Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.427
Filter
1.
Ecotoxicol Environ Saf ; 278: 116441, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733805

ABSTRACT

Oxybenzone (OBZ; benzophenone-3, CAS# 131-57-7), as a new pollutant and ultraviolet absorbent, shows a significant threat to the survival of phytoplankton. This study aims to explore the acute toxic effects of OBZ on the growth of the microalga Selenastrum capricornutum, as well as the mechanisms for its damage to the primary metabolic pathways of photosynthesis and respiration. The results demonstrated that the concentrations for 50 % of maximal effect (EC50) of OBZ for S. capricornutum were 9.07 mg L-1 and 8.54 mg L-1 at 72 h and 96 h, respectively. A dosage of 4.56 mg L-1 OBZ significantly lowered the photosynthetic oxygen evolution rate of S. capricornutum in both light and dark conditions for a duration of 2 h, while it had no effect on the respiratory oxygen consumption rate under darkness. OBZ caused a significant decline in the efficiency of photosynthetic electron transport due to its damage to photosystem II (PSII), thereby decreasing the photosynthetic oxygen evolution rate. Over-accumulated H2O2 was produced under light due to the damage caused by OBZ to the donor and acceptor sides of PSII, resulting in increased peroxidation of cytomembranes and inhibition of algal respiration. OBZ's damage to photosynthesis and respiration will hinder the conversion and reuse of energy in algal cells, which is an important reason that OBZ has toxic effects on S. capricornutum. The present study indicated that OBZ has an acute toxic effect on the microalga S. capricornutum. In the two most important primary metabolic pathways in algae, photosynthesis is more sensitive to the toxicity of OBZ than respiration, especially in the dark.


Subject(s)
Benzophenones , Microalgae , Photosynthesis , Sunscreening Agents , Photosynthesis/drug effects , Benzophenones/toxicity , Microalgae/drug effects , Sunscreening Agents/toxicity , Water Pollutants, Chemical/toxicity , Hydrogen Peroxide/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/drug effects , Ultraviolet Rays , Electron Transport/drug effects
2.
J Transl Med ; 22(1): 501, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797842

ABSTRACT

As a key factor in determining testis size and sperm number, sertoli cells (SCs) play a crucial role in male infertility. Heat stress (HS) reduces SCs counts, negatively impacting nutrient transport and supply to germ cells, and leading to spermatogenesis failure in humans and animals. However, how HS affects the number of SCs remains unclear. We hypothesized that changes in SC metabolism contribute to the adverse effects of HS. In this study, we first observed an upregulation of arachidonic acid (AA), an unsaturated fatty acid after HS exposure by LC-MS/MS metabolome detection. By increasing ROS levels, expression of KEAP1 and NRF2 proteins as well as LC3 and LAMP2, 100 µM AA induced autophagy in SCs by activating oxidative stress (OS). We observed adverse effects of AA on mitochondria under HS with a decrease of mitochondrial number and an increase of mitochondrial membrane potential (MMP). We also found that AA alternated the oxygen transport and absorption function of mitochondria by increasing glycolysis flux and decreasing oxygen consumption rate as well as the expression of mitochondrial electron transport chain (ETC) proteins Complex I, II, V. However, pretreatment with 5 mM NAC (ROS inhibitor) and 2 µM Rotenone (mitochondrial ETC inhibitor) reversed the autophagy induced by AA. In summary, AA modulates autophagy in SCs during HS by disrupting mitochondrial ETC function, inferring that the release of AA is a switch-like response, and providing insight into the underlying mechanism of high temperatures causing male infertility.


Subject(s)
Arachidonic Acid , Autophagy , Heat-Shock Response , Mitochondria , Sertoli Cells , Up-Regulation , Male , Sertoli Cells/metabolism , Sertoli Cells/drug effects , Autophagy/drug effects , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Heat-Shock Response/drug effects , Arachidonic Acid/metabolism , Up-Regulation/drug effects , Electron Transport/drug effects , Membrane Potential, Mitochondrial/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
3.
Nat Commun ; 15(1): 4296, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769295

ABSTRACT

Therapeutic resistance represents a bottleneck to treatment in advanced gastric cancer (GC). Ferroptosis is an iron-dependent form of non-apoptotic cell death and is associated with anti-cancer therapeutic efficacy. Further investigations are required to clarify the underlying mechanisms. Ferroptosis-resistant GC cell lines are constructed. Dysregulated mRNAs between ferroptosis-resistant and parental cell lines are identified. The expression of SOX13/SCAF1 is manipulated in GC cell lines where relevant biological and molecular analyses are performed. Molecular docking and computational screening are performed to screen potential inhibitors of SOX13. We show that SOX13 boosts protein remodeling of electron transport chain (ETC) complexes by directly transactivating SCAF1. This leads to increased supercomplexes (SCs) assembly, mitochondrial respiration, mitochondrial energetics and chemo- and immune-resistance. Zanamivir, reverts the ferroptosis-resistant phenotype via directly targeting SOX13 and promoting TRIM25-mediated ubiquitination and degradation of SOX13. Here we show, SOX13/SCAF1 are important in ferroptosis-resistance, and targeting SOX13 with zanamivir has therapeutic potential.


