Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.406
Filter
1.
Hum Brain Mapp ; 45(8): e26747, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38825981

ABSTRACT

Electroencephalography (EEG) functional connectivity (FC) estimates are confounded by the volume conduction problem. This effect can be greatly reduced by applying FC measures insensitive to instantaneous, zero-lag dependencies (corrected measures). However, numerous studies showed that FC measures sensitive to volume conduction (uncorrected measures) exhibit higher reliability and higher subject-level identifiability. We tested how source reconstruction contributed to the reliability difference of EEG FC measures on a large (n = 201) resting-state data set testing eight FC measures (including corrected and uncorrected measures). We showed that the high reliability of uncorrected FC measures in resting state partly stems from source reconstruction: idiosyncratic noise patterns define a baseline resting-state functional network that explains a significant portion of the reliability of uncorrected FC measures. This effect remained valid for template head model-based, as well as individual head model-based source reconstruction. Based on our findings we made suggestions how to best use spatial leakage corrected and uncorrected FC measures depending on the main goals of the study.


Subject(s)
Connectome , Electroencephalography , Nerve Net , Humans , Electroencephalography/methods , Electroencephalography/standards , Adult , Connectome/standards , Connectome/methods , Female , Male , Reproducibility of Results , Nerve Net/diagnostic imaging , Nerve Net/physiology , Young Adult , Magnetic Resonance Imaging/standards , Brain/diagnostic imaging , Brain/physiology
2.
Sultan Qaboos Univ Med J ; 24(2): 279-282, 2024 May.
Article in English | MEDLINE | ID: mdl-38828239

ABSTRACT

Peri-ictal water drinking (PIWD) is a rare vegetative manifestation of temporal lobe epilepsy without a definite lateralisation value. We report a case of PIWD in a 22-year-old Omani male patient with post-concussion syndrome and epilepsy presented to a tertiary care hospital in Muscat, Oman, in 2021 for evaluation of paroxysmal events. His behaviour of PIWD was misinterpreted by his family until characterised in the epilepsy-monitoring unit as a manifestation of epilepsy that was treated medically. To the best of the authors' knowledge, this is the second reported case in the region.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Male , Oman , Young Adult , Epilepsy, Temporal Lobe/physiopathology , Drinking/physiology , Sclerosis , Electroencephalography/methods , Hippocampal Sclerosis
3.
J Clin Neurophysiol ; 41(4): 334-343, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38710040

ABSTRACT

PURPOSE: Language lateralization relies on expensive equipment and can be difficult to tolerate. We assessed if lateralized brain responses to a language task can be detected with spectral analysis of electroencephalography (EEG). METHODS: Twenty right-handed, neurotypical adults (28 ± 10 years; five males) performed a verb generation task and two control tasks (word listening and repetition). We measured changes in EEG activity elicited by tasks (the event-related spectral perturbation [ERSP]) in the theta, alpha, beta, and gamma frequency bands in two language (superior temporal and inferior frontal [ST and IF]) and one control (occipital [Occ]) region bilaterally. We tested whether language tasks elicited (1) changes in spectral power from baseline (significant ERSP) at any region or (2) asymmetric ERSPs between matched left and right regions. RESULTS: Left IF beta power (-0.37±0.53, t = -3.12, P = 0.006) and gamma power in all regions decreased during verb generation. Asymmetric ERSPs (right > left) occurred between the (1) IF regions in the beta band (right vs. left difference of 0.23±0.37, t(19) = -2.80, P = 0.0114) and (2) ST regions in the alpha band (right vs. left difference of 0.48±0.63, t(19) = -3.36, P = 0.003). No changes from baseline or hemispheric asymmetries were noted in language regions during control tasks. On the individual level, 16 (80%) participants showed decreased left IF beta power from baseline, and 16 showed ST alpha asymmetry. Eighteen participants (90%) showed one of these two findings. CONCLUSIONS: Spectral EEG analysis detects lateralized responses during language tasks in frontal and temporal regions. Spectral EEG analysis could be developed into a readily available language lateralization modality.


