Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.929
Filter
1.
J Photochem Photobiol B ; 255: 112925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703451

ABSTRACT

Visible light triggers free radical production in alive and intact Drosophila melanogaster. We exposed fruit flies to red (613-631 nm), green (515-535 nm), and blue (455-475 nm) light while we monitored changes in unpaired electron content with an electron spin resonance spectrometer (ESR/EPR). The immediate response to light is a rapid increase in spin content lasting approximately 10 s followed by a slower, linear increase for approximately 170 s. When the light is turned off, the spin population promptly decays with a similar time course, though never fully returning to baseline. The magnitude and time course of the spin production depends on the wavelength of the light. Initially, we surmised that eumelanin might be responsible for the spin change because of its documented ability for visible light absorption and its highly stable free radical content. To explore this, we utilized different fruit fly strains with varying eumelanin content and clarified the relation of melanin types with the spin response. Our findings revealed that flies with darker cuticle have at least three-fold more unpaired electrons than flies with yellow cuticle. However, to our surprise, the increase in unpaired electron population by light was not drastically different amongst the genotypes. This suggests that light-induced free radical production may not exclusively rely on the presence of black melanin, but may instead be dependent on light effects on quinone-based cuticular polymers.


Subject(s)
Drosophila melanogaster , Light , Melanins , Animals , Free Radicals/chemistry , Drosophila melanogaster/metabolism , Electron Spin Resonance Spectroscopy , Melanins/chemistry , Melanins/metabolism , Melanins/biosynthesis
2.
Chem Rev ; 124(10): 6501-6542, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722769

ABSTRACT

Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.


Subject(s)
Amino Acids , Amino Acids/chemistry , Proteins/chemistry , Proteins/metabolism , Electron Spin Resonance Spectroscopy/methods , Microscopy/methods , Magnetic Resonance Spectroscopy/methods , Humans
3.
Nat Commun ; 15(1): 4041, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740794

ABSTRACT

Due to the complexity of the catalytic FeMo cofactor site in nitrogenases that mediates the reduction of molecular nitrogen to ammonium, mechanistic details of this reaction remain under debate. In this study, selenium- and sulfur-incorporated FeMo cofactors of the catalytic MoFe protein component from Azotobacter vinelandii are prepared under turnover conditions and investigated by using different EPR methods. Complex signal patterns are observed in the continuous wave EPR spectra of selenium-incorporated samples, which are analyzed by Tikhonov regularization, a method that has not yet been applied to high spin systems of transition metal cofactors, and by an already established grid-of-error approach. Both methods yield similar probability distributions that reveal the presence of at least four other species with different electronic structures in addition to the ground state E0. Two of these species were preliminary assigned to hydrogenated E2 states. In addition, advanced pulsed-EPR experiments are utilized to verify the incorporation of sulfur and selenium into the FeMo cofactor, and to assign hyperfine couplings of 33S and 77Se that directly couple to the FeMo cluster. With this analysis, we report selenium incorporation under turnover conditions as a straightforward approach to stabilize and analyze early intermediate states of the FeMo cofactor.


Subject(s)
Azotobacter vinelandii , Molybdoferredoxin , Nitrogenase , Selenium , Sulfur , Electron Spin Resonance Spectroscopy/methods , Azotobacter vinelandii/enzymology , Azotobacter vinelandii/metabolism , Nitrogenase/metabolism , Nitrogenase/chemistry , Molybdoferredoxin/metabolism , Molybdoferredoxin/chemistry , Selenium/metabolism , Selenium/chemistry , Sulfur/metabolism , Sulfur/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
4.
J Magn Reson ; 362: 107690, 2024 May.
Article in English | MEDLINE | ID: mdl-38692250

ABSTRACT

This research report describes a novel surface dielectric resonator (SDR) with a flexible connector for in vivo electron paramagnetic resonance (EPR) spectroscopy. Contrary to the conventional cavity or surface loop-gap resonators, the newly developed SDR is constructed from a ceramic dielectric material, and it is tuned to operate at the L-band frequency band (1.15 GHz) in continuous-wave mode. The SDR is designed to be critically coupled and capable of working with both very lossy samples, such as biological tissues, and non-lossy materials. The SDR was characterized using electromagnetic field simulations, assessed for sensitivity with a B1 field-perturbation method, and validated with tissue phantoms using EPR measurements. The results showed remarkably higher sensitivity in lossy tissue phantoms than the previously reported multisegment surface-loop resonators. The new SDR can provide potential new insights for advancements in the application of in vivo EPR spectroscopy for biological measurements, including clinical oximetry.