Subject(s)
Drug Resistance, Neoplasm , Ferroptosis , Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Ferroptosis/drug effects , Ferroptosis/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Electron Transport/drug effects , Molecular Docking Simulation , Mitochondria/metabolism , Mitochondria/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice
4.
Nature ; 628(8006): 195-203, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480879

ABSTRACT

Sustained smouldering, or low-grade activation, of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis1. Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells2. However, how these metabolic features act to perpetuate inflammation of the central nervous system is unclear. Here, using a multiomics approach, we identify a molecular signature that sustains the activation of microglia through mitochondrial complex I activity driving reverse electron transport and the production of reactive oxygen species. Mechanistically, blocking complex I in pro-inflammatory microglia protects the central nervous system against neurotoxic damage and improves functional outcomes in an animal disease model in vivo. Complex I activity in microglia is a potential therapeutic target to foster neuroprotection in chronic inflammatory disorders of the central nervous system3.


Subject(s)
Electron Transport Complex I , Inflammation , Microglia , Neuroinflammatory Diseases , Animals , Female , Humans , Male , Mice , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System/pathology , Disease Models, Animal , Electron Transport/drug effects , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Multiomics , Myeloid Cells/metabolism , Myeloid Cells/pathology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Reactive Oxygen Species/metabolism
5.
Environ Res ; 252(Pt 1): 118820, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38555093

ABSTRACT

As a typical energetic compound widely used in military activities, 2,4,6-trinitrotoluene (TNT) has attracted great attention in recent years due to its heavy pollution and wide distribution in and around the training facilities, firing ranges, and demolition sites. However, the subcellular targets and the underlying toxic mechanism of TNT remain largely unknown. In this study, we explored the toxic effects of TNT biological reduction on the mitochondrial function and homeostasis in Caenorhabditis elegans (C. elegans). With short-term exposure of L4 larvae, 10-1000 ng/mL TNT reduced mitochondrial membrane potential and adenosine triphosphate (ATP) content, which was associated with decreased expression of specific mitochondrial complex involving gas-1 and mev-1 genes. Using fluorescence-labeled transgenic nematodes, we found that fluorescence expression of sod-3 (muls84) and gst-4 (dvls19) was increased, suggesting that TNT disrupted the mitochondrial antioxidant defense system. Furthermore, 10 ng/mL TNT exposure increased the expression of the autophagy-related gene pink-1 and activated mitochondrial unfolded protein response (mt UPR), which was indicated by the increased expression of mitochondrial stress activated transcription factor atfs-1, ubiquitin-like protein ubl-5, and homeobox protein dve-1. Our findings demonstrated that TNT biological reduction caused mitochondrial dysfunction and the development of mt UPR protective stress responses, and provided a basis for determining the potential risks of energetic compounds to living organisms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Mitochondria , Trinitrotoluene , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Trinitrotoluene/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Electron Transport/drug effects , Membrane Potential, Mitochondrial/drug effects , Adenosine Triphosphate/metabolism
6.
Plant Physiol Biochem ; 196: 197-209, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36724704

ABSTRACT

Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth.


Subject(s)
Antioxidants , Melatonin , Oxidative Stress , Photosynthesis , Solanum lycopersicum , Thermotolerance , Melatonin/pharmacology , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Thermotolerance/drug effects , Photosynthesis/drug effects , Electron Transport/drug effects , Reactive Oxygen Species/metabolism , Homeostasis , Photosystem II Protein Complex/metabolism , Oxidative Stress/drug effects , Antioxidants/pharmacology , Chlorophyll/metabolism
7.
Int J Mol Sci ; 23(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35216404