Subject(s)
Electroencephalography , Functional Laterality , Language , Humans , Male , Female , Adult , Functional Laterality/physiology , Electroencephalography/methods , Young Adult , Brain/physiology , Brain Waves/physiology , Brain Mapping/methods
4.
Sci Rep ; 14(1): 10371, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710806

ABSTRACT

Emotion is a human sense that can influence an individual's life quality in both positive and negative ways. The ability to distinguish different types of emotion can lead researchers to estimate the current situation of patients or the probability of future disease. Recognizing emotions from images have problems concealing their feeling by modifying their facial expressions. This led researchers to consider Electroencephalography (EEG) signals for more accurate emotion detection. However, the complexity of EEG recordings and data analysis using conventional machine learning algorithms caused inconsistent emotion recognition. Therefore, utilizing hybrid deep learning models and other techniques has become common due to their ability to analyze complicated data and achieve higher performance by integrating diverse features of the models. However, researchers prioritize models with fewer parameters to achieve the highest average accuracy. This study improves the Convolutional Fuzzy Neural Network (CFNN) for emotion recognition using EEG signals to achieve a reliable detection system. Initially, the pre-processing and feature extraction phases are implemented to obtain noiseless and informative data. Then, the CFNN with modified architecture is trained to classify emotions. Several parametric and comparative experiments are performed. The proposed model achieved reliable performance for emotion recognition with an average accuracy of 98.21% and 98.08% for valence (pleasantness) and arousal (intensity), respectively, and outperformed state-of-the-art methods.


Subject(s)
Electroencephalography , Emotions , Fuzzy Logic , Neural Networks, Computer , Humans , Electroencephalography/methods , Emotions/physiology , Male , Female , Adult , Algorithms , Young Adult , Signal Processing, Computer-Assisted , Deep Learning , Facial Expression
5.
Sci Rep ; 14(1): 10495, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714807

ABSTRACT

Schizophrenia is a serious and complex mental disease, known to be associated with various subtle structural and functional deviations in the brain. Recently, increased attention is given to the analysis of brain-wide, global mechanisms, strongly altering the communication of long-distance brain areas in schizophrenia. Data of 32 patients with schizophrenia and 28 matched healthy control subjects were analyzed. Two minutes long 64-channel EEG recordings were registered during resting, eyes closed condition. Average connectivity strength was estimated with Weighted Phase Lag Index (wPLI) in lower frequencies: delta and theta, and Amplitude Envelope Correlation with leakage correction (AEC-c) in higher frequencies: alpha, beta, lower gamma and higher gamma. To analyze functional network topology Minimum Spanning Tree (MST) algorithms were applied. Results show that patients have weaker functional connectivity in delta and alpha frequency bands. Concerning network differences, the result of lower diameter, higher leaf number, and also higher maximum degree and maximum betweenness centrality in patients suggest a star-like, and more random network topology in patients with schizophrenia. Our findings are in accordance with some previous findings based on resting-state EEG (and fMRI) data, suggesting that MST network structure in schizophrenia is biased towards a less optimal, more centralized organization.


Subject(s)
Brain , Electroencephalography , Schizophrenia , Humans , Schizophrenia/physiopathology , Electroencephalography/methods , Male , Female , Adult , Brain/physiopathology , Brain/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Rest/physiology , Algorithms , Middle Aged , Magnetic Resonance Imaging/methods , Case-Control Studies , Young Adult
6.
Chaos ; 34(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38717398