Subject(s)
Electromagnetic Fields , Equipment Design , Phantoms, Imaging , Electron Spin Resonance Spectroscopy/methods , Electron Spin Resonance Spectroscopy/instrumentation , Reproducibility of Results , Oximetry/instrumentation , Oximetry/methods
5.
J Environ Manage ; 360: 121122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733850

ABSTRACT

Oxidative potential (OP) is a predictor of particulate matter (PM) toxicity. Size-resolved PM and its components that influence OP values can be generated from several sources. However, There is little research have attempted to determine the PM toxicity generated from specific sources. This paper studied the OP characterization and reactive oxygen species (ROS) formation of particles from specific sources and their effects on human health. OP associated with ROS of size-resolved particles was analyzed by using dithiothreitol (DTT) method and electron paramagnetic resonance (EPR) spectroscopy technology. And OP and ROS deposition of specific source PM were calculated for health through the Multi-path particle deposition (MPPD) model. The results evidenced that the highest water-soluble OP (OPws) from traffic sources (OPm: 104.50 nmol min-1·ug-1; OPv: 160.15 nmol min-1·m-3) and the lowest from ocean sources (OPm: 22.25 nmol⋅min-1⋅ug-1; OPv: 54.16 nmol min-1·m-3). The OPws allocation in PM from different sources all have a unimodal pattern range from 0.4 to 3.2 µm. ROS (·OH) displayed the uniform trend as PM OPws, indicating that PM< 3.2 is the major contributor to adverse health impacts for size-resolved PM because of its enhanced oxidative activity compared with PM> 3.2. Furthermore, this study predicted the DTT consumption of PM were assigned to different components. Most DTT losses are attributed to the transition metals. For specific sources, transition metals dominates DTT losses, accounting for 38%-80% of DTT losses from different sources, followed by Hulis-C, accounting for 1%-10%. MPPD model calculates that over 66% of pulmonary DTT loss comes by PM< 3.2, and over 71% of pulmonary ROS generation from PM< 3.2. Among these sources of pollution, traffic emissions are the primary contributors to reactive oxygen species (ROS) in environmental particulate matter (PM). Therefore, emphasis should be placed on controlling traffic emissions, especially in coastal areas.


Subject(s)
Oxidation-Reduction , Particle Size , Particulate Matter , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Humans , Air Pollutants/analysis , Environmental Monitoring , Electron Spin Resonance Spectroscopy
6.
J Biol Inorg Chem ; 29(3): 291-301, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38722396

ABSTRACT

In addition to its primary oxygen-atom-transfer function, cysteamine dioxygenase (ADO) exhibits a relatively understudied anaerobic disproportionation reaction (ADO-Fe(III)-SR → ADO-Fe(II) + ½ RSSR) with its native substrates. Inspired by ADO disproportionation reactivity, we employ [Fe(tacn)Cl3] (tacn = 1,4,7-triazacyclononane) as a precursor for generating Fe(III)-thiolate model complexes in buffered aqueous media. A series of Fe(III)-thiolate model complexes are generated in situ using aqueous [Fe(tacn)Cl3] and thiol-containing ligands cysteamine, penicillamine, mercaptopropionate, cysteine, cysteine methyl ester, N-acetylcysteine, and N-acetylcysteine methyl ester. We observe trends in UV-Vis and electron paramagnetic resonance (EPR) spectra, disproportionation rate constants, and cathodic peak potentials as a function of thiol ligand. These trends will be useful in rationalizing substrate-dependent Fe(III)-thiolate disproportionation reactions in metalloenzymes.