ABSTRACT

Tyrosine kinase inhibitors (TKIs) are associated with cardiac toxicity, which may be caused by mitochondrial toxicity. The underlying mechanisms are currently unclear and require further investigation. In the present study, we aimed to investigate in more detail the role of the enzyme complexes of the electron transfer system (ETS), mitochondrial oxidative stress, and mechanisms of cell death in cardiac toxicity associated with imatinib and sorafenib. Cardiac myoblast H9c2 cells were exposed to imatinib and sorafenib (1 to 100 µM) for 24 h. Permeabilized rat cardiac fibers were treated with both drugs for 15 min. H9c2 cells exposed to sorafenib for 24 h showed a higher membrane toxicity and ATP depletion in the presence of galactose (favoring mitochondrial metabolism) compared to glucose (favoring glycolysis) but not when exposed to imatinib. Both TKIs resulted in a higher dissipation of the mitochondrial membrane potential in galactose compared to glucose media. Imatinib inhibited Complex I (CI)- and CIII- linked respiration under both conditions. Sorafenib impaired CI-, CII-, and CIII-linked respiration in H9c2 cells cultured with glucose, whereas it inhibited all ETS complexes with galactose. In permeabilized rat cardiac myofibers, acute exposure to imatinib and sorafenib decreased CI- and CIV-linked respiration in the presence of the drugs. Electron microscopy showed enlarged mitochondria with disorganized cristae. In addition, both TKIs caused mitochondrial superoxide accumulation and decreased the cellular GSH pool. Both TKIs induced caspase 3/7 activation, suggesting apoptosis as a mechanism of cell death. Imatinib and sorafenib impaired the function of cardiac mitochondria in isolated rat cardiac fibers and in H9c2 cells at plasma concentrations reached in humans. Both imatinib and sorafenib impaired the function of enzyme complexes of the ETS, which was associated with mitochondrial ROS accumulation and cell death by apoptosis.


Subject(s)
Cardiotoxicity/etiology , Imatinib Mesylate/adverse effects , Mitochondria, Heart/drug effects , Myoblasts, Cardiac/drug effects , Myocytes, Cardiac/drug effects , Sorafenib/adverse effects , Animals , Apoptosis/drug effects , Cell Line , Electron Transport/drug effects , Glycolysis/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Membranes/drug effects , Oxidative Stress/drug effects , Rats
8.
Biochem J ; 479(1): 111-127, 2022 01 14.
Article in English | MEDLINE | ID: mdl-34981811

ABSTRACT

The cytochrome b6f complex (b6f) has been initially considered as the ferredoxin-plastoquinone reductase (FQR) during cyclic electron flow (CEF) with photosystem I that is inhibited by antimycin A (AA). The binding of AA to the b6f Qi-site is aggravated by heme-ci, which challenged the FQR function of b6f during CEF. Alternative models suggest that PROTON GRADIENT REGULATION5 (PGR5) is involved in a b6f-independent, AA-sensitive FQR. Here, we show in Chlamydomonas reinhardtii that the b6f is conditionally inhibited by AA in vivo and that the inhibition did not require PGR5. Instead, activation of the STT7 kinase upon anaerobic treatment induced the AA sensitivity of b6f which was absent from stt7-1. However, a lock in State 2 due to persisting phosphorylation in the phosphatase double mutant pph1;pbcp did not increase AA sensitivity of electron transfer. The latter required a redox poise, supporting the view that state transitions and CEF are not coercively coupled. This suggests that the b6f-interacting kinase is required for structure-function modulation of the Qi-site under CEF favoring conditions. We propose that PGR5 and STT7 independently sustain AA-sensitive FQR activity of the b6f. Accordingly, PGR5-mediated electron injection into an STT7-modulated Qi-site drives a Mitchellian Q cycle in CEF conditions.


Subject(s)
Antimycin A/pharmacology , Chlamydomonas reinhardtii/enzymology , Cytochrome b6f Complex/metabolism , Electrons , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Thylakoids/enzymology , Antimycin A/metabolism , Cytochrome b6f Complex/antagonists & inhibitors , Electron Transport/drug effects , Enzyme Activation , Ferredoxins/metabolism , Light-Harvesting Protein Complexes/metabolism , Oxidation-Reduction , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Phosphorylation/drug effects , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Plastoquinone/metabolism , Quinone Reductases/metabolism
9.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884479

ABSTRACT

Ischemia-induced mitochondrial dysfunction and ATP depletion in the kidney result in disruption of primary functions and acute injury of the kidney. This study tested whether γ-tocotrienol (GTT), a member of the vitamin E family, protects mitochondrial function, reduces ATP deficits, and improves renal functions and survival after ischemia/reperfusion injury. Vehicle or GTT (200 mg/kg) were administered to mice 12 h before bilateral kidney ischemia, and endpoints were assessed at different timepoints of reperfusion. GTT treatment reduced decreases in state 3 respiration and accelerated recovery of this function after ischemia. GTT prevented decreases in activities of complexes I and III of the respiratory chain, and blocked ischemia-induced decreases in F0F1-ATPase activity and ATP content in renal cortical tissue. GTT improved renal morphology at 72 h after ischemia, reduced numbers of necrotic proximal tubular and inflammatory cells, and enhanced tubular regeneration. GTT treatment ameliorated increases in plasma creatinine levels and accelerated recovery of creatinine levels after ischemia. Lastly, 89% of mice receiving GTT and 70% of those receiving vehicle survived ischemia. Conclusions: Our data show novel observations that GTT administration improves mitochondrial respiration, prevents ATP deficits, promotes tubular regeneration, ameliorates decreases in renal functions, and increases survival after acute kidney injury in mice.