ABSTRACT

We use a multiscale symbolic approach to study the complex dynamics of temporal lobe refractory epilepsy employing high-resolution intracranial electroencephalogram (iEEG). We consider the basal and preictal phases and meticulously analyze the dynamics across frequency bands, focusing on high-frequency oscillations up to 240 Hz. Our results reveal significant periodicities and critical time scales within neural dynamics across frequency bands. By bandpass filtering neural signals into delta, theta, alpha, beta, gamma, and ripple high-frequency bands (HFO), each associated with specific neural processes, we examine the distinct nonlinear dynamics. Our method introduces a reliable approach to pinpoint intrinsic time lag scales τ within frequency bands of the basal and preictal signals, which are crucial for the study of refractory epilepsy. Using metrics such as permutation entropy (H), Fisher information (F), and complexity (C), we explore nonlinear patterns within iEEG signals. We reveal the intrinsic τmax that maximize complexity within each frequency band, unveiling the nonlinear subtle patterns of the temporal structures within the basal and preictal signal. Examining the H×F and C×F values allows us to identify differences in the delta band and a band between 200 and 220 Hz (HFO 6) when comparing basal and preictal signals. Differences in Fisher information in the delta and HFO 6 bands before seizures highlight their role in capturing important system dynamics. This offers new perspectives on the intricate relationship between delta oscillations and HFO waves in patients with focal epilepsy, highlighting the importance of these patterns and their potential as biomarkers.


Subject(s)
Biomarkers , Delta Rhythm , Humans , Biomarkers/metabolism , Delta Rhythm/physiology , Electroencephalography/methods , Epilepsy/physiopathology , Signal Processing, Computer-Assisted , Male , Nonlinear Dynamics , Female , Adult , Epilepsy, Temporal Lobe/physiopathology
7.
Cortex ; 175: 41-53, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703715

ABSTRACT

Visual search is speeded when a target is repeatedly presented in an invariant scene context of nontargets (contextual cueing), demonstrating observers' capability for using statistical long-term memory (LTM) to make predictions about upcoming sensory events, thus improving attentional orienting. In the current study, we investigated whether expectations arising from individual, learned environmental structures can encompass multiple target locations. We recorded event-related potentials (ERPs) while participants performed a contextual cueing search task with repeated and non-repeated spatial item configurations. Notably, a given search display could be associated with either a single target location (standard contextual cueing) or two possible target locations. Our result showed that LTM-guided attention was always limited to only one target position in single- but also in the dual-target displays, as evidenced by expedited reaction times (RTs) and enhanced N1pc and N2pc deflections contralateral to one ("dominant") target of up to two repeating target locations. This contrasts with the processing of non-learned ("minor") target positions (in dual-target displays), which revealed slowed RTs alongside an initial N1pc "misguidance" signal that then vanished in the subsequent N2pc. This RT slowing was accompanied by enhanced N200 and N400 waveforms over fronto-central electrodes, suggesting that control mechanisms regulate the competition between dominant and minor targets. Our study thus reveals a dissociation in processing dominant versus minor targets: While LTM templates guide attention to dominant targets, minor targets necessitate control processes to overcome the automatic bias towards previously learned, dominant target locations.


Subject(s)
Attention , Cues , Electroencephalography , Evoked Potentials , Reaction Time , Humans , Attention/physiology , Male , Female , Evoked Potentials/physiology , Reaction Time/physiology , Young Adult , Adult , Electroencephalography/methods , Visual Perception/physiology , Photic Stimulation/methods , Orientation/physiology , Memory, Long-Term/physiology
8.
BMC Anesthesiol ; 24(1): 167, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702608

