Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57.687
Filter
1.
Water Sci Technol ; 89(10): 2716-2731, 2024 May.
Article in English | MEDLINE | ID: mdl-38822610

ABSTRACT

The anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) is challenging due to its toxic effect on the microbes. Microbial electrolysis cells (MECs), with their excellent characteristics of anodic and cathodic biofilms, can be a viable way to enhance the biodegradation of PAHs. This work assessed different cathode materials (carbon brush and nickel foam) combined with bioaugmentation on typical PAHs-naphthalene biodegradation and analyzed the inhibition amendment mechanism of microbial biofilms in MECs. Compared with the control, the degradation efficiency of naphthalene with the nickel foam cathode supplied with bioaugmentation dosage realized a maximum removal rate of 94.5 ± 3.2%. The highest daily recovered methane yield (227 ± 2 mL/gCOD) was also found in the nickel foam cathode supplied with bioaugmentation. Moreover, the microbial analysis demonstrated the significant switch of predominant PAH-degrading microorganisms from Pseudomonas in control to norank_f_Prolixibacteraceae in MECs. Furthermore, hydrogentrophic methanogenesis prevailed in MEC reactors, which is responsible for methane production. This study proved that MEC combined with bioaugmentation could effectively alleviate the inhibition of PAH, with the nickel foam cathode obtaining the fastest recovery rate in terms of methane yield.


Subject(s)
Biodegradation, Environmental , Electrolysis , Polycyclic Aromatic Hydrocarbons , Wastewater , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Bioreactors , Bacteria/metabolism , Electrodes , Biofilms
2.
Mikrochim Acta ; 191(6): 356, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811412

ABSTRACT

Charged antimicrobial peptides can be used for direct potentiometric biosensing, but have never been explored. We report here a galvanostatically-controlled potentiometric sensor for antimicrobial peptide-based biosensing. Solid-state pulsed galvanostatic sensors that showed excellent stability under continuous galvanostatic polarization were prepared by utilizing reduced graphene oxide/poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) (rGO/PEDOT: PSS) as a solid contact. More importantly, the chronopotentiometric sensor can be made sensitive to antimicrobial peptides with intrinsic charge on demand via a current pulse. In this study, a positively charged antimicrobial peptide that can bind to Staphylococcus aureus with high affinity and good selectivity was designed as a model. Two arginine residues with positive charges were linked to the C-terminal of the peptide sequence to increase its potentiometric responses on the electrode. The bacteria binding-induced charge or charge density change of the antimicrobial peptide enables the direct chronopotentiometric detection of the target. Under the optimized conditions, the concentration of Staphylococcus aureus can be determined in the linear range 10-1.0 × 105 CFU mL-1 with a detection limit of 10 CFU mL-1. It is anticipated that such a chronopotentiometric sensing platform is readily adaptable to detect other bacteria by choosing the peptides.


Subject(s)
Biosensing Techniques , Graphite , Potentiometry , Staphylococcus aureus , Biosensing Techniques/methods , Graphite/chemistry , Potentiometry/methods , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Limit of Detection , Polymers/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Electrodes
3.
Environ Sci Pollut Res Int ; 31(23): 34249-34257, 2024 May.
Article in English | MEDLINE | ID: mdl-38700765

ABSTRACT

In view of the importance of environmental protection and resource recovery, recycling of spent lithium ion batteries (LIBs) is quite necessary. In the present study, lithium and copper are recycled to lithium carbonate and copper oxide from anode electrode material of the spent LIBs. The anode electrode material is firstly treated with hydrochloric acid to leach lithium (96.6%) and then with nitric acid to leach copper (97.6%). Furthermore, lithium and copper are recovered as lithium carbonate and copper oxide from their respective solutions using precipitation and calcinations. These synthesized products are further characterized using XRD, FE-SEM, and EDX analysis. Finally, a simple process is proposed for the recovery of lithium and copper from anode electrode material of spent LIBs.