Subject(s)
Acute Kidney Injury/drug therapy , Chromans/pharmacology , Electron Transport/drug effects , Energy Metabolism , Mitochondria/drug effects , Protective Agents/pharmacology , Reperfusion Injury/drug therapy , Vitamin E/analogs & derivatives , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Adenosine Triphosphate/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Mitochondria/pathology , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Vitamin E/pharmacology
10.
Biomed Res Int ; 2021: 4303902, 2021.
Article in English | MEDLINE | ID: mdl-34646883

ABSTRACT

The wound healing process is essential to reform the damaged tissue and prevent its invasion by pathogens. The present study aims at evaluating the antibacterial and therapeutic properties of the Capsicum annuum L. (Solanaceae) extract against infected wound in a rat model with its mechanisms of antibacterial action. The fruit extract was prepared by maceration in methanol. The broth microdilution method was used to investigate the antibacterial activity of the methanol extract of C. annuum fruits. The therapeutic effect of the extract gel was performed on an excision wound infected with Staphylococcus aureus using a rat model. The total phenol, flavonoid, and tannin contents as well as the antibacterial mechanisms of action of the extract were determined using spectrophotometric methods. The C. annuum fruit extract showed antibacterial properties which can be linked to its total phenolic, flavonoid, and tannin contents. The antibacterial activity is due to the inhibition of the biofilm formation, ATPases/H+ proton pump, and dehydrogenase activity as well as the alteration of the bacterial cell membrane through the leakage of nucleic acids, reducing sugars and proteins. The extract gel showed a significant (p < 0.05) increase in the percentage of wound closure and eradicated S. aureus at the infection site. The extract gel was nonirritating to the skin and slightly irritating to the eyes and should be used with caution. Overall, the findings of the present study support the traditional use of the studied plant in the treatment of wounds and infectious diseases associated with the tested bacteria.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Capsicum/chemistry , Plant Extracts/therapeutic use , Wound Infection/drug therapy , Adenosine Triphosphatases/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/enzymology , Biofilms/drug effects , Cell Membrane Permeability/drug effects , Disease Models, Animal , Electron Transport/drug effects , Eye/drug effects , Flavonoids/analysis , Fruit/chemistry , L-Lactate Dehydrogenase/metabolism , Male , Methanol/chemistry , Microbial Sensitivity Tests , Phenols/analysis , Plant Extracts/pharmacology , Proton Pumps/metabolism , Rats, Wistar , Skin/drug effects , Sugars/analysis , Tannins/analysis , Wound Infection/microbiology
11.
Molecules ; 26(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34641502

ABSTRACT

Single-walled carbon nanotubes (SWCNT) have recently been attracting the attention of plant biologists as a prospective tool for modulation of photosynthesis in higher plants. However, the exact mode of action of SWCNT on the photosynthetic electron transport chain remains unknown. In this work, we examined the effect of foliar application of polymer-grafted SWCNT on the donor side of photosystem II, the intersystem electron transfer chain and the acceptor side of photosystem I. Analysis of the induction curves of chlorophyll fluorescence via JIP test and construction of differential curves revealed that SWCNT concentrations up to 100 mg/L did not affect the photosynthetic electron transport chain. SWCNT concentration of 300 mg/L had no effect on the photosystem II donor side but provoked inactivation of photosystem II reaction centres and slowed down the reduction of the plastoquinone pool and the photosystem I end acceptors. Changes in the modulated reflection at 820 nm, too, indicated slower re-reduction of photosystem I reaction centres in SWCNT-treated leaves. We conclude that SWCNT are likely to be able to divert electrons from the photosynthetic electron transport chain at the level of photosystem I end acceptors and plastoquinone pool in vivo. Further research is needed to unequivocally prove if the observed effects are due to specific interaction between SWCNT and the photosynthetic apparatus.


