Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.277
Filter
1.
J Hazard Mater ; 472: 134598, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38743975

ABSTRACT

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) is an emerging pollutant transformed from 6-PPD. However, the effect of 6-PPDQ exposure on mitochondrion and underlying mechanism remains largely unclear. Using Caenorhabditis elegans as animal model, exposed to 6-PPDQ at 0.1-10 µg/L was performed form L1 larvae to adult day-1. Exposure to 6-PPDQ (1 and 10 µg/L) could increase oxygen consumption rate and decease adenosine 5'-triphosphate (ATP) content, suggesting induction of mitochondrial dysfunction. Activities of NADH dehydrogenase (complex I) and succinate dehydrogenase (complex II) were inhibited, accompanied by a decrease in expressions of gas-1, nuo-1, and mev-1. RNAi of gas-1 and mev-1 enhanced mitochondrial dysfunction and reduced lifespan of 6-PPDQ exposed nematodes. GAS-1 and MEV-1 functioned in parallel to regulate 6-PPDQ toxicity to reduce the lifespan. Insulin peptides and the insulin signaling pathway acted downstream of GAS-1 and MEV-1 to control the 6-PPDQ toxicity on longevity. Moreover, RNAi of sod-2 and sod-3, targeted genes of daf-16, caused susceptibility to 6-PPDQ toxicity in reducing lifespan and in causing reactive oxygen species (ROS) production. Therefore, 6-PPDQ at environmentally relevant concentrations (ERCs) potentially caused mitochondrial dysfunction by affecting mitochondrial complexes I and II, which was associated with lifespan reduction by affecting insulin signaling in organisms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Electron Transport Complex I , Longevity , Mitochondria , Animals , Caenorhabditis elegans/drug effects , Longevity/drug effects , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex II/metabolism , Electron Transport Complex II/genetics , Insulin/metabolism , Adenosine Triphosphate/metabolism , Reactive Oxygen Species/metabolism , NADH Dehydrogenase , Cytochromes b
2.
Am J Physiol Cell Physiol ; 326(6): C1669-C1682, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38646781

ABSTRACT

We previously showed that the transaminase inhibitor, aminooxyacetic acid, reduced respiration energized at complex II (succinate dehydrogenase, SDH) in mitochondria isolated from mouse hindlimb muscle. The effect required a reduction in membrane potential with resultant accumulation of oxaloacetate (OAA), a potent inhibitor of SDH. To specifically assess the effect of the mitochondrial transaminase, glutamic oxaloacetic transaminase (GOT2) on complex II respiration, and to determine the effect in intact cells as well as isolated mitochondria, we performed respiratory and metabolic studies in wildtype (WT) and CRISPR-generated GOT2 knockdown (KD) C2C12 myocytes. Intact cell respiration by GOT2KD cells versus WT was reduced by adding carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) to lower potential. In mitochondria of C2C12 KD cells, respiration at low potential generated by 1 µM FCCP and energized at complex II by 10 mM succinate + 0.5 mM glutamate (but not by complex I substrates) was reduced versus WT mitochondria. Although we could not detect OAA, metabolite data suggested that OAA inhibition of SDH may have contributed to the FCCP effect. C2C12 mitochondria differed from skeletal muscle mitochondria in that the effect of FCCP on complex II respiration was not evident with ADP addition. We also observed that C2C12 cells, unlike skeletal muscle, expressed glutamate dehydrogenase, which competes with GOT2 for glutamate metabolism. In summary, GOT2 KD reduced C2C12 respiration in intact cells at low potential. From differential substrate effects, this occurred largely at complex II. Moreover, C2C12 versus muscle mitochondria differ in complex II sensitivity to ADP and differ markedly in expression of glutamate dehydrogenase.NEW & NOTEWORTHY Impairment of the mitochondrial transaminase, GOT2, reduces complex II (succinate dehydrogenase, SDH)-energized respiration in C2C12 myocytes. This occurs only at low inner membrane potential and is consistent with inhibition of SDH. Incidentally, we observed that C2C12 mitochondria compared with muscle tissue mitochondria differ in sensitivity of complex II respiration to ADP and in the expression of glutamate dehydrogenase.