Subject(s)
Copper , Electrodes , Lithium , Lithium/chemistry , Copper/chemistry , Recycling , Electric Power Supplies
4.
Sci Rep ; 14(1): 12088, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802402

ABSTRACT

Nowadays, scientists are currently attempting to lessen the harmful effects of chemicals on the environment. Stability testing identifies how a drug's quality changes over time. The current work suggests a first and sustainable differential pulse voltammetry technique for quantifying difluprednate (DIF) as an anti-inflammatory agent in the presence of its alkaline degradation product (DEG). The optimum conditions for the developed method were investigated with a glassy carbon electrode and a scan rate of 100 mV s-1. The linearity range was 2.0 × 10-7-1.0 × 10-6 M for DIF. DIF was found to undergo alkaline degradation, when refluxed for 8 h using 2.0 M NaOH, and DEG was successfully characterized utilizing IR and MS/MS. The intended approach demonstrated the selectivity for DIF identification in pure, pharmaceutical, and degradation forms. The student's t-test and F value were used to compare the suggested and reported approaches statistically. The results were validated according to ICH requirements. The greenness of the studied approach was evaluated using the Green Analytical Procedure Index and the Analytical Greenness metric. Additionally, the whiteness features of the proposed approach were examined with the recently released red, green, and blue 12 model, and the recommended strategy performed better than the reported approaches in greenness and whiteness.


Subject(s)
Electrochemical Techniques , Electrochemical Techniques/methods , Electrodes , Sodium Hydroxide/chemistry , Tandem Mass Spectrometry/methods , Hydrogen-Ion Concentration , Green Chemistry Technology/methods
5.
Sci Rep ; 14(1): 12183, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806617

ABSTRACT

The fabrication of the first label-free electrochemical DNA probe biosensor for highly sensitive detection of Candidatus Liberibacter asiaticus (CLas), as the causal agent of citrus huanglongbing disease, is conducted here. An OMP probe was designed based on the hybridization with its target-specific sequence in the outer membrane protein (OMP) gene of CLas. The characterization of the steps of biosensor fabrication and hybridization process between the immobilized OMP-DNA probe and the target ssDNA oligonucleotides (OMP-complementary and three mismatches OMP or OMP-mutation) was monitored using cyclic voltammetry and electrochemical impedance spectroscopy based on increasing or decreasing in the electron transfer in [Fe (CN)6]3-/4- on the modified gold electrode surface. The biosensor sensitivity indicated that the peak currents were linear over ranges from 20 to 100 nM for OMP-complementary with the detection limit of 0.026 nM (S/N = 3). The absence of any cross-interference with other biological DNA sequences confirmed a high selectivity of fabricated biosensor. Likewise, it showed good specificity in discriminating the mutation oligonucleotides from complementary target DNAs. The functional performance of optimized biosensor was achieved via the hybridization of OMP-DNA probe with extracted DNA from citrus plant infected with CLas. Therefore, fabricated biosensor indicates promise for sensitivity and early detection of citrus huanglongbing disease.


Subject(s)
Bacterial Outer Membrane Proteins , Biosensing Techniques , Citrus , DNA Probes , Electrochemical Techniques , Plant Diseases , Biosensing Techniques/methods , Citrus/microbiology , Plant Diseases/microbiology , DNA Probes/genetics , Bacterial Outer Membrane Proteins/genetics , Electrochemical Techniques/methods , Electrodes , Nucleic Acid Hybridization , Dielectric Spectroscopy , Limit of Detection , Rhizobiaceae/genetics , Rhizobiaceae/isolation & purification , Liberibacter/genetics
6.
J Chromatogr A ; 1727: 464990, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38744188

ABSTRACT

An approach for the controllable separation and concentration of nucleic acid using a circular nonuniform electric field was proposed and developed. Using six different lengths of DNA molecules as standard samples, the distribution of the gradient electric field was increased from the outer circular electrode to the inner rod-shaped electrode, contributing to the migration of DNA molecules at a velocity gradient towards the region with the strongest inner electric field. The DNA molecules were arranged in a distribution of concentric circles that aligned with the distribution of concentric equipotential lines. The concentration of DNA multiplied with the alternation of radius. As a result, this platform allowed simultaneous DNA separation, achieving a resolution range of 1.17-3.03 through an extended electrophoresis time, resulting in enhanced concentration factors of 1.08-6.27. Moreover, the manipulation of the relative height of the inner and outer electrodes enabled precise control over the distribution and the deflection degree of electric field lines, leading to accurate control over DNA deflection.


