraging.


Subject(s)
Nitrites , Sweat , Titanium , Transition Elements , Electrochemistry , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL
...