Subject(s)
Cell Respiration , Membrane Potential, Mitochondrial , Mitochondria, Muscle , Animals , Mice , Aspartate Aminotransferase, Mitochondrial/metabolism , Aspartate Aminotransferase, Mitochondrial/genetics , Cell Differentiation/drug effects , Cell Line , Cell Respiration/drug effects , Electron Transport Complex II/metabolism , Electron Transport Complex II/genetics , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/enzymology , Mitochondria, Muscle/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Oxygen Consumption/drug effects , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/genetics , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism
3.
Pflugers Arch ; 476(6): 939-948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38446167

ABSTRACT

There is some evidence for temperature-dependent stimulation of mitochondrial biogenesis; however, the role of elevated muscle temperature during exercise in mitochondrial adaptation to training has not been studied in humans in vivo. The purpose of this study was to determine the role of elevating muscle temperature during exercise in temperate conditions through the application of mild, local heat stress on mitochondrial adaptations to endurance training. Eight endurance-trained males undertook 3 weeks of supervised cycling training, during which mild (~ 40 °C) heat stress was applied locally to the upper-leg musculature of one leg during all training sessions (HEAT), with the contralateral leg serving as the non-heated, exercising control (CON). Vastus lateralis microbiopsies were obtained from both legs before and after the training period. Training-induced increases in complex I (fold-change, 1.24 ± 0.33 vs. 1.01 ± 0.49, P = 0.029) and II (fold-change, 1.24 ± 0.33 vs. 1.01 ± 0.49, P = 0.029) activities were significantly larger in HEAT than CON. No significant effects of training, or interactions between local heat stress application and training, were observed for complex I-V or HSP70 protein expressions. Our data provides partial evidence to support the hypothesis that elevating local muscle temperature during exercise augments training-induced adaptations to mitochondrial enzyme activity.


Subject(s)
Adaptation, Physiological , Exercise , Heat-Shock Response , Mitochondria, Muscle , Muscle, Skeletal , Male , Humans , Adaptation, Physiological/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Exercise/physiology , Adult , Heat-Shock Response/physiology , Mitochondria, Muscle/metabolism , Hot Temperature , Electron Transport Complex I/metabolism , Young Adult , Electron Transport Complex II/metabolism
5.
Nature ; 625(7994): 385-392, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123683

ABSTRACT

Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.


Subject(s)
Dietary Fats , Enterocytes , Lipid Metabolism , Mitochondria , Animals , Mice , Aspartate-tRNA Ligase/metabolism , Chylomicrons/metabolism , Dietary Fats/metabolism , Electron Transport Complex II/metabolism , Endoplasmic Reticulum/metabolism , Enterocytes/metabolism , Enterocytes/pathology , Epithelial Cells/metabolism , Golgi Apparatus/metabolism , Intestines , Lipid Droplets/metabolism , Mitochondria/metabolism , Mitochondria/pathology
6.
J Biol Chem ; 300(1): 105470, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38118236

ABSTRACT

The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the ß-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.


Subject(s)
Electron Transport Complex II , Electrons , Fatty Acids , Flavin-Adenine Dinucleotide , Succinate Dehydrogenase , Electron Transport , Fatty Acids/chemistry , Fatty Acids/metabolism , Flavin-Adenine Dinucleotide/analogs & derivatives , Flavin-Adenine Dinucleotide/metabolism , Oxidation-Reduction , Reproducibility of Results , Succinate Dehydrogenase/metabolism , Citric Acid Cycle , Mitochondria/metabolism , Ubiquinone/metabolism , Succinic Acid/metabolism , Electron Transport Complex II/metabolism , Energy Metabolism
7.
Commun Biol ; 6(1): 1134, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945749

ABSTRACT

The molecular basis of reduced autofluorescence in oral squamous cell carcinoma (OSCC) cells relative to normal cells has been speculated to be due to lower levels of free flavin adenine dinucleotide (FAD). This speculation, along with differences in the intrinsic optical properties of extracellular collagen, lies at the foundation of the design of currently-used clinical optical detection devices. Here, we report that free FAD levels may not account for differences in autofluorescence of OSCC cells, but that the differences relate to FAD as a co-factor for flavination. Autofluorescence from a 70 kDa flavoprotein, succinate dehydrogenase A (SDHA), was found to be responsible for changes in optical properties within the FAD spectral region, with lower levels of flavinated SDHA in OSCC cells. Since flavinated SDHA is required for functional complexation with succinate dehydrogenase B (SDHB), decreased SDHB levels were observed in human OSCC tissue relative to normal tissues. Accordingly, the metabolism of OSCC cells was found to be significantly altered relative to normal cells, revealing vulnerabilities for both diagnosis and targeted therapy. Optimizing non-invasive tools based on optical and metabolic signatures of cancers will enable more precise and early diagnosis leading to improved outcomes in patients.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Flavin-Adenine Dinucleotide/metabolism , Mouth Neoplasms/pathology , Electron Transport Complex II/metabolism
8.
Biomed Pharmacother ; 167: 115645, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37804808