Subject(s)
Ferric Compounds , Sulfhydryl Compounds , Kinetics , Sulfhydryl Compounds/chemistry , Hydrogen-Ion Concentration , Ferric Compounds/chemistry , Ferric Compounds/metabolism , Electron Spin Resonance Spectroscopy , Dioxygenases/metabolism , Dioxygenases/chemistry , Electrochemical Techniques
7.
Proc Natl Acad Sci U S A ; 121(20): e2402653121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38722808

ABSTRACT

The intrinsically disordered C-terminal peptide region of severe acute respiratory syndrome coronavirus 2 nonstructural protein-1 (Nsp1-CT) inhibits host protein synthesis by blocking messenger RNA (mRNA) access to the 40S ribosome entrance tunnel. Aqueous copper(II) ions bind to the disordered peptide with micromolar affinity, creating a possible strategy to restore protein synthesis during host infection. Electron paramagnetic resonance (EPR) and tryptophan fluorescence measurements on a 10-residue model of the disordered protein region (Nsp1-CT10), combined with advanced quantum mechanics calculations, suggest that the peptide binds to copper(II) as a multidentate ligand. Two optimized computational models of the copper(II)-peptide complexes were derived: One corresponding to pH 6.5 and the other describing the complex at pH 7.5 to 8.5. Simulated EPR spectra based on the calculated model structures are in good agreement with experimental spectra.


Subject(s)
Copper , Intrinsically Disordered Proteins , SARS-CoV-2 , Viral Nonstructural Proteins , Copper/chemistry , Copper/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Electron Spin Resonance Spectroscopy , Humans , Protein Binding , Models, Molecular , COVID-19/virology
8.
Phys Med Biol ; 69(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38729205

ABSTRACT

Objective.Electron paramagnetic resonance (EPR) imaging is an advanced in vivo oxygen imaging modality. The main drawback of EPR imaging is the long scanning time. Sparse-view projections collection is an effective fast scanning pattern. However, the commonly-used filtered back projection (FBP) algorithm is not competent to accurately reconstruct images from sparse-view projections because of the severe streak artifacts. The aim of this work is to develop an advanced algorithm for sparse reconstruction of 3D EPR imaging.Methods.The optimization based algorithms including the total variation (TV) algorithm have proven to be effective in sparse reconstruction in EPR imaging. To further improve the reconstruction accuracy, we propose the directional TV (DTV) model and derive its Chambolle-Pock solving algorithm.Results.After the algorithm correctness validation on simulation data, we explore the sparse reconstruction capability of the DTV algorithm via a simulated six-sphere phantom and two real bottle phantoms filled with OX063 trityl solution and scanned by an EPR imager with a magnetic field strength of 250 G.Conclusion.Both the simulated and real data experiments show that the DTV algorithm is superior to the existing FBP and TV-type algorithms and a deep learning based method according to visual inspection and quantitative evaluations in sparse reconstruction of EPR imaging.Significance.These insights gained in this work may be used in the development of fast EPR imaging workflow of practical significance.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Phantoms, Imaging , Electron Spin Resonance Spectroscopy/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods
9.
Nat Commun ; 15(1): 4504, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802378

ABSTRACT

Lipid droplet (LD) function relies on proteins partitioning between the endoplasmic reticulum (ER) phospholipid bilayer and the LD monolayer membrane to control cellular adaptation to metabolic changes. It has been proposed that these hairpin proteins integrate into both membranes in a similar monotopic topology, enabling their passive lateral diffusion during LD emergence at the ER. Here, we combine biochemical solvent-accessibility assays, electron paramagnetic resonance spectroscopy and intra-molecular crosslinking experiments with molecular dynamics simulations, and determine distinct intramembrane positionings of the ER/LD protein UBXD8 in ER bilayer and LD monolayer membranes. UBXD8 is deeply inserted into the ER bilayer with a V-shaped topology and adopts an open-shallow conformation in the LD monolayer. Major structural rearrangements are required to enable ER-to-LD partitioning. Free energy calculations suggest that such structural transition is unlikely spontaneous, indicating that ER-to-LD protein partitioning relies on more complex mechanisms than anticipated and providing regulatory means for this trans-organelle protein trafficking.