Subject(s)
DNA , DNA/isolation & purification , DNA/analysis , DNA/chemistry , Electrodes , Electricity , Electrophoresis, Capillary/methods
7.
Biosens Bioelectron ; 259: 116387, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754194

ABSTRACT

The incidence of esophageal cancer is positively associated with fumonisin contamination. It is necessary to develop methods for the rapid detection of fumonisins. In this work, a self-powered photoelectrochemical aptamer sensor based on ZnIn2S4/WO3 photoanode and Au@W-Co3O4 photocathode is proposed for the sensitive detection of fumonisin B1 (FB1). Among them, under visible light irradiation, the Z-type heterostructure of ZnIn2S4/WO3 acts as a photoanode to improve the electron transfer rate, which contributes to the enhancement of the photocathode signal and lays the foundation for a wider detection range. The Au@W-Co3O4 photocathode as a sensing interface reduces the probability of false positives (comparison of anode sensing platforms). The PEC sensor has a good working performance in the detection range (10 pg/mL-1000 ng/mL) with a detection limit of 2.7 pg/mL (S/N = 3). In addition, the sensor offers good selectivity, stability and excellent recoveries in real sample analysis. This work is expected to play a role in the field of analyzing environmental toxins.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Fumonisins , Limit of Detection , Fumonisins/analysis , Fumonisins/chemistry , Aptamers, Nucleotide/chemistry , Tungsten/chemistry , Electrodes , Oxides/chemistry , Gold/chemistry , Humans , Light , Zinc/chemistry
8.
Biosens Bioelectron ; 259: 116355, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754196

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a highly contagious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in a global health crisis. The primary diagnostic method for COVID-19 is quantitative reverse transcription PCR, which is time-consuming and requires expensive instrumentation. Here, we developed an electrochemical biosensor for detecting SARS-CoV-2 biomarkers using a 3D porous polyacrylamide/polyaniline hydrogel (PPG) electrode prepared by UV photopolymerization and in situ polymerization. The electrochemical immunosensor for detecting SARS-CoV-2 N protein via the immune sandwich principle demonstrated a lower detection limit of 42 pg/mL and comparable specificity to a commercial enzyme-linked immunosorbent assay, which was additionally validated in pseudoviruses. The electrochemical sensor for hydrogen peroxide showed a low detection limit of 0.5 µM and excellent selectivity, which was further confirmed in cancer cells under oxidative stress. The biomarkers of SARS-CoV-2 were successfully detected due to the signal amplification capability provided by 3D porous electrodes and the high sensitivity of the antigen-antibody specific binding. This study introduces a novel three-dimensional electrode with great potential for the early detection of SARS-CoV-2.


Subject(s)
Biosensing Techniques , COVID-19 , Electrochemical Techniques , Electrodes , Hydrogels , Hydrogen Peroxide , Limit of Detection , SARS-CoV-2 , Hydrogen Peroxide/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Humans , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19/virology , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Hydrogels/chemistry , Coronavirus Nucleocapsid Proteins/analysis , Coronavirus Nucleocapsid Proteins/immunology , Phosphoproteins/analysis , Immunoassay/instrumentation , Immunoassay/methods
9.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38725292