ABSTRACT

The exact mechanisms and the neural circuits involved in anesthesia induced unconsciousness are still not fully understood. To elucidate them valid animal models are necessary. Since the most commonly used species in neuroscience are mice, we established a murine model for commonly used anesthetics/sedatives and evaluated the epidural electroencephalographic (EEG) patterns during slow anesthesia induction and emergence. Forty-four mice underwent surgery in which we inserted a central venous catheter and implanted nine intracranial electrodes above the prefrontal, motor, sensory, and visual cortex. After at least one week of recovery, mice were anesthetized either by inhalational sevoflurane or intravenous propofol, ketamine, or dexmedetomidine. We evaluated the loss and return of righting reflex (LORR/RORR) and recorded the electrocorticogram. For spectral analysis we focused on the prefrontal and visual cortex. In addition to analyzing the power spectral density at specific time points we evaluated the changes in the spectral power distribution longitudinally. The median time to LORR after start anesthesia ranged from 1080 [1st quartile: 960; 3rd quartile: 1080]s under sevoflurane anesthesia to 1541 [1455; 1890]s with ketamine. Around LORR sevoflurane as well as propofol induced a decrease in the theta/alpha band and an increase in the beta/gamma band. Dexmedetomidine infusion resulted in a shift towards lower frequencies with an increase in the delta range. Ketamine induced stronger activity in the higher frequencies. Our results showed substance-specific changes in EEG patterns during slow anesthesia induction. These patterns were partially identical to previous observations in humans, but also included significant differences, especially in the low frequencies. Our study emphasizes strengths and limitations of murine models in neuroscience and provides an important basis for future studies investigating complex neurophysiological mechanisms.


Subject(s)
Anesthetics, Inhalation , Dexmedetomidine , Electroencephalography , Ketamine , Propofol , Sevoflurane , Animals , Mice , Ketamine/pharmacology , Ketamine/administration & dosage , Sevoflurane/pharmacology , Sevoflurane/administration & dosage , Dexmedetomidine/pharmacology , Electroencephalography/drug effects , Electroencephalography/methods , Propofol/pharmacology , Propofol/administration & dosage , Male , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/administration & dosage , Reflex, Righting/drug effects , Reflex, Righting/physiology , Mice, Inbred C57BL , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/administration & dosage , Anesthetics, Intravenous/pharmacology , Anesthetics, Intravenous/administration & dosage , Anesthesia/methods
9.
Sci Rep ; 14(1): 10792, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734752

ABSTRACT

Epilepsy is a chronic neurological disease, characterized by spontaneous, unprovoked, recurrent seizures that may lead to long-term disability and premature death. Despite significant efforts made to improve epilepsy detection clinically and pre-clinically, the pervasive presence of noise in EEG signals continues to pose substantial challenges to their effective application. In addition, discriminant features for epilepsy detection have not been investigated yet. The objective of this study is to develop a hybrid model for epilepsy detection from noisy and fragmented EEG signals. We hypothesized that a hybrid model could surpass existing single models in epilepsy detection. Our approach involves manual noise rejection and a novel statistical channel selection technique to detect epilepsy even from noisy EEG signals. Our proposed Base-2-Meta stacking classifier achieved notable accuracy (0.98 ± 0.05), precision (0.98 ± 0.07), recall (0.98 ± 0.05), and F1 score (0.98 ± 0.04) even with noisy 5-s segmented EEG signals. Application of our approach to the specific problem like detection of epilepsy from noisy and fragmented EEG data reveals a performance that is not only superior to others, but also is translationally relevant, highlighting its potential application in a clinic setting, where EEG signals are often noisy or scanty. Our proposed metric DF-A (Discriminant feature-accuracy), for the first time, identified the most discriminant feature with models that give A accuracy or above (A = 95 used in this study). This groundbreaking approach allows for detecting discriminant features and can be used as potential electrographic biomarkers in epilepsy detection research. Moreover, our study introduces innovative insights into the understanding of these features, epilepsy detection, and cross-validation, markedly improving epilepsy detection in ways previously unavailable.