ABSTRACT

Diabetic cardiomyopathy (DCM), characterized by mitochondrial dysfunction and impaired energetics as contributing factors, significantly contributes to high mortality in patients with diabetes. Targeting key proteins involved in mitochondrial dysfunction might offer new therapeutic possibilities for DCM. Lentinan (LNT), a ß-(1,3)-glucan polysaccharide obtained from lentinus edodes, has demonstrated biological activity in modulating metabolic syndrome. In this study, the authors investigate LNT's pharmacological effects on and mechanisms against DCM. The results demonstrate that administering LNT to db/db mice reduces cardiomyocyte apoptosis and mitochondrial dysfunction, thereby preventing DCM. Notably, these effects are fully negated by Caveolin-1 (CAV1) overexpression both in vivo and in vitro. Further studies and bioinformatics analysis uncovered that CAV1 bound with Succinate dehydrogenase subunit A (SDHA), triggering the following ubiquitination and degradation of SDHA, which leads to mitochondrial dysfunction and mitochondria-derived apoptosis under PA condition. Silencing CAV1 leads to reduced apoptosis and improved mitochondrial function, which is blocked by SDHA knockdown. In conclusion, CAV1 directly interacts with SDHA to promote ubiquitination and proteasomal degradation, resulting in mitochondrial dysfunction and mitochondria-derived apoptosis, which was depressed by LNT administration. Therefore, LNT may be a potential pharmacological agent in preventing DCM, and targeting the CAV1/SDHA pathway may be a promising therapeutic approach for DCM.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Mice , Animals , Humans , Diabetic Cardiomyopathies/metabolism , Lentinan/metabolism , Lentinan/pharmacology , Lentinan/therapeutic use , Caveolin 1/metabolism , Mitochondria , Diabetes Mellitus/metabolism , Electron Transport Complex II/metabolism
9.
Science ; 381(6664): 1316-1323, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37733872

ABSTRACT

Although tumor growth requires the mitochondrial electron transport chain (ETC), the relative contribution of complex I (CI) and complex II (CII), the gatekeepers for initiating electron flow, remains unclear. In this work, we report that the loss of CII, but not that of CI, reduces melanoma tumor growth by increasing antigen presentation and T cell-mediated killing. This is driven by succinate-mediated transcriptional and epigenetic activation of major histocompatibility complex-antigen processing and presentation (MHC-APP) genes independent of interferon signaling. Furthermore, knockout of methylation-controlled J protein (MCJ), to promote electron entry preferentially through CI, provides proof of concept of ETC rewiring to achieve antitumor responses without side effects associated with an overall reduction in mitochondrial respiration in noncancer cells. Our results may hold therapeutic potential for tumors that have reduced MHC-APP expression, a common mechanism of cancer immunoevasion.


Subject(s)
Antigens, Neoplasm , Electron Transport Complex II , Electron Transport Complex I , Mitochondria , Neoplasms , Humans , Antigen Presentation , Antigens, Neoplasm/immunology , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex II/genetics , Electron Transport Complex II/metabolism , Electrons , Gene Knockout Techniques , Histones/metabolism , HSP40 Heat-Shock Proteins/genetics , Melanoma/immunology , Melanoma/pathology , Methylation , Mitochondria/enzymology , Neoplasms/immunology , Neoplasms/pathology , Cell Line, Tumor
10.
PLoS One ; 18(7): e0276147, 2023.
Article in English | MEDLINE | ID: mdl-37486925

ABSTRACT

High-resolution respirometry methods allow for the assessment of oxygen consumption by the electron transfer systems within cells, tissue samples, and isolated mitochondrial preparations. As mitochondrial integrity is compromised by the process of cryopreservation, these methods have been limited to fresh samples. Here we present a simple method to assess the activity of mitochondria respiratory complexes I and II in previously cryopreserved murine skeletal muscle tissue homogenates, as well as previously frozen D. melanogaster, as a function of oxygen consumption.