ABSTRACT

The local field potential (LFP) is an extracellular electrical signal associated with neural ensemble input and dendritic signaling. Previous studies have linked gamma band oscillations of the LFP in cortical circuits to sensory stimuli encoding, attention, memory, and perception. Inconsistent results regarding gamma tuning for visual features were reported, but it remains unclear whether these discrepancies are due to variations in electrode properties. Specifically, the surface area and impedance of the electrode are important characteristics in LFP recording. To comprehensively address these issues, we conducted an electrophysiological study in the V1 region of lightly anesthetized mice using two types of electrodes: one with higher impedance (1 MΩ) and a sharp tip (10 µm), while the other had lower impedance (100 KΩ) but a thicker tip (200 µm). Our findings demonstrate that gamma oscillations acquired by sharp-tip electrodes were significantly stronger than those obtained from thick-tip electrodes. Regarding size tuning, most gamma power exhibited surround suppression at larger gratings when recorded from sharp-tip electrodes. However, the majority showed enhanced gamma power at larger gratings when recorded from thick-tip electrodes. Therefore, our study suggests that microelectrode parameters play a significant role in accurately recording gamma oscillations and responsive tuning to sensory stimuli.


Subject(s)
Gamma Rhythm , Mice, Inbred C57BL , Photic Stimulation , Primary Visual Cortex , Animals , Gamma Rhythm/physiology , Mice , Photic Stimulation/methods , Primary Visual Cortex/physiology , Male , Microelectrodes , Visual Cortex/physiology , Electrodes
10.
Mikrochim Acta ; 191(6): 322, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730044

ABSTRACT

The first electrochemical sensor application in the literature is described for the sensitive and selective determination of the selective Janus kinase (JAK)-1 inhibitor abrocitinib (ABR). ABR is approved by the U.S. Food and Drug Administration (FDA) for the treatment of atopic dermatitis. The molecularly imprinted polymer (MIP)-based sensor was designed to incorporate zinc nanoflower (ZnNFs)-graphene oxide (GO) conjugate (ZnNFs@GO), synthesized from the root methanolic extract (RME) of the species Alkanna cappadocica Boiss. et Bal. to improve the porosity and effective surface area of the glassy carbon electrode (GCE). Furthermore, the MIP structure was prepared using ABR as a template molecule, 4-aminobenzoic acid (4-ABA) as a functional monomer, and other additional components. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the surface and structure of the synthesized nanomaterial and MIP-based surface. Among the electrochemical methods, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were preferred for detailed electrochemical characterization, and differential pulse voltammetry (DPV) was preferred for all other electrochemical measurements using 5.0 mM [Fe(CN)6]3-/4- solution as the redox probe. The MIP-based sensor, which was the result of a detailed optimization phase, gave a linear response in the 1.0 × 10-13 - 1.0 × 10-12 M range in standard solution and serum sample. The obtained limit of detection (LOD) and limit of quantification (LOQ) values and recovery studies demonstrated the sensitivity, accuracy, and applicability of the sensor. Selectivity, the most important feature of the MIP-based sensor, was verified by imprinting factor calculations using ibrutinib, ruxolitinib, tofacitinib, zonisamide, and acetazolamide.


Subject(s)
Electrochemical Techniques , Limit of Detection , Molecularly Imprinted Polymers , Zinc , Molecularly Imprinted Polymers/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Zinc/chemistry , Graphite/chemistry , Humans , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/analysis , Aminoimidazole Carboxamide/blood , Aminoimidazole Carboxamide/chemistry , Nanostructures/chemistry , Electrodes
11.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731427