Subject(s)
Nanotubes, Carbon , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Pisum sativum/drug effects , Chlorophyll/metabolism , Electron Transport/drug effects , Fluorescence , Nanotubes, Carbon/chemistry , Pisum sativum/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Polymers/chemistry
12.
Am J Physiol Endocrinol Metab ; 321(5): E636-E651, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34569273

ABSTRACT

A role for fat overfeeding in metabolic dysfunction in humans is commonly implied in the literature. Comparatively less is known about acute carbohydrate overfeeding (COF). We tested the hypothesis that COF predisposes to oxidative stress by channeling electrons away from antioxidants to support energy storage. In a study of 24 healthy human subjects with and without obesity, COF was simulated by oral administration of excess carbohydrates; a two-step hyperinsulinemic clamp was used to evaluate insulin action. The distribution of electrons between oxidative and reductive pathways was evaluated by the changes in the reduction potentials (Eh) of cytoplasmic (lactate, pyruvate) and mitochondrial (ß-hydroxybutyrate, acetoacetate) redox couples. Antioxidant redox was measured by the ratio of reduced to oxidized glutathione. We used cross-correlation analysis to evaluate the relationships between the trajectories of Eh, insulin, glucose, and respiratory exchange during COF. DDIT3 and XBP1s/u mRNA were measured as markers of endoplasmic reticulum stress (ER stress) in adipose tissue before and after COF. Here, we show that acute COF is characterized by net transfer of electrons from mitochondria to cytoplasm. Circulating glutathione is oxidized in a manner that significantly cross-correlates with increasing insulin levels and precedes the decrease in cytoplasmic Eh. This effect is more pronounced in overweight individuals (OW). Markers of ER stress in subcutaneous fat are detectable in OW within 4 h. We conclude that acute COF contributes to metabolic dysfunction through insulin-dependent pathways that promote electron transfer to the cytoplasm and decrease antioxidant capacity. Characterization of redox during overfeeding is important for understanding the pathophysiology of obesity and type 2 diabetes.NEW & NOTEWORTHY Current principles assume that conversion of thermic energy to metabolically useful energy follows fixed rules. These principles ignore the possibility of variable proton uncoupling in mitochondria. Our study shows that the net balance of electron distribution between mitochondria and cytoplasm is influenced by insulin in a manner that reduces proton leakage during overfeeding. Characterization of the effects of insulin on redox balance is important for understanding obesity and insulin resistance.


Subject(s)
Dietary Carbohydrates/adverse effects , Hyperphagia , Insulin/pharmacology , Metabolic Diseases/metabolism , Adipose Tissue/metabolism , Adult , Cytoplasm/drug effects , Cytoplasm/metabolism , Electron Transport/drug effects , Endoplasmic Reticulum Stress/drug effects , Female , Glucose Clamp Technique , Glutathione/metabolism , Humans , Insulin Resistance , Male , Metabolic Diseases/physiopathology , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Overweight/metabolism , Oxidation-Reduction , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Young Adult
13.
Mol Cell Biochem ; 476(12): 4461-4470, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34478033

ABSTRACT

Cerium oxide nanoparticles, also known as nanoceria, possess antioxidative and anti-inflammatory activities in animal models of inflammatory disorders, such as sepsis. However, it remains unclear how nanoceria affect cellular superoxide fluxes in macrophages, a critical type of cells involved in inflammatory disorders. Using human ML-1 cell-derived macrophages, we showed that nanoceria at 1-100 µg/ml potently reduced superoxide flux from the mitochondrial electron transport chain (METC) in a concentration-dependent manner. The inhibitory effects of nanoceria were also shown in succinate-driven mitochondria isolated from the macrophages. Furthermore, nanoceria markedly mitigated the total intracellular superoxide flux in the macrophages. These data suggest that nanoceria could readily cross the plasma membrane and enter the mitochondrial compartment, reducing intracellular superoxide fluxes in unstimulated macrophages. In macrophages undergoing respiratory burst, nanoceria also strongly reduced superoxide flux from the activated macrophage plasma membrane NADPH oxidase (NOX) in a concentration-dependent manner. Token together, the results of the present study demonstrate that nanoceria can effectively diminish superoxide fluxes from both METC and NOX in human macrophages, which may have important implications for nanoceria-mediated protection against inflammatory disease processes.


Subject(s)
Cell Membrane/metabolism , Cerium/pharmacology , Electron Transport/drug effects , Macrophages/drug effects , Mitochondria/drug effects , NADPH Oxidases/metabolism , Superoxides/metabolism , Anti-Inflammatory Agents/pharmacology , Cell Line , Cerium/chemistry , Humans , Macrophages/metabolism , Mitochondria/metabolism , Nanoparticles/administration & dosage , Nanoparticles/chemistry
14.
Biosystems ; 209: 104509, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34461147