Subject(s)
Endoplasmic Reticulum , Lipid Droplets , Molecular Dynamics Simulation , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Electron Spin Resonance Spectroscopy , Humans , Lipid Bilayers/metabolism , Lipid Bilayers/chemistry , Protein Transport , Animals , Lipid Droplet Associated Proteins/metabolism , Lipid Droplet Associated Proteins/chemistry , Lipid Droplet Associated Proteins/genetics
10.
J Phys Chem B ; 128(14): 3350-3359, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38564809

ABSTRACT

Secondary coordination sphere (SCS) interactions have been shown to play important roles in tuning reduction potentials and electron transfer (ET) properties of the Type 1 copper proteins, but the precise roles of these interactions are not fully understood. In this work, we examined the influence of F114P, F114N, and N47S mutations in the SCS on the electronic structure of the T1 copper center in azurin (Az) by studying the hyperfine couplings of (i) histidine remote Nε nitrogens and (ii) the amide Np using the two-dimensional (2D) pulsed electron paramagnetic resonance (EPR) technique HYSCORE (hyperfine sublevel correlation) combined with quantum mechanics/molecular mechanics (QM/MM) and DLPNO-CCSD calculations. Our data show that some components of hyperfine tensor and isotropic coupling in N47SAz and F114PAz (but not F114NAz) deviate by up to ∼±20% from WTAz, indicating that these mutations significantly influence the spin density distribution between the CuII site and coordinating ligands. Furthermore, our calculations support the assignment of Np to the backbone amide of residue 47 (both in Asn and Ser variants). Since the spin density distributions play an important role in tuning the covalency of the Cu-Scys bond of Type 1 copper center that has been shown to be crucial in controlling the reduction potentials, this study provides additional insights into the electron spin factor in tuning the reduction potentials and ET properties.


Subject(s)
Alaska Natives , Azurin , Azurin/genetics , Azurin/chemistry , Copper/chemistry , Nitrogen/chemistry , Mutation , Electron Spin Resonance Spectroscopy/methods , Amides
11.
J Phys Chem B ; 128(15): 3652-3661, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38576273

ABSTRACT

Many pharmaceutical drugs are known to interact with lipid membranes through nonspecific molecular interactions, which affect their therapeutic effect. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) and one of the most commonly prescribed. In the presence of cholesterol, lipid bilayers can separate into nanoscale liquid-disordered and liquid-ordered structures, the latter known as lipid rafts. Here, we study spin-labeled ibuprofen (ibuprofen-SL) in the model membrane consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol in the molar ratio of (0.5-0.5xchol)/(0.5-0.5xchol)/xchol. Electron paramagnetic resonance (EPR) spectroscopy is employed, along with its pulsed version of double electron-electron resonance (DEER, also known as PELDOR). The data obtained indicate lateral lipid-mediated clustering of ibuprofen-SL molecules with a local surface density noticeably larger than that expected for random lateral distribution. In the absence of cholesterol, the data can be interpreted as indicating alternating clustering in two opposing leaflets of the bilayer. In the presence of cholesterol, for xchol ≥ 20 mol %, the results show that ibuprofen-SL molecules have a quasi-regular lateral distribution, with a "superlattice" parameter of ∼3.0 nm. This regularity can be explained by the entrapment of ibuprofen-SL molecules by lipid rafts known to exist in this system with the additional assumption that lipid rafts have a nanoscale substructure.


Subject(s)
Ibuprofen , Lipid Bilayers , Electron Spin Resonance Spectroscopy , Lipid Bilayers/chemistry , Cholesterol/chemistry , Membrane Microdomains , Phosphatidylcholines/chemistry
12.
Biochemistry ; 63(9): 1214-1224, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38679935

ABSTRACT

A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (1O2*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of 1O2* in photodamage and cell signaling, few studies directly correlate 1O2* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of 1O2* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of 1O2* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of 1O2* in chlorophyll-containing photosynthetic membranes. We find that the apparent 1O2* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of 1O2* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of 1O2* during high light. Upon saturation of NPQ, the concentration of 1O2* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).


Subject(s)
Photosynthesis , Singlet Oxygen , Thylakoids , Electron Spin Resonance Spectroscopy/methods , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Thylakoids/metabolism , Thylakoids/chemistry , Spin Trapping/methods , Chlorophyll/metabolism , Chlorophyll/chemistry , Spinacia oleracea/metabolism , Spinacia oleracea/chemistry , Light
13.
J Phys Chem B ; 128(16): 3870-3884, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38602496