ABSTRACT

Dopamine (DA) and uric acid (UA) are essential for many physiological processes in the human body. Abnormal levels of DA and UA can lead to multiple diseases, such as Parkinson's disease and gout. In this work, a three-dimensional reduced graphene oxide-MXene (3D rGO-Ti3C2) composite electrode was prepared using a simple one-step hydrothermal reduction process, which could separate the oxidation potentials of DA and UA, enabling the simultaneous detection of DA and UA. The 3D rGO-Ti3C2 electrode exhibited excellent electrocatalytic activity towards both DA and UA. In 0.01 M PBS solution, the linear range of DA was 0.5-500 µM with a sensitivity of 0.74 µA·µM-1·cm-2 and a detection limit of 0.056 µM (S/N = 3), while the linear range of UA was 0.5-60 µM and 80-450 µM, with sensitivity of 2.96 and 0.81 µA·µM-1·cm-2, respectively, and a detection limit of 0.086 µM (S/N = 3). In 10% fetal bovine serum (FBS) solution, the linear range of DA was 0.5-500 µM with a sensitivity of 0.41 µA·µM-1·cm-2 and a detection limit of 0.091 µM (S/N = 3). The linear range of UA was 2-500 µM with a sensitivity of 0.11 µA·µM-1·cm-2 and a detection limit of 0.6 µM (S/N = 3). The modified electrode exhibited advantages such as high sensitivity, a strong anti-interference capability, and good repeatability. Furthermore, the modified electrode was successfully used for DA measurement in vivo. This could present a simple reliable route for neurotransmitter detection in neuroscience.


Subject(s)
Dopamine , Electrochemical Techniques , Electrodes , Graphite , Uric Acid , Graphite/chemistry , Uric Acid/analysis , Uric Acid/blood , Dopamine/analysis , Dopamine/blood , Electrochemical Techniques/methods , Limit of Detection , Oxidation-Reduction , Humans , Titanium/chemistry , Animals
12.
AAPS PharmSciTech ; 25(5): 116, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769223

ABSTRACT

Oral dispersible films have received broad interest due to fast drug absorption and no first-path metabolism, leading to high bioavailability and better patient compliance. Saxagliptin (SXG) is an antidiabetic drug that undergoes first-path metabolism, resulting in a less active metabolite, so the development of SXG oral dispersible films (SXG-ODFs) improves SXG bioavailability. The formula optimisation included a response surface experimental design and the impact of three formulation factors, the type and concentration of polymer and plasticiser concentration on in-vitro disintegration time and folding endurance. Two optimised SXG-ODFs prepared using either polyvinyl alcohol (PVA) or hydroxypropyl methylcellulose were investigated. SXG-ODFs prepared with PVA demonstrated a superior rapid disintegration time, ranging from 17 to 890 s, with the fastest disintegration time recorded at 17 s. These short durations can be attributed to the hydrophilic nature of PVA, facilitating rapid hydration and disintegration upon contact with saliva. Additionally, PVA-based films displayed remarkable folding endurance, surpassing 200 folds without rupture, indicating flexibility and stability. The high tensile strength of PVA-based films further underscores their robust mechanical properties, with tensile strength values reaching up to 4.53 MPa. SXG exhibits a UV absorption wavelength of around 212 nm, posing challenges for traditional quantitative spectrophotometric analysis, so a polyaniline nanoparticles-based solid-contact screen-printed ion-selective electrode (SP-ISE) was employed for the determination of SXG release profile effectively in comparison to HPLC. SP-ISE showed a better real-time release profile of SXG-ODFs, and the optimised formula showed lower blood glucose levels than commercial tablets.


Subject(s)
Adamantane , Aniline Compounds , Dipeptides , Drug Liberation , Nanoparticles , Polyvinyl Alcohol , Adamantane/chemistry , Adamantane/analogs & derivatives , Dipeptides/chemistry , Dipeptides/pharmacokinetics , Dipeptides/administration & dosage , Aniline Compounds/chemistry , Nanoparticles/chemistry , Administration, Oral , Polyvinyl Alcohol/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Humans , Hypromellose Derivatives/chemistry , Tensile Strength , Chemistry, Pharmaceutical/methods , Biological Availability , Solubility , Electrodes
13.
Langmuir ; 40(20): 10634-10647, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38723623