Subject(s)
Mitochondria , Cell Respiration , Mitochondria/metabolism , Animals , Mice , Drosophila melanogaster , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , Female , Mice, Inbred C57BL , Muscle, Skeletal/metabolism
11.
Phytochemistry ; 213: 113766, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37343736

ABSTRACT

The increased activity of PARP enzymes is associated with a deficiency of NAD+, as well as with a loss of NADPH and ATP, and consequent deterioration of the redox state in fruits. In this study, we checked whether treatment with nicotinamide (NAM) would affect PARP-1 expression and NAD+ metabolism in strawberry fruit during storage. For this purpose, strawberry fruits were treated with 10 mM NAM and co-treated with NAM and UV-C, and then stored for 5 days at 4 °C. Research showed that nicotinamide contributes to reducing oxidative stress level by reducing PARP-1 mRNA gene expression and the protein level resulting in higher NAD+ availability, as well as improving energy metabolism and NADPH levels in fruits, regardless of whether they are exposed to UV-C. The above effects cause fruits treated with nicotinamide to be characterised by higher anti-radical activity, and a lower level of reactive oxygen species in the tissue.


Subject(s)
Food Storage , Fragaria , Fruit , Niacinamide , Catalase , Crop Production/methods , Electron Transport Complex II , Food Storage/methods , Fragaria/drug effects , Fragaria/metabolism , Fragaria/radiation effects , Fruit/drug effects , Fruit/metabolism , Fruit/radiation effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , NAD/metabolism , NADP/metabolism , Niacinamide/pharmacology , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger , Superoxide Dismutase , Ultraviolet Rays
12.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175997

ABSTRACT

Reverse electron transfer in mitochondrial complex II (CII) plays an important role in hypoxia/anoxia, in particular, in ischemia, when the blood supply to an organ is disrupted and oxygen is not available. A computational model of CII was developed in this work to facilitate the quantitative analysis of the kinetics of quinol-fumarate reduction as well as ROS production during reverse electron transfer in CII. The model consists of 20 ordinary differential equations and 7 moiety conservation equations. The parameter values were determined at which the kinetics of electron transfer in CII in both forward and reverse directions would be explained simultaneously. The possibility of the existence of the "tunnel diode" behavior in the reverse electron transfer in CII, where the driving force is QH2, was tested. It was found that any high concentrations of QH2 and fumarate are insufficient for the appearance of a tunnel effect. The results of computer modeling show that the maximum rate of succinate production cannot provide a high concentration of succinate in ischemia. Furthermore, computational modeling results predict a very low rate of ROS production, about 50 pmol/min/mg mitochondrial protein, which is considerably less than 1000 pmol/min/mg protein observed in CII in forward direction.


Subject(s)
Electrons , Succinate Dehydrogenase , Succinate Dehydrogenase/metabolism , Reactive Oxygen Species/metabolism , Electron Transport Complex II/metabolism , Electron Transport , Succinates , Computer Simulation , Fumarates/metabolism , Kinetics
13.
J Biol Chem ; 299(6): 104761, 2023 06.
Article in English | MEDLINE | ID: mdl-37119852

ABSTRACT

Mitochondrial complex II is traditionally studied for its participation in two key respiratory processes: the electron transport chain and the Krebs cycle. There is now a rich body of literature explaining how complex II contributes to respiration. However, more recent research shows that not all of the pathologies associated with altered complex II activity clearly correlate with this respiratory role. Complex II activity has now been shown to be necessary for a range of biological processes peripherally related to respiration, including metabolic control, inflammation, and cell fate. Integration of findings from multiple types of studies suggests that complex II both participates in respiration and controls multiple succinate-dependent signal transduction pathways. Thus, the emerging view is that the true biological function of complex II is well beyond respiration. This review uses a semichronological approach to highlight major paradigm shifts that occurred over time. Special emphasis is given to the more recently identified functions of complex II and its subunits because these findings have infused new directions into an established field.


Subject(s)
Electron Transport Complex II , Succinate Dehydrogenase , Citric Acid Cycle , Respiration , Signal Transduction , Succinate Dehydrogenase/metabolism , Mitochondria , Electron Transport Complex II/metabolism
14.
Genes (Basel) ; 14(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36980917