ABSTRACT

The O2-evolving Mn4CaO5 cluster in photosystem II is ligated by six carboxylate residues. One of these is D170 of the D1 subunit. This carboxylate bridges between one Mn ion (Mn4) and the Ca ion. A second carboxylate ligand is D342 of the D1 subunit. This carboxylate bridges between two Mn ions (Mn1 and Mn2). D170 and D342 are located on opposite sides of the Mn4CaO5 cluster. Recently, it was shown that the D170E mutation perturbs both the intricate networks of H-bonds that surround the Mn4CaO5 cluster and the equilibrium between different conformers of the cluster in two of its lower oxidation states, S1 and S2, while still supporting O2 evolution at approximately 50% the rate of the wild type. In this study, we show that the D342E mutation produces much the same alterations to the cluster's FTIR and EPR spectra as D170E, while still supporting O2 evolution at approximately 20% the rate of the wild type. Furthermore, the double mutation, D170E + D342E, behaves similarly to the two single mutations. We conclude that D342E alters the equilibrium between different conformers of the cluster in its S1 and S2 states in the same manner as D170E and perturbs the H-bond networks in a similar fashion. This is the second identification of a Mn4CaO5 metal ligand whose mutation influences the equilibrium between the different conformers of the S1 and S2 states without eliminating O2 evolution. This finding has implications for our understanding of the mechanism of O2 formation in terms of catalytically active/inactive conformations of the Mn4CaO5 cluster in its lower oxidation states.


Subject(s)
Carboxylic Acids , Mutation , Oxygen , Photosystem II Protein Complex , Calcium/metabolism , Calcium/chemistry , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Electron Spin Resonance Spectroscopy , Ligands , Manganese/chemistry , Manganese/metabolism , Models, Molecular , Oxygen/chemistry , Oxygen/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Spectroscopy, Fourier Transform Infrared
14.
Biophys Chem ; 310: 107251, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678820

ABSTRACT

The cationic antimicrobial peptides PGLa and magainin 2 (Mag2) are known for their antimicrobial activity and synergistic enhancement in antimicrobial and membrane leakage assays. Further use of peptides in combinatory therapy requires knowledge of the mechanisms of action of both individual peptides and their mixtures. Here, electron paramagnetic resonance (EPR), double electron-electron resonance (DEER, also known as PELDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies were applied to study self-assembly and localization of spin-labeled PGLa and Mag2 in POPE/POPG membranes with a wide range of peptide/lipid ratios (P/L) from ∼1/1500 to 1/50. EPR and DEER data showed that both peptides tend to organize in clusters, which occurs already at the lowest peptide/lipid molar ratio of 1/1500 (0.067 mol%). For individual peptides, these clusters are quite dense with intermolecular distances of the order of ∼2 nm. In the presence of a synergistic peptide partner, these homo-clusters are transformed into lipid-diluted hetero-clusters. These clusters are characterized by a local surface density that is several times higher than expected from a random distribution. ESEEM data indicate a slightly different insertion depth of peptides in hetero-clusters when compared to homo-clusters.


Subject(s)
Antimicrobial Cationic Peptides , Lipid Bilayers , Magainins , Spin Labels , Magainins/chemistry , Magainins/pharmacology , Lipid Bilayers/chemistry , Electron Spin Resonance Spectroscopy , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology
15.
J Inorg Biochem ; 256: 112539, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593609

ABSTRACT

Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.


Subject(s)
Azurin , Models, Molecular , Kinetics , Electrochemistry , Azurin/chemistry , Azurin/genetics , Azurin/metabolism , Actinobacteria/chemistry , Thermoplasmales/chemistry , Electron Spin Resonance Spectroscopy , Protein Structure, Tertiary , Iron/metabolism , Oxidation-Reduction , Biotechnology , Protein Stability , Conserved Sequence/genetics
16.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673758

ABSTRACT

Animal tumors serve as reasonable models for human cancers. Both human and animal tumors often reveal triplet EPR signals of nitrosylhemoglobin (HbNO) as an effect of nitric oxide formation in tumor tissue, where NO is complexed by Hb. In search of factors determining the appearance of nitrosylhemoglobin (HbNO) in solid tumors, we compared the intensities of electron paramagnetic resonance (EPR) signals of various iron-nitrosyl complexes detectable in tumor tissues, in the presence and absence of excess exogenous iron(II) and diethyldithiocarbamate (DETC). Three types of murine tumors, namely, L5178Y lymphoma, amelanotic Cloudman S91 melanoma, and Ehrlich carcinoma (EC) growing in DBA/2 or Swiss mice, were used. The results were analyzed in the context of vascularization determined histochemically using antibodies to CD31. Strong HbNO EPR signals were found in melanoma, i.e., in the tumor with a vast amount of a hemorrhagic necrosis core. Strong Fe(DETC)2NO signals could be induced in poorly vascularized EC. In L5178Y, there was a correlation between both types of signals, and in addition, Fe(RS)2(NO)2 signals of non-heme iron-nitrosyl complexes could be detected. We postulate that HbNO EPR signals appear during active destruction of well-vascularized tumor tissue due to hemorrhagic necrosis. The presence of iron-nitrosyl complexes in tumor tissue is biologically meaningful and defines the evolution of complicated tumor-host interactions.