ABSTRACT

Hematin, an iron-containing porphyrin compound, plays a crucial role in various biological processes, including oxygen transport, storage, and functionality of the malarial parasite. Specifically, hematin-Fe interacts with the nitrogen atom of antimalarial drugs, forming an intermediate step crucial for their function. The electron transfer functionality of hematin in biological systems has been scarcely investigated. In this study, we developed a biomimicking electrical wiring of hematin-Fe with a model N-drug system, represented as {hematin-Fe---N-drug}. We achieved this by immobilizing hematin on a multiwalled carbon nanotube (MWCNT)/N-graphene quantum dot (N-GQD) modified electrode (MWCNT/N-GQD@Hemat). N-GQD serves as a model molecular drug system containing nitrogen atoms to mimic the {hematin-Fe---N-drug} interaction. The prepared bioelectrode exhibited a distinct redox peak at a measured potential (E1/2) of -0.410 V vs Ag/AgCl, accompanied by a surface excess value of 3.54 × 10-9 mol cm-2. This observation contrasts significantly with the weak or electroinactive electrochemical responses documented in literature-based hematin systems. We performed a comprehensive set of physicochemical and electrochemical characterizations on the MWCNT/N-GQD@Hemat system, employing techniques including FESEM, TEM, Raman spectroscopy, IR spectroscopy, and AFM. To evaluate the biomimetic electrode's electroactivity, we investigated the selective-mediated reduction of H2O2 as a model system. As an important aspect of our research, we demonstrated the use of scanning electrochemical microscopy to visualize the in situ electron transfer reaction of the biomimicking electrode. In an independent study, we showed enzyme-less electrocatalytic reduction and selective electrocatalytic sensing of H2O2 with a detection limit of 319 nM. We achieved this using a batch injection analysis-coupled disposable screen-printed electrode system in physiological solution.


Subject(s)
Hemin , Hydrogen Peroxide , Nanotubes, Carbon , Oxidation-Reduction , Hydrogen Peroxide/chemistry , Hemin/chemistry , Nanotubes, Carbon/chemistry , Electrodes , Graphite/chemistry , Quantum Dots/chemistry , Nitrogen/chemistry , Surface Properties , Electrochemical Techniques/methods , Catalysis
14.
Langmuir ; 40(20): 10718-10725, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728259

ABSTRACT

For accurate in vivo detection, nonspecific adsorption of biomacromolecules such as proteins and cells is a severe issue. The adsorption leads to electrode passivation, significantly compromising both the sensitivity and precision of sensing. Meanwhile, common antibiofouling modifications, such as polymer coatings, still grapple with issues related to biocompatibility, electrode passivation, and miniaturization. Herein, we propose a composite antibiofouling coating strategy based on zwitterionic metal-organic frameworks (Z-MOFs) and a combination of acrylamide hydrogels. On a well-designed TiO2/Z-MOF/hydrogel photoelectrode, we achieve highly sensitive and selective detection of dopamine in complex biological environments. The hydrogel's three-dimensional porous structure combined with unique microporous architecture of Z-MOF ensures effective sieving of interfering macromolecules while preserving efficient small molecules and electron transport. This innovative approach paves the way for constructing miniature, in vivo antibiofouling sensors for molecule monitoring in living organisms with complicated chemical environments.


Subject(s)
Biosensing Techniques , Dopamine , Hydrogels , Titanium , Hydrogels/chemistry , Dopamine/analysis , Dopamine/chemistry , Biosensing Techniques/methods , Titanium/chemistry , Biofouling/prevention & control , Electrochemical Techniques/methods , Photochemical Processes , Metal-Organic Frameworks/chemistry , Biocompatible Materials/chemistry , Electrodes
15.
ACS Nano ; 18(20): 12781-12794, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38733343

ABSTRACT

Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.


Subject(s)
Circulating Tumor DNA , Electrodes , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Liquid Biopsy , Gene Amplification , Magnetite Nanoparticles/chemistry , Breast Neoplasms/blood , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Gold/chemistry , Surface Properties , Electrochemical Techniques/methods , Polymerase Chain Reaction , Female
16.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(5): 281-292, 2024.
Article in English | MEDLINE | ID: mdl-38735752

ABSTRACT

Magnetron production and use far exceed that of other microwave tubes due to their high operational efficiency, power efficiency, and cost-effectiveness in production. The magnetron was named by A. W. Hull; however, the device invented by Hull differs from the magnetron utilized as a microwave tube. The magnetron widely used today is based on the split-anode magnetron invented by K. Okabe. This overview introduces two papers published by Okabe in the Proceedings of the Imperial Academy and discusses the events that led to the discovery of the split-anode magnetron. In addition, the operation mechanisms of magnetrons are explained.