Subject(s)
Electroencephalography , Epilepsy , Electroencephalography/methods , Humans , Epilepsy/diagnosis , Epilepsy/physiopathology , Signal Processing, Computer-Assisted , Algorithms , Signal-To-Noise Ratio
11.
J Neural Eng ; 21(3)2024 May 17.
Article in English | MEDLINE | ID: mdl-38757187

ABSTRACT

Objective.Aiming for the research on the brain-computer interface (BCI), it is crucial to design a MI-EEG recognition model, possessing a high classification accuracy and strong generalization ability, and not relying on a large number of labeled training samples.Approach.In this paper, we propose a self-supervised MI-EEG recognition method based on self-supervised learning with one-dimensional multi-task convolutional neural networks and long short-term memory (1-D MTCNN-LSTM). The model is divided into two stages: signal transform identification stage and pattern recognition stage. In the signal transform recognition phase, the signal transform dataset is recognized by the upstream 1-D MTCNN-LSTM network model. Subsequently, the backbone network from the signal transform identification phase is transferred to the pattern recognition phase. Then, it is fine-tuned using a trace amount of labeled data to finally obtain the motion recognition model.Main results.The upstream stage of this study achieves more than 95% recognition accuracy for EEG signal transforms, up to 100%. For MI-EEG pattern recognition, the model obtained recognition accuracies of 82.04% and 87.14% with F1 scores of 0.7856 and 0.839 on the datasets of BCIC-IV-2b and BCIC-IV-2a.Significance.The improved accuracy proves the superiority of the proposed method. It is prospected to be a method for accurate classification of MI-EEG in the BCI system.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Imagination , Neural Networks, Computer , Electroencephalography/methods , Humans , Imagination/physiology , Supervised Machine Learning , Pattern Recognition, Automated/methods
12.
J Neural Eng ; 21(3)2024 May 15.
Article in English | MEDLINE | ID: mdl-38701773

ABSTRACT

Objective. Electroencephalogram (EEG) analysis has always been an important tool in neural engineering, and the recognition and classification of human emotions are one of the important tasks in neural engineering. EEG data, obtained from electrodes placed on the scalp, represent a valuable resource of information for brain activity analysis and emotion recognition. Feature extraction methods have shown promising results, but recent trends have shifted toward end-to-end methods based on deep learning. However, these approaches often overlook channel representations, and their complex structures pose certain challenges to model fitting.Approach. To address these challenges, this paper proposes a hybrid approach named FetchEEG that combines feature extraction and temporal-channel joint attention. Leveraging the advantages of both traditional feature extraction and deep learning, the FetchEEG adopts a multi-head self-attention mechanism to extract representations between different time moments and channels simultaneously. The joint representations are then concatenated and classified using fully-connected layers for emotion recognition. The performance of the FetchEEG is verified by comparison experiments on a self-developed dataset and two public datasets.Main results. In both subject-dependent and subject-independent experiments, the FetchEEG demonstrates better performance and stronger generalization ability than the state-of-the-art methods on all datasets. Moreover, the performance of the FetchEEG is analyzed for different sliding window sizes and overlap rates in the feature extraction module. The sensitivity of emotion recognition is investigated for three- and five-frequency-band scenarios.Significance. FetchEEG is a novel hybrid method based on EEG for emotion classification, which combines EEG feature extraction with Transformer neural networks. It has achieved state-of-the-art performance on both self-developed datasets and multiple public datasets, with significantly higher training efficiency compared to end-to-end methods, demonstrating its effectiveness and feasibility.


Subject(s)
Electroencephalography , Emotions , Humans , Electroencephalography/methods , Emotions/physiology , Deep Learning , Attention/physiology , Neural Networks, Computer , Male , Female , Adult
13.
Hum Brain Mapp ; 45(7): e26698, 2024 May.
Article in English | MEDLINE | ID: mdl-38726908