Subject(s)
Ditiocarb , Hemoglobins , Nitric Oxide , Animals , Nitric Oxide/metabolism , Ditiocarb/pharmacology , Ditiocarb/chemistry , Mice , Hemoglobins/metabolism , Hemoglobins/chemistry , Electron Spin Resonance Spectroscopy/methods , Spin Trapping/methods , Neovascularization, Pathologic/metabolism , Cell Line, Tumor , Disease Models, Animal , Mice, Inbred DBA , Ferrous Compounds/chemistry
17.
Inorg Chem ; 63(19): 8730-8738, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38687645

ABSTRACT

Iron-sulfur (Fe-S) clusters are essential inorganic cofactors dedicated to a wide range of biological functions, including electron transfer and catalysis. Specialized multiprotein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein, on which Fe-S clusters are assembled before being transferred to cellular targets. Here, we describe the first characterization of the native Fe-S cluster of the anaerobically purified SufBC2D scaffold from Escherichia coli by XAS and Mössbauer, UV-visible absorption, and EPR spectroscopies. Interestingly, we propose that SufBC2D harbors two iron-sulfur-containing species, a [2Fe-2S] cluster and an as-yet unidentified species. Mutagenesis and biochemistry were used to propose amino acid ligands for the [2Fe-2S] cluster, supporting the hypothesis that both SufB and SufD are involved in the Fe-S cluster ligation. The [2Fe-2S] cluster can be transferred to ferredoxin in agreement with the SufBC2D scaffold function. These results are discussed in the context of Fe-S cluster biogenesis.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Iron-Sulfur Proteins , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Electron Spin Resonance Spectroscopy , Spectroscopy, Mossbauer , X-Ray Absorption Spectroscopy , Carrier Proteins
18.
Eur Biophys J ; 53(4): 171-181, 2024 May.
Article in English | MEDLINE | ID: mdl-38597963

ABSTRACT

Polymeric micelles are nanocarriers for drug, protein and gene delivery due to their unique core/shell structure, which encapsulates and protects therapeutic cargos with diverse physicochemical properties. However, information regarding the micellar nanoenvironment's fluidity can provide unique insight into their makeup. In this study, we used electron paramagnetic resonance (EPR) spectroscopy to study free radical spin probe (5-doxylstearate methyl ester, 5-MDS, and 16-doxylstearic acid, 16-DS) behaviour in methoxy-poly(ethylene oxide)-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-PBCL) and methoxy-poly(ethylene oxide)-poly(ε-caprolactone) (PEO-PCL) polymeric micelles. Spin probes provided information about the spectroscopic rotational correlation time (τ, s) and the spectroscopic partition parameter F. We hypothesized that spin probes would partition into the polymeric micelles, and these parameters would be calculated. The results showed that both 5-MDS and 16-DS spectra were modulated in the presence of polymeric micelles. Based on τ values, 5-MDS revealed that PEO-PCL (τ = 3.92 ± 0.26 × 10-8 s) was more fluid than PEO-PBCL (τ = 7.15 ± 0.63 × 10-8 s). The F parameter, however, could not be calculated due to the rotational hindrance of the probe within the micelles. With 16-DS, more probe rotation was observed, and although the F parameter could be calculated, it was not helpful to distinguish the micelles' fluidity. Also, doxorubicin-loading interfered with the spin probes, particularly for 16-DS. However, using simulations, we could distinguish the hydrophilic and hydrophobic components of the 16-DS probe. The findings suggest that EPR spectroscopy is a valuable method for determining core fluidity in polymeric micelles.