Subject(s)
Electrodes , Inventions , History, 20th Century , Microwaves , Magnetics
17.
Anal Methods ; 16(20): 3278-3286, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38738557

ABSTRACT

Dextromethorphan (DXM) is a widely utilized central antitussive agent, which is frequently abused by individuals seeking its recreational effect. But DXM overdose can cause some adverse effects, including brain damage, loss of consciousness, and cardiac arrhythmias, and hence its detection is significant. Herein, an electrochemical sensor based on a Cu-coordinated molecularly imprinted polymer (Cu-MIP) was fabricated for its detection. For constructing the sensor, nitrogen-doped carbon nanosheets (CCNs) were prepared through calcining chitin under an argon atmosphere, and molybdenum disulfide (MoS2) was allowed to grow on their surface. Subsequently, the obtained MoS2/CCNs composite was employed to modify a glassy carbon electrode (GCE), and the Cu-MIP was electrodeposited on the electrode in a Cu-1,10-phenanthroline (Cu-Phen) solution containing DXM, where Cu2+ played a role in facilitating electron transfer and binding DXM. Due to the large specific surface area, good electrocatalytic properties and recognition of the resulting composite, the resulting Cu-MIP/MoS2/CCNs/GCE showed high selectivity and sensitivity. Under optimized experimental conditions, the peak current of DXM and its concentration exhibited a good linear relationship over the concentration range of 0.1-100 µM, and the limit of detection (S/N = 3) was 0.02 µM. Furthermore, the electrochemical sensor presented good stability, and it was successfully used for the determination of DXM in pharmaceutical, human serum and urine samples.


Subject(s)
Carbon , Copper , Dextromethorphan , Disulfides , Electrochemical Techniques , Molecularly Imprinted Polymers , Molybdenum , Molybdenum/chemistry , Disulfides/chemistry , Dextromethorphan/analysis , Dextromethorphan/chemistry , Dextromethorphan/urine , Copper/chemistry , Electrochemical Techniques/methods , Carbon/chemistry , Molecularly Imprinted Polymers/chemistry , Chitin/chemistry , Humans , Limit of Detection , Electrodes , Antitussive Agents/chemistry , Antitussive Agents/analysis , Antitussive Agents/urine
18.
Luminescence ; 39(5): e4768, 2024 May.
Article in English | MEDLINE | ID: mdl-38719590

ABSTRACT

In this study, we synthesize nanostructured nickel oxide (NiO) and doped cobalt (Co) by combining nickel(II) chloride hexahydrate (NiCl2.6H2O) and sodium hydroxide (NaOH) as initial substances. We analyzed the characteristics of the product nanostructures, including their structure, optical properties, and magnetic properties, using various techniques such as x-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet absorption spectroscopy (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometers (VSM). The NiO nanoparticles doped with Co showed photocatalytic activity in degrading methylene blue (MB) dye in aqueous solutions. We calculated the degradation efficiencies by analyzing the UV-Vis absorption spectra at the dye's absorption wavelength of 664 nm. It was observed that the NiO-doped Co nanoparticles facilitated enhanced recombination and migration of active elements, which led to more effective degradation of organic dyes during photocatalysis. We also assessed the electrochemical properties of the materials using cyclic voltammetry (CV) and impedance spectroscopy in a 1 mol% NaOH solution. The NiO-modified electrode exhibited poor voltammogram performance due to insufficient contact between nanoparticles and the electrolyte solution. In contrast, the uncapped NiO's oxidation and reduction cyclic voltammograms displayed redox peaks at 0.36 and 0.30 V, respectively.


