Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
J Invertebr Pathol ; 205: 108141, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788920

ABSTRACT

Electron-transferring flavoprotein (Etf) and its dehydrogenase (Etfdh) are integral components of the electron transport chain in mitochondria. In this study, we characterize two putative etf genes (Bbetfa and Bbetfb) and their dehydrogenase gene Bbetfdh in the entomopathogenic fungus Beauveria bassiana. Individual deletion of these genes caused a significant reduction in vegetative growth, conidiation, and delayed conidial germination. Lack of these genes also led to abnormal metabolism of fatty acid and increasing lipid body accumulation. Furthermore, the virulence of Bbetfs and Bbetfdh deletion mutants was severely impaired due to decreasing infection structure formation. Additionally, all deletion strains showed reduced ATP synthesis compared to the wild-type strain. Taken together, Bbetfa and Bbetfb, along with Bbetfdh, play principal roles in fungal vegetative growth, conidiation, conidial germination, and pathogenicity of B. bassiana due to their essential functions in fatty acid metabolism.


Subject(s)
Beauveria , Electron-Transferring Flavoproteins , Beauveria/pathogenicity , Beauveria/genetics , Beauveria/enzymology , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Virulence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spores, Fungal/growth & development , Oxidoreductases/metabolism , Oxidoreductases/genetics , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Oxidoreductases Acting on CH-NH Group Donors
2.
BMJ Case Rep ; 17(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490702

ABSTRACT

Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is a rare metabolic disorder which typically manifests with muscle weakness. However, despite late-onset MADD being treatable, it is often misdiagnosed, due in part to the heterogeneity of presentations. We report a case of late-onset MADD manifesting first as a sensory neuropathy before progressing to myopathic symptoms and acute metabolic decompensation. Early diagnostic workup with acylcarnitine profiling and organic acid analysis was critical in patient outcome; metabolic decompensation and myopathic symptoms were completely reversed with riboflavin supplementation and dietary modification, although sensory neuropathy persisted. Clinical consideration of MADD as part of the differential diagnosis of neuropathy with myopathy is crucial for a timely diagnosis and treatment of MADD.


Subject(s)
Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Peripheral Nervous System Diseases , Humans , Acyl-CoA Dehydrogenase , Mutation , Electron-Transferring Flavoproteins/genetics , Peripheral Nervous System Diseases/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/complications , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Riboflavin/therapeutic use , Rare Diseases/drug therapy
3.
Orphanet J Rare Dis ; 19(1): 72, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365830

ABSTRACT

BACKGROUND: Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common lipid storage myopathy. There are sex differences in fat metabolism and it is not known whether late-onset MADD affects men and women equally. METHODS: In this systematic review and meta-analysis, the PubMed, Embase, Web of Science, CNKI, CBM, and Wanfang databases were searched until 01/08/2023. Studies reporting sex distribution in patients with late-onset MADD were included. Two authors independently screened studies for eligibility, extracted data, and assessed risk of bias. Pre-specified outcomes of interest were the male-to-female ratio (MFR) of patients with late-onset MADD, the differences of clinical characteristics between the sexes, and factors influencing the MFR. RESULTS: Of 3379 identified studies, 34 met inclusion criteria, yielding a total of 609 late-onset MADD patients. The overall pooled percentage of males was 58% (95% CI, 54-63%) with low heterogeneity across studies (I2 = 2.99%; P = 0.42). The mean onset ages, diagnostic delay, serum creatine kinase (CK), and allelic frequencies of 3 hotspot variants in ETFDH gene were similar between male and female patients (P > 0.05). Meta-regressions revealed that ethnic group was associated with the MFR in late-onset MADD, and subgroup meta-analyses demonstrated that East-Asian patients had a higher percentage of male, lower CK, and higher proportion of hotspot variants in ETFDH gene than non-East-Asian patients (P < 0.05). CONCLUSIONS: Male patients with late-onset MADD were more common than female patients. Ethnicity was proved to be a factor influencing the MFR in late-onset MADD. These findings suggest that male sex may be a risk factor for the disease.