Subject(s)
Micelles , Electron Spin Resonance Spectroscopy/methods , Polyesters/chemistry , Polyethylene Glycols/chemistry , Spin Labels , Polymers/chemistry
19.
Biochemistry ; 63(9): 1170-1177, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38587906

ABSTRACT

The MbnBC enzyme complex converts cysteine residues in a peptide substrate, MbnA, to oxazolone/thioamide groups during the biosynthesis of copper chelator methanobactin (Mbn). MbnBC belongs to the mixed-valent diiron oxygenase (MVDO) family, of which members use an Fe(II)Fe(III) cofactor to react with dioxygen for substrate modification. Several crystal structures of the inactive Fe(III)Fe(III) form of MbnBC alone and in complex with MbnA have been reported, but a mechanistic understanding requires determination of the oxidation states of the crystallographically observed Fe ions in the catalytically active Fe(II)Fe(III) state, along with the site of MbnA binding. Here, we have used electron nuclear double resonance (ENDOR) spectroscopy to determine such structural and electronic properties of the active site, in particular, the mode of substrate binding to the MV state, information not accessible by X-ray crystallography alone. The oxidation states of the two Fe ions were determined by 15N ENDOR analysis. The presence and locations of both bridging and terminal exogenous solvent ligands were determined using 1H and 2H ENDOR. In addition, 2H ENDOR using an isotopically labeled MbnA substrate indicates that MbnA binds to the Fe(III) ion of the cluster via the sulfur atom of its N-terminal modifiable cysteine residue, with displacement of a coordinated solvent ligand as shown by complementary 1H ENDOR. These results, which underscore the utility of ENDOR in studying MVDOs, provide a molecular picture of the initial steps in Mbn biosynthesis.


Subject(s)
Imidazoles , Oligopeptides , Imidazoles/metabolism , Imidazoles/chemistry , Oligopeptides/metabolism , Oligopeptides/chemistry , Oligopeptides/biosynthesis , Oxidation-Reduction , Crystallography, X-Ray , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Electron Spin Resonance Spectroscopy , Oxygenases/metabolism , Oxygenases/chemistry , Catalytic Domain , Substrate Specificity , Models, Molecular , Iron/metabolism , Iron/chemistry
20.
Free Radic Biol Med ; 218: 57-67, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574976

ABSTRACT

Understanding the tumor redox status is important for efficient cancer treatment. Here, we noninvasively detected changes in the redox environment of tumors before and after cancer treatment in the same individuals using a novel compact and portable electron paramagnetic resonance imaging (EPRI) device and compared the results with glycolytic information obtained through autoradiography using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). Human colon cancer HCT116 xenografts were used in the mice. We used 3-carbamoyl-PROXYL (3CP) as a paramagnetic and redox status probe for the EPRI of tumors. The first EPRI was followed by the intraperitoneal administration of buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, or X-ray irradiation of the tumor. A second EPRI was performed on the following day. Autoradiography was performed after the second EPRI. After imaging, the tumor sections were evaluated by histological analysis and the amount of reducing substances in the tumor was measured. BSO treatment and X-ray irradiation significantly decreased the rate of 3CP reduction in tumors. Redox maps of tumors obtained from EPRI can be compared with tissue sections of approximately the same cross section. BSO treatment reduced glutathione levels in tumors, whereas X-ray irradiation did not alter the levels of any of the reducing substances. Comparison of the redox map with the autoradiography of [18F]FDG revealed that regions with high reducing power in the tumor were active in glucose metabolism; however, this correlation disappeared after X-ray irradiation. These results suggest that the novel compact and portable EPRI device is suitable for multimodal imaging, which can be used to study tumor redox status and therapeutic efficacy in cancer, and for combined analysis with other imaging modalities.


Subject(s)
Feasibility Studies , Fluorodeoxyglucose F18 , Glucose , Multimodal Imaging , Oxidation-Reduction , Animals , Humans , Mice , Fluorodeoxyglucose F18/metabolism , Glucose/metabolism , Multimodal Imaging/methods , Electron Spin Resonance Spectroscopy/methods , Buthionine Sulfoximine/pharmacology , Autoradiography , HCT116 Cells , Colonic Neoplasms/metabolism , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/pathology , Radiopharmaceuticals/metabolism , Positron-Emission Tomography/methods , Xenograft Model Antitumor Assays , Glutathione/metabolism , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...