ABSTRACT

Mediation analysis assesses whether an exposure directly produces changes in cognitive behavior or is influenced by intermediate "mediators". Electroencephalographic (EEG) spectral measurements have been previously used as effective mediators representing diverse aspects of brain function. However, it has been necessary to collapse EEG measures onto a single scalar using standard mediation methods. In this article, we overcome this limitation and examine EEG frequency-resolved functional connectivity measures as a mediator using the full EEG cross-spectral tensor (CST). Since CST samples do not exist in Euclidean space but in the Riemannian manifold of positive-definite tensors, we transform the problem, allowing for the use of classic multivariate statistics. Toward this end, we map the data from the original manifold space to the Euclidean tangent space, eliminating redundant information to conform to a "compressed CST." The resulting object is a matrix with rows corresponding to frequencies and columns to cross spectra between channels. We have developed a novel matrix mediation approach that leverages a nuclear norm regularization to determine the matrix-valued regression parameters. Furthermore, we introduced a global test for the overall CST mediation and a test to determine specific channels and frequencies driving the mediation. We validated the method through simulations and applied it to our well-studied 50+-year Barbados Nutrition Study dataset by comparing EEGs collected in school-age children (5-11 years) who were malnourished in the first year of life with those of healthy classmate controls. We hypothesized that the CST mediates the effect of malnutrition on cognitive performance. We can now explicitly pinpoint the frequencies (delta, theta, alpha, and beta bands) and regions (frontal, central, and occipital) in which functional connectivity was altered in previously malnourished children, an improvement to prior studies. Understanding the specific networks impacted by a history of postnatal malnutrition could pave the way for developing more targeted and personalized therapeutic interventions. Our methods offer a versatile framework applicable to mediation studies encompassing matrix and Hermitian 3D tensor mediators alongside scalar exposures and outcomes, facilitating comprehensive analyses across diverse research domains.


Subject(s)
Electroencephalography , Humans , Electroencephalography/methods , Child , Child, Preschool , Female , Male , Connectome/methods , Cognition/physiology , Malnutrition/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/physiology , Brain/physiopathology , Brain/diagnostic imaging , Brain/physiology , Infant
14.
PLoS One ; 19(5): e0302705, 2024.
Article in English | MEDLINE | ID: mdl-38758739

ABSTRACT

Neuropsychological research aims to unravel how diverse individuals' brains exhibit similar functionality when exposed to the same stimuli. The evocation of consistent responses when different subjects watch the same emotionally evocative stimulus has been observed through modalities like fMRI, EEG, physiological signals and facial expressions. We refer to the quantification of these shared consistent signals across subjects at each time instant across the temporal dimension as Consistent Response Measurement (CRM). CRM is widely explored through fMRI, occasionally with EEG, physiological signals and facial expressions using metrics like Inter-Subject Correlation (ISC). However, fMRI tools are expensive and constrained, while EEG and physiological signals are prone to facial artifacts and environmental conditions (such as temperature, humidity, and health condition of subjects). In this research, facial expression videos are used as a cost-effective and flexible alternative for CRM, minimally affected by external conditions. By employing computer vision-based automated facial keypoint tracking, a new metric similar to ISC, called the Average t-statistic, is introduced. Unlike existing facial expression-based methodologies that measure CRM of secondary indicators like inferred emotions, keypoint, and ICA-based features, the Average t-statistic is closely associated with the direct measurement of consistent facial muscle movement using the Facial Action Coding System (FACS). This is evidenced in DISFA dataset where the time-series of Average t-statistic has a high correlation (R2 = 0.78) with a metric called AU consistency, which directly measures facial muscle movement through FACS coding of video frames. The simplicity of recording facial expressions with the automated Average t-statistic expands the applications of CRM such as measuring engagement in online learning, customer interactions, etc., and diagnosing outliers in healthcare conditions like stroke, autism, depression, etc. To promote further research, we have made the code repository publicly available.


Subject(s)
Emotions , Facial Expression , Humans , Emotions/physiology , Female , Male , Adult , Video Recording , Movement/physiology , Young Adult , Magnetic Resonance Imaging/methods , Electroencephalography/methods
15.
Medicine (Baltimore) ; 103(20): e35375, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758899