Subject(s)
Iron-Sulfur Proteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Oxidoreductases Acting on CH-NH Group Donors , Humans , Male , Female , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/metabolism , Mutation , Delayed Diagnosis , Electron-Transferring Flavoproteins/genetics , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Acyl-CoA Dehydrogenase/genetics , Acyl-CoA Dehydrogenase/metabolism
4.
J Hum Genet ; 69(3-4): 125-131, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38228875

ABSTRACT

Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.


Subject(s)
Iron-Sulfur Proteins , Lipid Metabolism, Inborn Errors , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Muscular Dystrophies , Oxidoreductases Acting on CH-NH Group Donors , Humans , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Acyl Coenzyme A/therapeutic use , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Iron-Sulfur Proteins/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Mutation , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Riboflavin/genetics , Riboflavin/metabolism , Riboflavin/therapeutic use
5.
Nat Metab ; 6(2): 209-225, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38243131

ABSTRACT

Coenzyme Q (Q) is a key lipid electron transporter, but several aspects of its biosynthesis and redox homeostasis remain undefined. Various flavoproteins reduce ubiquinone (oxidized form of Q) to ubiquinol (QH2); however, in eukaryotes, only oxidative phosphorylation (OXPHOS) complex III (CIII) oxidizes QH2 to Q. The mechanism of action of CIII is still debated. Herein, we show that the Q reductase electron-transfer flavoprotein dehydrogenase (ETFDH) is essential for CIII activity in skeletal muscle. We identify a complex (comprising ETFDH, CIII and the Q-biosynthesis regulator COQ2) that directs electrons from lipid substrates to the respiratory chain, thereby reducing electron leaks and reactive oxygen species production. This metabolon maintains total Q levels, minimizes QH2-reductive stress and improves OXPHOS efficiency. Muscle-specific Etfdh-/- mice develop myopathy due to CIII dysfunction, indicating that ETFDH is a required OXPHOS component and a potential therapeutic target for mitochondrial redox medicine.


Subject(s)
Electron-Transferring Flavoproteins , Oxidative Phosphorylation , Ubiquinone , Animals , Mice , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Homeostasis , Lipids , Muscle, Skeletal/metabolism , Ubiquinone/metabolism
6.
J Neurol Sci ; 456: 122808, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38043332

ABSTRACT

There are scarce reports of riboflavin-responsive lipid storage myopathy in elderly patients with onset in their sixties. We describe three elderly patients with riboflavin-responsive lipid-storage myopathy. All three patients (aged 67-71 years on first examination) had subacute onset of neck extensors and proximal limb weakness progressing to inability to rise from a sitting position or to walk. Muscle biopsies showed vacuoles with lipid content, mainly in type 1 fibers. Genetic analysis failed to identify any pathogenic variant in one patient, identified a heterozygous variant of uncertain significance c.812 A > G; p.Tyr271Cys in the ETFDH gene in the second patient, and revealed a heterozygote likely pathogenic variant c.1286-2 A > C in the ETFDH gene predicted to cause abnormal splicing in the third patient. All patients responded to treatment with riboflavin and carnitine, and regained normal strength. This report emphasizes the importance of muscle biopsy in revealing treatable lipid storage myopathy in elderly patients with progressive myopathy of unidentifiable cause.