ABSTRACT

Loss of function of the succinate dehydrogenase complex characterizes 20-40% of all KIT/PDGFRA-negative GIST. Approximately half of SDH-deficient GIST patients lack SDHx mutations and are caused by a hypermethylation of the SDHC promoter, which causes the repression of SDHC transcription and depletion of SDHC protein levels through a mechanism described as epimutation. The remaining 50% of SDH-deficient GISTs have mutations in one of the SDH subunits and SDHA mutations are the most common (30%), with consequent loss of SDHA and SDHB protein expression immunohistochemically. SDHB, SDHC, and SDHD mutations in GIST occur in only 20-30% of cases and most of these SDH mutations are germline. More recently, germline mutations in SDHA have also been described in several patients with loss of function of the SDH complex. SDHA-mutant patients usually carry two mutational events at the SDHA locus, either the loss of the wild type allele or a second somatic event in compound heterozygosis. This review provides an overview of all data in the literature regarding SDHA-mutated GIST, especially focusing on the prevalence of germline mutations in SDH-deficient GIST populations who harbor SDHA somatic mutations, and offers a view towards understanding the importance of genetic counselling for SDHA-variant carriers and relatives.


Subject(s)
Gastrointestinal Stromal Tumors , Humans , Gastrointestinal Stromal Tumors/genetics , Germ-Line Mutation , Succinate Dehydrogenase/genetics , Mutation , DNA Methylation , Electron Transport Complex II/genetics , Electron Transport Complex II/metabolism
15.
Nature ; 615(7954): 934-938, 2023 03.
Article in English | MEDLINE | ID: mdl-36949187

ABSTRACT

Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.


Subject(s)
Cryoelectron Microscopy , Electron Transport Complex III , Electron Transport Complex II , Electron Transport Complex IV , Electron Transport Complex I , Mitochondria , Mitochondrial Membranes , Electron Transport , Electron Transport Complex III/chemistry , Electron Transport Complex III/metabolism , Electron Transport Complex III/ultrastructure , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/ultrastructure , Mitochondria/chemistry , Mitochondria/enzymology , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/enzymology , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure , Electron Transport Complex II/chemistry , Electron Transport Complex II/metabolism , Electron Transport Complex II/ultrastructure , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Electron Transport Complex I/ultrastructure , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Molecular Dynamics Simulation , Binding Sites , Evolution, Molecular
16.
STAR Protoc ; 4(1): 101996, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36620990

ABSTRACT

Mitochondria electron transport chain (ETC) complex II is essential for steroid metabolism. Here, we present a protocol to measure the stability and activity of mitochondria ETC complex II. We first describe mitochondria isolation from cell lines and tissues. We then detail how to determine the stability of ETC complex II using isothermal calorimetry and quantification of steroidogenesis using activity assays in parallel. Finally, we describe the steps to perform radioimmunoassay (RIA) to confirm the activity of ETC complex II. For complete details on the use and execution of this protocol, please refer to Bose et al. (2020).1.


Subject(s)
Biological Assay , Electron Transport Complex II , Electron Transport , Cell Line , Mitochondria
17.
J Med Genet ; 60(2): 107-111, 2023 02.
Article in English | MEDLINE | ID: mdl-35260474

ABSTRACT

SDHA pathogenic germline variants (PGVs) are identified in up to 10% of patients with paraganglioma and phaeochromocytoma and up to 30% with wild-type gastrointestinal stromal tumours. Most SDHA PGV carriers present with an apparently sporadic tumour, but often the pathogenic variant has been inherited from parent who has the variant, but has not developed any clinical features. Studies of SDHA PGV carriers suggest that lifetime penetrance for SDHA-associated tumours is low, particularly when identified outside the context of a family history. Current recommended surveillance for SDHA PGV carriers follows an intensive protocol. With increasing implementation of tumour and germline large panel and whole-genome sequencing, it is likely more SDHA PGV carriers will be identified in patients with tumours not strongly associated with SDHA, or outside the context of a strong family history. This creates a complex situation about what to recommend in clinical practice considering low penetrance for tumour development, surveillance burden and patient anxiety. An expert SDHA working group was formed to discuss and consider this situation. This paper outlines the recommendations from this working group for testing and management of SDHA PGV carriers in clinical practice.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Humans , Genetic Testing , Paraganglioma/genetics , Pheochromocytoma/genetics , Germ-Line Mutation/genetics , Adrenal Gland Neoplasms/genetics , United Kingdom , Genetic Predisposition to Disease , Electron Transport Complex II/genetics
18.
Hepatology ; 78(1): 103-119, 2023 07 01.
Article in English | MEDLINE | ID: mdl-35713976