ABSTRACT

BACKGROUND: Paroxysmal sympathetic hyperexcitability (PSH) is a group of complex syndromes with various etiologies. Previous studies were limited to the description of traumatic brain injury (TBI), and the description of PSH after other types of brain injury was rare. We explored the clinical features, treatment, and prognosis of PSH after various types of brain injuries. METHODS: Patients admitted to the neurosurgery intensive care unit with PSH after brain injury from July 2019 to December 2022 were included. Demographic data, clinical manifestations, drug therapy, and disease prognosis were retrospectively collected and analyzed. RESULTS: Fifteen male and 9 female patients with PSH after brain injury were selected. TBI was most likely to cause PSH (66.7%), followed by spontaneous intracerebral hemorrhage (25%). Glasgow coma scale scores of 19 patients (79.2%) were lower than 8 and 14 patients (58.3%) underwent tracheotomy. Electroencephalogram monitoring was performed in 12 individuals, none of which showed epileptic waves. Clinical symptom scale showed mild symptoms in 17 cases (70.8%). Almost all patients were administered a combination of drugs. After follow-up, most patients had a poor prognosis and 2 (8.3%) died after discharge. CONCLUSION: The etiology of PSH is complex. TBI may be the most common cause of PSH. Non-TBI may also be an important cause of PSH. Therefore, early identification, prevention and diagnosis are helpful for determining the prognosis and outcome of the disease.


Subject(s)
Electroencephalography , Humans , Male , Female , Middle Aged , Adult , Retrospective Studies , Prognosis , Electroencephalography/methods , Glasgow Coma Scale , Brain Injuries/complications , Brain Injuries/physiopathology , Aged , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/diagnosis , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/physiopathology , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/physiopathology
16.
PLoS One ; 19(5): e0292501, 2024.
Article in English | MEDLINE | ID: mdl-38768220

ABSTRACT

Human performance applications of mindfulness-based training have demonstrated its utility in enhancing cognitive functioning. Previous studies have illustrated how these interventions can improve performance on traditional cognitive tests, however, little investigation has explored the extent to which mindfulness-based training can optimise performance in more dynamic and complex contexts. Further, from a neuroscientific perspective, the underlying mechanisms responsible for performance enhancements remain largely undescribed. With this in mind, the following study aimed to investigate how a short-term mindfulness intervention (one week) augments performance on a dynamic and complex task (target motion analyst task; TMA) in young, healthy adults (n = 40, age range = 18-38). Linear mixed effect modelling revealed that increased adherence to the web-based mindfulness-based training regime (ranging from 0-21 sessions) was associated with improved performance in the second testing session of the TMA task, controlling for baseline performance. Analyses of resting-state electroencephalographic (EEG) metrics demonstrated no change across testing sessions. Investigations of additional individual factors demonstrated that enhancements associated with training adherence remained relatively consistent across varying levels of participants' resting-state EEG metrics, personality measures (i.e., trait mindfulness, neuroticism, conscientiousness), self-reported enjoyment and timing of intervention adherence. Our results thus indicate that mindfulness-based cognitive training leads to performance enhancements in distantly related tasks, irrespective of several individual differences. We also revealed nuances in the magnitude of cognitive enhancements contingent on the timing of adherence, regardless of total volume of training. Overall, our findings suggest that mindfulness-based training could be used in a myriad of settings to elicit transferable performance enhancements.


Subject(s)
Cognition , Electroencephalography , Mindfulness , Personality , Humans , Mindfulness/methods , Adult , Male , Female , Personality/physiology , Electroencephalography/methods , Young Adult , Cognition/physiology , Adolescent , Cognitive Training
17.
J Neurosci Methods ; 407: 110162, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740142