ABSTRACT

Tuberculosis is one of the life-threatening diseases globally, caused by the bacteria Mycobacterium tuberculosis. In order to control this epidemic globally, there is an urgent need to discover new drugs with novel mechanism of action that can help in shortening the duration of treatment for both drug resistant and drug sensitive tuberculosis. Mycobacterium essentially depends on oxidative phosphorylation for its growth and establishment of pathogenesis. This pathway is unique in Mycobacterium tuberculosis as compared to host due to the differences in some of the enzyme complexes carrying electron transfer. Hence, it serves as an important drug target area. The uncouplers which inhibit adenosine triphosphate synthesis, could play a vital role in serving as antimycobacterial agents and thus could help in eradicating this deadly disease. In this article, the bioenergetics of Mycobacterium tuberculosis are studied with and without uncouplers using Petri net. Petri net is among the most widely used mathematical and computational tools to model and study the complex biochemical networks. We first represented the bioenergetic pathway as a Petri net which is then validated and analyzed using invariant analysis techniques of Petri net. The valid mathematical models presented here are capable to explain the molecular mechanism of uncouplers and the processes occurring within the electron transport chain of Mycobacterium tuberculosis. The results explained the net behavior in agreement with the biological results and also suggested some possible processes and pathways to be studied as a drug target for developing antimycobacterials.


Subject(s)
Antitubercular Agents/pharmacology , Computational Biology/methods , Energy Metabolism/drug effects , Metabolic Networks and Pathways/drug effects , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Algorithms , Diarylquinolines/pharmacology , Drug Design , Drug Resistance, Bacterial/drug effects , Electron Transport/drug effects , Humans , Imidazoles/pharmacology , Models, Theoretical , Mycobacterium tuberculosis/metabolism , Oxidative Phosphorylation/drug effects , Piperidines/pharmacology , Pyridines/pharmacology , Tuberculosis/microbiology
15.
Sci Rep ; 11(1): 15770, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349203

ABSTRACT

Berberine (BBR) is an isoquinoline alkaloid from plants known to improve cardiac mitochondrial function in gestational diabetes mellitus (GDM) offspring but the mechanism is poorly understood. We examined the role of the mitochondrial phospholipid cardiolipin (CL) in mediating this cardiac improvement. C57BL/6 female mice were fed either a Lean-inducing low-fat diet or a GDM-inducing high-fat diet for 6 weeks prior to breeding. Lean and GDM-exposed male offspring were randomly assigned a low-fat, high-fat, or high-fat diet containing BBR at weaning for 12 weeks. The content of CL was elevated in the heart of GDM offspring fed a high fat diet containing BBR. The increase in total cardiac CL was due to significant increases in the most abundant and functionally important CL species, tetralinoleoyl-CL and this correlated with an increase in the expression of the CL remodeling enzyme tafazzin. Additionally, BBR treatment increased expression of cardiac enzymes involved in fatty acid uptake and oxidation and electron transport chain subunits in high fat diet fed GDM offspring. Thus, dietary BBR protection from cardiac dysfunction in GDM exposed offspring involves improvement in mitochondrial function mediated through increased synthesis of CL.


Subject(s)
Berberine/pharmacology , Cardiolipins/metabolism , Diabetes, Gestational/etiology , Diet, High-Fat/adverse effects , Heart Diseases/etiology , Heart Diseases/prevention & control , Maternal-Fetal Exchange/physiology , Mitochondria, Heart/metabolism , Myocardium/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Berberine/administration & dosage , Electron Transport/drug effects , Fatty Acids/metabolism , Female , Gene Expression/drug effects , Male , Mice, Inbred C57BL , Oxidation-Reduction/drug effects , Pregnancy
16.
Plant Cell Rep ; 40(11): 2063-2080, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34417832

ABSTRACT

KEY MESSAGE: Melatonin is an early player in chromium stress response in canola plants; it promotes ROS scavenging and chlorophyll stability, modulates PSII stability and regulates feedback inhibition of photosynthesis conferring chromium tolerance. The development of heavy metals, especially chromium (Cr)-tolerant cultivars is mainly constrained due to poor knowledge of the mechanism behind Cr stress tolerance. In the present study, two Brassica napus contrasting cultivars Ac-Excel and DGL were studied for Cr stress tolerance by using chlorophyll a fluorescence technique and biochemical attributes with and without melatonin (MT) treatments. Cr stress significantly reduced the PSII and PSI efficiency, biomass accumulation, proline content and antioxidant enzymes in both the cultivars. The application of MT minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH-). Enhanced enzymatic activities of important antioxidants (SOD, APX, CAT, POD), proline and total soluble protein contents under MT application play an effective role in the regulation of multiple transcriptional pathways involved in oxidative stress responses. Higher NPQ and Y(NPQ) observed in Cr stress tolerant cv Ac-Excel, indicating that the MT-treated tolerant cultivar had better ability to protect PSII under Cr stress by increasing heat dissipation as photo-protective component of NPQ. Reduced PSI efficiency along with increased donor end limitation of PSI in both canola cultivars further confirmed the lower PSII activity and electron transport from PSII. The Cr content was higher in cv. DGL as compared to (that in Ac-Excel). The application of MT significantly decreased the Cr content in leaves of both cultivars. Overall, MT-induced Cr stress tolerance in canola cultivars can be related to improved PSII activity, Y(NPQ), and antioxidant potential and these physiological attributes can effectively be used to select cultivars for Cr stress tolerance.