ABSTRACT

BACKGROUND AND AIMS: Succinate dehydrogenase enzyme (SDH) is frequently diminished in samples from patients with hepatocellular carcinoma (HCC), and SDH reduction is associated with elevated succinate level and poor prognosis in patients with HCC. However, the underlying mechanisms of how impaired SDH activity promotes HCC remain unclear. APPROACH AND RESULTS: In this study, we observed remarkable downregulations of SDH subunits A and B (SDHA/B) in chronic liver injury-induced murine HCC models and patient samples. Subsequent RNA sequencing, hematoxylin and eosin staining, and immunohistochemistry analyses of HCC samples revealed that Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) were significantly upregulated in HCC, with their levels inversely correlating with that of SDHA/B. YAP/TAZ stability was greatly enhanced in SDHA/B-depleted HCC cells along with accumulation of succinate. Further mechanistic analyses demonstrated that impaired activity of SDHA/B resulted in succinate accumulation, which facilitated the deNEDDylation of cullin1 and therefore disrupted the E3 ubiquitin ligase SCF ß-TrCP complex, consequently leading to YAP/TAZ stabilization and activation in HCC cells. The accelerated in vitro cell proliferation and in vivo tumor growth caused by SDHA/B reduction or succinate exposure were largely dependent on the aberrant activation of YAP/TAZ. CONCLUSIONS: Our study demonstrated that SDHA/B reduction promotes HCC proliferation by preventing the proteasomal degradation of YAP/TAZ through modulating cullin1 NEDDylation, thus binding SDH-deficient HCC cells to YAP/TAZ pathway and rendering these cells vulnerable to YAP/TAZ inhibition. Our findings warrant further investigation on the therapeutic effects of targeting YAP/TAZ in patients with HCC displaying reduced SDHA/B or elevated succinate levels.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/pathology , Adaptor Proteins, Signal Transducing/metabolism , Liver Neoplasms/pathology , Trans-Activators/metabolism , YAP-Signaling Proteins , Succinates , Electron Transport Complex II/metabolism
19.
Methods Mol Biol ; 2553: 57-77, 2023.
Article in English | MEDLINE | ID: mdl-36227539

ABSTRACT

Many biological molecules are assembled into supramolecular complexes that are necessary to perform functions in the cell. Better understanding and characterization of these molecular assemblies are thus essential to further elucidate molecular mechanisms and key protein-protein interactions that could be targeted to modulate the protein binding affinity or develop new binders. Experimental access to structural information on these supramolecular assemblies is often hampered by the size of these systems that make their recombinant production and characterization rather difficult. Computational methods combining both structural data, molecular modeling techniques, and sequence coevolution information can thus offer a good alternative to gain access to the structural organization of protein complexes and assemblies. Herein, we present some computational methods to predict structural models of the protein partners, to search for interacting regions using coevolution information, and to build molecular assemblies. The approach is exemplified using a case study to model the succinate-quinone oxidoreductase heterocomplex.


Subject(s)
Computational Biology , Proteins , Computational Biology/methods , Electron Transport Complex II/metabolism , Models, Molecular , Molecular Docking Simulation , Protein Binding , Proteins/chemistry
20.
Int J Mol Sci ; 23(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36555239

ABSTRACT

Succinate dehydrogenase (SDH) plays an important role in reverse electron transfer during hypoxia/anoxia, in particular, in ischemia, when blood supply to an organ is disrupted, and oxygen is not available. It was detected in the voltammetry studies about three decades ago that the SDHA/SDHB subcomplex of SDH can have such a strong nonlinear property as a "tunnel-diode" behavior in reverse quinol-fumarate reductase direction. The molecular and kinetic mechanisms of this phenomenon, that is, a strong drop in the rate of fumarate reduction as the driving force is increased, are still unclear. In order to account for this property of SDH, we developed and analyzed a mechanistic computational model of reverse electron transfer in the SDHA/SDHB subcomplex of SDH. It was shown that a decrease in the rate of succinate release from the active center during fumarate reduction quantitatively explains the experimentally observed tunnel-diode behavior in SDH and threshold values of the electrode potential of about -80 mV. Computational analysis of ROS production in the SDHA/SDHB subcomplex of SDH during reverse electron transfer predicts that the rate of ROS production decreases when the tunnel-diode behavior appears. These results predict a low rate of ROS production by the SDHA/SDHB subcomplex of SDH during ischemia.


Subject(s)
Hydroquinones , Succinate Dehydrogenase , Humans , Reactive Oxygen Species , Succinates , Hypoxia , Fumarates , Electron Transport Complex II
SELECTION OF CITATIONS
SEARCH DETAIL
...