Subject(s)
Iron-Sulfur Proteins , Lipid Metabolism, Inborn Errors , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Muscular Diseases , Muscular Dystrophies , Oxidoreductases Acting on CH-NH Group Donors , Humans , Aged , Muscle, Skeletal/metabolism , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Electron-Transferring Flavoproteins/genetics , Iron-Sulfur Proteins/genetics , Oxidoreductases Acting on CH-NH Group Donors/genetics , Muscular Diseases/drug therapy , Muscular Diseases/genetics , Muscular Diseases/pathology , Riboflavin/therapeutic use , Lipids
7.
Int J Rheum Dis ; 27(1): e14906, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37737545

ABSTRACT

A 35-year-old male patient presented fluctuating bilateral lower extremity weakness for 3 years. Physical examination showed grade 4 proximal muscle weakness in both lower extremities and grade 5 distal muscle weakness. Laboratory data revealed elevated creatine kinase, triglycerides, and cholesterol. Muscle pathology showed deposition of lipid droplet under the sarcolemma. Bone densitometry indicated severe osteoporosis. Next-generation sequencing revealed a pathogenic mutation in the ETFDH gene. The patient was diagnosed with late-onset multiple acyl-CoA dehydrogenase deficiency. After riboflavin treatment, symptoms of the patient were relieved, physical endurance was restored, and bone mineral density was improved.


Subject(s)
Iron-Sulfur Proteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Osteoporosis , Oxidoreductases Acting on CH-NH Group Donors , Male , Humans , Adult , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Iron-Sulfur Proteins/genetics , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Mutation , Muscle Weakness/etiology , Muscle Weakness/genetics , Osteoporosis/drug therapy , Osteoporosis/genetics
8.
Physiol Rep ; 11(20): e15840, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37857571

ABSTRACT

High-fat diet (HFD) and exercise remodel skeletal muscle mitochondria. The electron transfer flavoproteins (ETF) transfer reducing equivalents from ß-oxidation into the electron transfer system. Exercise may stimulate the synthesis of ETF proteins to increase lipid respiration. We determined mitochondrial remodeling for lipid respiration through ETF in the context of higher mitochondrial abundance/capacity seen in female mice. We hypothesized HFD would be a greater stimulus than exercise to remodel ETF and lipid pathways through increased protein synthesis alongside increased lipid respiration. Female C57BL/6J mice (n = 15 per group) consumed HFD or low-fat diet (LFD) for 4 weeks then remained sedentary (SED) or completed 8 weeks of treadmill training (EX). We determined mitochondrial lipid respiration, RNA abundance, individual protein synthesis, and abundance for ETFα, ETFß, and ETF dehydrogenase (ETFDH). HFD increased absolute and relative lipid respiration (p = 0.018 and p = 0.034) and RNA abundance for ETFα (p = 0.026), ETFß (p = 0.003), and ETFDH (p = 0.0003). HFD increased synthesis for ETFα and ETFDH (p = 0.0007 and p = 0.002). EX increased synthesis of ETFß and ETFDH (p = 0.008 and p = 0.006). Higher synthesis rates of ETF were not always reflected in greater protein abundance. Greater synthesis of ETF during HFD indicates mitochondrial remodeling which may contribute higher mitochondrial lipid respiration through enhanced ETF function.


Subject(s)
Diet, High-Fat , Electron-Transferring Flavoproteins , Female , Animals , Mice , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Lipids , Respiration , RNA/metabolism
9.
BMJ Case Rep ; 16(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37217231

ABSTRACT

Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn error of metabolism that results in impairment of mitochondrial ß-oxidation of fatty acids. It is inherited in an autosomal recessive manner and impairs electron transfer in the electron transport chain. The clinical manifestations of MADD are highly variable and include exercise intolerance, myopathy, cardiomyopathy, encephalopathy, coma and death. Early-onset MADD is often associated with a high mortality with significant number of patients presenting with severe metabolic acidosis, non-ketotic hypoglycaemia and/or hyperammonaemic presentations. While late-onset MADD is suggested to have a lower mortality, the severe encephalopathic presentations may well be under-reported as a diagnosis of MADD may not be considered.MADD is treatable with riboflavin and appropriate nutrition with a focus on prevention and early management of metabolic decompensation. The neonatal phenotype differs significantly from late-onset MADD, where diagnosis may be delayed due to heterogeneity in clinical features, atypical presentation and confounding comorbidities, together with lower awareness among physicians.This report describes a woman in her 30s who presented with acute-onset ataxia, confusion and hyperammonaemic encephalopathy requiring intubation. Subsequent biochemical investigation revealed a diagnosis of MADD. At present, there are no national guidelines in Australia for the management of MADD. This case highlights the investigation and treatment of late-onset MADD.