Subject(s)
Brassica napus/drug effects , Brassica napus/physiology , Chromium/toxicity , Melatonin/pharmacology , Photosynthesis/drug effects , Antioxidants/metabolism , Chlorophyll/metabolism , Electron Transport/drug effects , Enzymes/metabolism , Feedback, Physiological , Genotype , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Proline/metabolism , Stress, Physiological/drug effects
17.
Int J Mol Sci ; 22(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34360894

ABSTRACT

Disruption of retinal pigment epithelial (RPE) barrier integrity is involved in the pathology of several blinding retinal diseases including age-related macular degeneration (AMD) and diabetic retinopathy (DR), but the underlying causes and pathophysiology are not completely well-defined. Mitochondria dysfunction has often been considered as a potential candidate implicated in such a process. In this study, we aimed to dissect the role of different mitochondrial components; specifically, those of oxidative phosphorylation (OxPhos), in maintaining the barrier functionality of RPE. Electric cell-substrate impedance sensing (ECIS) technology was used to collect multi-frequency electrical impedance data to assess in real-time the barrier formation of the RPE cells. For this purpose, the human retinal pigment epithelial cell line-ARPE-19-was used and treated with varying concentrations of specific mitochondrial inhibitors that target different steps in OxPhos: Rotenone for complex I (the largest protein complex in the electron transport chain (ETC)); oligomycin for ATP synthase; and carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) for uncoupling ATP synthesis from the accompanying ETC. Furthermore, data were modeled using the ECIS-Zθ software to investigate in depth the effects of these inhibitors on three separate barrier parameters: cell-cell interactions (Rb), cell-matrix interactions (α), and the cell membrane capacitance (Cm). The viability of ARPE-19 cells was determined by lactate dehydrogenase (LDH) Cytotoxicity Assay. The ECIS program's modeling demonstrated that FCCP and thus OxPhos uncoupling disrupt the barrier function in the ARPE-19 cells across all three components of the total resistance (Rb, α, and Cm) in a dose-dependent manner. On the other hand, oligomycin and thus ATP synthase inhibition mostly affects the ARPE-19 cells' attachment to their substrate evident by a significant decrease in α resistance in a dose-dependent manner, both at the end and throughout the duration of the experiment. On the contrary, rotenone and complex I inhibition mostly affect the ARPE-19 paracellular resistance Rb in a dose-dependent manner compared to basolateral resistance α or Cm. Our results clearly demonstrate differential roles for different mitochondrial components in maintaining RPE cell functionality in which uncoupling of OxPhos is a major contributing factor to the disruption barrier function. Such differences can be used in investigating gene expression as well as for screening of selective agents that improve the OxPhos coupling efficiency to be used in the therapeutic approach for treating RPE-related retinal diseases.


Subject(s)
Blood-Retinal Barrier/metabolism , Diabetic Retinopathy/metabolism , Epithelial Cells/metabolism , Macular Degeneration/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Retinal Pigment Epithelium/metabolism , Blood-Retinal Barrier/drug effects , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacokinetics , Cell Line , Cell Survival/drug effects , Electric Impedance , Electron Transport/drug effects , Enzyme Inhibitors/pharmacokinetics , Humans , Mitochondria/drug effects , Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors , Oligomycins/pharmacokinetics , Retinal Pigment Epithelium/drug effects , Rotenone/pharmacokinetics
18.
Sci Rep ; 11(1): 16595, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400721

ABSTRACT

Fetal growth restriction is a leading cause of stillbirth that often remains undetected during pregnancy. Identifying novel biomarkers may improve detection of pregnancies at risk. This study aimed to assess syndecan-1 as a biomarker for small for gestational age (SGA) or fetal growth restricted (FGR) pregnancies and determine its molecular regulation. Circulating maternal syndecan-1 was measured in several cohorts; a large prospective cohort collected around 36 weeks' gestation (n = 1206), a case control study from the Manchester Antenatal Vascular service (285 women sampled at 24-34 weeks' gestation); two prospective cohorts collected on the day of delivery (36 + 3-41 + 3 weeks' gestation, n = 562 and n = 405 respectively) and a cohort who delivered for preterm FGR (< 34 weeks). Circulating syndecan-1 was consistently reduced in women destined to deliver growth restricted infants and those delivering for preterm disease. Syndecan-1 secretion was reduced by hypoxia, and its loss impaired proliferation. Matrix metalloproteinases and mitochondrial electron transport chain inhibitors significantly reduced syndecan-1 secretion, an effect that was rescued by coadministration of succinate, a mitochondrial electron transport chain activator. In conclusion, circulating syndecan-1 is reduced among cases of term and preterm growth restriction and has potential for inclusion in multi-marker algorithms to improve detection of poorly grown fetuses.