Subject(s)
Cobalt , Electrochemistry , Electrodes , Nanocomposites , Nickel , Nanocomposites/chemistry , Nickel/chemistry , Cobalt/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Luminescence , Microscopy, Electron, Scanning , Particle Size , Magnetic Phenomena , Nanoparticles/chemistry , Light , Catalysis , Oxides/chemistry , Methylene Blue/metabolism
19.
Anal Methods ; 16(19): 3020-3029, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38690766

ABSTRACT

A concise and rapid detection method for Mycoplasma pneumoniae is urgently required due to its severe impact on human health. To meet such a need, this study proposed and constructed an innovative point-of-care testing (POCT) platform that consists of a hydrogen ion-selective loop-mediated isothermal amplification (H+-LAMP) sensor and an electrochemical detection device. The H+-LAMP sensor successfully integrated the working and reference electrodes and converted the H+ generated during the LAMP process into an electrochemical signal. High sensitivity and stability for pathogen detection were also achieved by treating the working electrode with an electrodeposited polyaniline solid contact layer and by using an ion-selective membrane. As a result, the sensor shows a sensitivity of 68.26 mV per pH, a response time of less than 2 s, and a potential drift of less than 5 mV within one hour, which well meets the urgent need. The results also demonstrated that the detection limit for Mycoplasma pneumoniae was lowered to 1 copy per µL, the nucleic acid extraction and detection process could be completed in 30 minutes, and the impact of interfering ions on the sensor was negligible. Validation with 20 clinical samples yielded satisfactory results. More importantly, the storage lifespan of such an electrochemical sensor is over seven days, which is a great advantage for on-site pathogen detection. Therefore, the hydrogen ion-selective sensor constructed in this investigation is particularly suitable as a core component for instant pathogen detection platforms.


Subject(s)
Electrochemical Techniques , Limit of Detection , Mycoplasma pneumoniae , Nucleic Acid Amplification Techniques , Mycoplasma pneumoniae/isolation & purification , Mycoplasma pneumoniae/genetics , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Humans , Hydrogen/chemistry , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Biosensing Techniques/methods , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/instrumentation , Electrodes
20.
ACS Appl Mater Interfaces ; 16(19): 25169-25180, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695741

ABSTRACT

Additive manufacturing holds promise for rapid prototyping and low-cost production of biosensors for diverse pathogens. Among additive manufacturing methods, screen printing is particularly desirable for high-throughput production of sensing platforms. However, this technique needs to be combined with carefully formulated inks, rapid postprocessing, and selective functionalization to meet all requirements for high-performance biosensing applications. Here, we present screen-printed graphene electrodes that are processed with thermal annealing to achieve high surface area and electrical conductivity for sensitive biodetection via electrochemical impedance spectroscopy. As a proof-of-concept, this biosensing platform is utilized for electrochemical detection of SARS-CoV-2. To ensure reliable specificity in the presence of multiple variants, biolayer interferometry (BLI) is used as a label-free and dynamic screening method to identify optimal antibodies for concurrent affinity to the Spike S1 proteins of Delta, Omicron, and Wild Type SARS-CoV-2 variants while maintaining low affinity to competing pathogens such as Influenza H1N1. The BLI-identified antibodies are robustly bound to the graphene electrode surface via oxygen moieties that are introduced during the thermal annealing process. The resulting electrochemical immunosensors achieve superior metrics including rapid detection (55 s readout following 15 min of incubation), low limits of detection (approaching 500 ag/mL for the Omicron variant), and high selectivity toward multiple variants. Importantly, the sensors perform well on clinical saliva samples detecting as few as 103 copies/mL of SARS-CoV-2 Omicron, following CDC protocols. The combination of the screen-printed graphene sensing platform and effective antibody selection using BLI can be generalized to a wide range of point-of-care immunosensors.


Subject(s)
Biosensing Techniques , Graphite , Interferometry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Graphite/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Biosensing Techniques/methods , Humans , Interferometry/instrumentation , Spike Glycoprotein, Coronavirus/immunology , COVID-19/diagnosis , COVID-19/virology , Electrodes , Electrochemical Techniques/methods , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...