ABSTRACT

BACKGROUND: Progress in advancing sleep research employing polysomnography (PSG) has been negatively impacted by the limited availability of widely available, open-source sleep-specific analysis tools. NEW METHOD: Here, we introduce Counting Sheep PSG, an EEGLAB-compatible software for signal processing, visualization, event marking and manual sleep stage scoring of PSG data for MATLAB. RESULTS: Key features include: (1) signal processing tools including bad channel interpolation, down-sampling, re-referencing, filtering, independent component analysis, artifact subspace reconstruction, and power spectral analysis, (2) customizable display of polysomnographic data and hypnogram, (3) event marking mode including manual sleep stage scoring, (4) automatic event detections including movement artifact, sleep spindles, slow waves and eye movements, and (5) export of main descriptive sleep architecture statistics, event statistics and publication-ready hypnogram. COMPARISON WITH EXISTING METHODS: Counting Sheep PSG was built on the foundation created by sleepSMG (https://sleepsmg.sourceforge.net/). The scope and functionalities of the current software have made significant advancements in terms of EEGLAB integration/compatibility, preprocessing, artifact correction, event detection, functionality and ease of use. By comparison, commercial software can be costly and utilize proprietary data formats and algorithms, thereby restricting the ability to distribute and share data and analysis results. CONCLUSIONS: The field of sleep research remains shackled by an industry that resists standardization, prevents interoperability, builds-in planned obsolescence, maintains proprietary black-box data formats and analysis approaches. This presents a major challenge for the field of sleep research. The need for free, open-source software that can read open-format data is essential for scientific advancement to be made in the field.


Subject(s)
Polysomnography , Signal Processing, Computer-Assisted , Sleep Stages , Software , Polysomnography/methods , Humans , Sleep Stages/physiology , Electroencephalography/methods , Artifacts
18.
PLoS One ; 19(5): e0303565, 2024.
Article in English | MEDLINE | ID: mdl-38781127

ABSTRACT

In this study, we attempted to improve brain-computer interface (BCI) systems by means of auditory stream segregation in which alternately presented tones are perceived as sequences of various different tones (streams). A 3-class BCI using three tone sequences, which were perceived as three different tone streams, was investigated and evaluated. Each presented musical tone was generated by a software synthesizer. Eleven subjects took part in the experiment. Stimuli were presented to each user's right ear. Subjects were requested to attend to one of three streams and to count the number of target stimuli in the attended stream. In addition, 64-channel electroencephalogram (EEG) and two-channel electrooculogram (EOG) signals were recorded from participants with a sampling frequency of 1000 Hz. The measured EEG data were classified based on Riemannian geometry to detect the object of the subject's selective attention. P300 activity was elicited by the target stimuli in the segregated tone streams. In five out of eleven subjects, P300 activity was elicited only by the target stimuli included in the attended stream. In a 10-fold cross validation test, a classification accuracy over 80% for five subjects and over 75% for nine subjects was achieved. For subjects whose accuracy was lower than 75%, either the P300 was also elicited for nonattended streams or the amplitude of P300 was small. It was concluded that the number of selected BCI systems based on auditory stream segregation can be increased to three classes, and these classes can be detected by a single ear without the aid of any visual modality.


Subject(s)
Acoustic Stimulation , Attention , Brain-Computer Interfaces , Electroencephalography , Humans , Male , Female , Electroencephalography/methods , Adult , Attention/physiology , Acoustic Stimulation/methods , Auditory Perception/physiology , Young Adult , Event-Related Potentials, P300/physiology , Electrooculography/methods
19.
BMC Neurol ; 24(1): 169, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783211

ABSTRACT

BACKGROUND: Progressive Myoclonic Epilepsy (PME) is a group of rare diseases that are difficult to differentiate from one another based on phenotypical characteristics. CASE REPORT: We report a case of PME type 7 due to a pathogenic variant in KCNC1 with myoclonus improvement after epileptic seizures. DISCUSSION: Myoclonus improvement after seizures may be a clue to the diagnosis of Progressive Myoclonic Epilepsy type 7.


Subject(s)
Myoclonic Epilepsies, Progressive , Seizures , Humans , Myoclonic Epilepsies, Progressive/complications , Myoclonic Epilepsies, Progressive/diagnosis , Seizures/diagnosis , Seizures/complications , Seizures/etiology , Seizures/drug therapy , Myoclonus/diagnosis , Myoclonus/etiology , Myoclonus/complications , Myoclonus/drug therapy , Male , Shaw Potassium Channels/genetics , Female , Electroencephalography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...