Subject(s)
Fetal Growth Retardation/blood , Matrix Metalloproteinases/physiology , Mitochondria/physiology , Placenta/metabolism , Pregnancy Complications/blood , Syndecan-1/blood , Adult , Area Under Curve , Birth Weight , Cell Hypoxia , Delivery, Obstetric , Diabetes, Gestational/blood , Electron Transport/drug effects , Female , Gestational Age , Humans , Hypertension/blood , Infant, Newborn , Infant, Small for Gestational Age , Metformin/pharmacology , Mitochondria/drug effects , Organ Size , Overweight/blood , Pre-Eclampsia/blood , Pregnancy , ROC Curve , Smoking/blood , Trophoblasts/enzymology
19.
Antiviral Res ; 194: 105159, 2021 10.
Article in English | MEDLINE | ID: mdl-34390771

ABSTRACT

Human cytomegalovirus (HCMV) is a near ubiquitous herpesvirus that relies on host cell metabolism for efficient replication. Although it has been shown that HCMV requires functional host cell mitochondria for efficient replication, it is unknown whether mitochondrial targeted pharmacological agents can be repurposed as antivirals. Here we report that treatment with drugs targeting the electron transport chain (ETC) complexes inhibit HCMV replication. Addition of rotenone, oligomycin, antimycin and metformin resulted in decreased HCMV titers in vitro, independent of HCMV strain. This further illustrates the dependence of HCMV replication on functional mitochondria. Metformin, an FDA approved drug, delays HCMV replication kinetics resulting in a reduction of viral titers. Repurposing metformin as an antiviral is advantageous as its safety profile and epidemiological data are well accepted. Our findings provide new insight into the potential for targeting HCMV infection through host cell metabolism and how these pharmacological interventions function.


Subject(s)
Antiviral Agents/pharmacology , Cytomegalovirus/drug effects , Electron Transport/drug effects , Virus Replication/drug effects , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/virology , Foreskin/cytology , Humans , Male , Metformin/pharmacology , Oligomycins/pharmacology
20.
PLoS One ; 16(8): e0256529, 2021.
Article in English | MEDLINE | ID: mdl-34428242

ABSTRACT

Calcium (Ca2+) is an essential nutrient element for plants as it stabilizes the membrane system structure and controls enzyme activity. To investigate the effects of Ca2+ on plant growth and leaf photosynthetic electron transport in oat (Avena sativa) under NaCl stress, oat seeds and plants were cultivated in nutrient solutions with single NaCl treatment and NaCl treatment with CaCl2 amendment. By measuring the seed germination rate, plant growth, Na+ and Cl- accumulation in leaves, ion leakage in seedlings and leaves, prompt chlorophyll a fluorescence (PF) transient (OJIP), delayed chlorophyll a fluorescence (DF), and modulated 820 nm reflection (MR) values of the leaves at different growth phases, we observed that Ca2+ alleviated the inhibition of germination and plant growth and decreased Na+ and Cl- accumulation and ion leakage in the leaves under NaCl stress. NaCl stress changed the curves of the OJIP transient, induced PF intensity at P-step (FP) decrease and PF intensity at J-step (FJ) increase, resulted in obvious K and L bands, and altered the performance index of absorption (PIABS), the absorption of antenna chlorophyll (ABS/RC), electron movement efficiency (ETo/TRo), and potential maximum photosynthetic capacity (FV/FM) values. With the time extension of NaCl stress, I1 and I2 in the DF curve showed a decreasing trend, the lowest values of MR/MRO curve increased, and the highest points of the MR/MRO curve decreased. Compared with NaCl treatment, the extent of change induced by NaCl in the values of OJIP, DF and MR was reduced in the NaCl treatment with CaCl2 amendment. These results revealed that Ca2+ might improve the photosynthetic efficiency and the growth of salt-stressed plants by maintaining the integrity of oxygen-evolving complexes and electron transporters on the side of the PSI receptor and enhancing the relationship between the functional units of the photosynthetic electron transport chain. The findings from this study could be used for improving crop productivity in saline alkali lands.


Subject(s)
Calcium/pharmacology , Germination/drug effects , Photosynthesis/drug effects , Sodium Chloride/pharmacology , Avena/growth & development , Avena/metabolism , Electron Transport/drug effects , Plant Leaves/metabolism , Seeds/growth & development , Seeds/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...