Subject(s)
Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Female , Humans , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/complications , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Electron-Transferring Flavoproteins/genetics , Riboflavin/therapeutic use , Australia , Acyl-CoA Dehydrogenase/genetics , Mutation
10.
Stem Cell Res ; 69: 103067, 2023 06.
Article in English | MEDLINE | ID: mdl-37019029

ABSTRACT

Mutations in the ETFDH gene, encoding electron transfer flavoprotein dehydrogenase, have been identified to cause riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MADD) (Wen et al., 2010). We performed the generation and characterization of human induced pluripotent stem cell (iPSC) line from skin fibroblasts of a patient with RR-MADD carrying two heterozygous ETFDH mutations (p.D130V and p.A84V). Their pluripotency was verified by the expression of several pluripotency markers on RNA and protein levels and the capability to differentiate into all three germ layers.


Subject(s)
Induced Pluripotent Stem Cells , Iron-Sulfur Proteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Humans , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/metabolism , Induced Pluripotent Stem Cells/metabolism , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Mutation/genetics , Riboflavin/genetics , Riboflavin/metabolism
11.
Am J Med Genet A ; 191(4): 1089-1093, 2023 04.
Article in English | MEDLINE | ID: mdl-36579410

ABSTRACT

Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid, amino acid, and choline metabolism. We describe a patient identified through newborn screening in which the diagnosis of MADD was confirmed based on metabolic profiling, but clinical molecular sequencing of ETFA, ETFB, and ETFDH was normal. In order to identify the genetic etiology of MADD, we performed whole genome sequencing and identified a novel homozygous promoter variant in ETFA (c.-85G > A). Subsequent studies showed decreased ETFA protein expression in lymphoblasts. A promoter luciferase assay confirmed decreased activity of the mutant promoter. In both assays, the variant displayed considerable residual activity, therefore we speculate that our patient may have a late onset form of MADD (Type III). Our findings may be helpful in establishing a molecular diagnosis in other MADD patients with a characteristic biochemical profile but apparently normal molecular studies.


Subject(s)
Iron-Sulfur Proteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Infant, Newborn , Humans , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Electron-Transferring Flavoproteins/genetics , Amino Acids/genetics , Homozygote , Iron-Sulfur Proteins/genetics , Mutation
12.
Turk J Med Sci ; 52(4): 1256-1265, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36326420

ABSTRACT

BACKGROUND: The lipid storage myopathy (LSM) diagnosis is based on the patient's clinical manifestations and muscle pathology. However, when genetic testing is lacking, there is a high rate of misdiagnosis of the disease. This study aimed to investigate the clinical and pathological features of genetically diagnosed LSM in northern China, analyze genetic mutations' characteristics, and improve the LSM diagnostic rate. METHODS: Twenty patients with LSM diagnosed were collected; meanwhile, the clinical data, muscle samples, and routine pathological staining of muscle specimens were collected. The morphological changes of muscle fibers were observed under an optical microscope. RESULTS: Among the included patients, 18 cases had ETFDH (HGNC ID: 3483) mutations, and two had PNPLA2 mutations. Family pedigree verification was performed on three patients with heterozygous mutations in the ETFDH gene complex. Histopathological staining showed that all patients had fine vacuoles in the muscle fibers, and some of them merged to form fissures, and the lipid droplets increased in cells. After therapy, 18 patients were associated with a favorable prognosis, and two patients were ineffective with the treatment of neutral lipid storage myopathy (NLSDM) caused by PNPLA2 mutation. DISCUSSION: The clinical manifestations of LSM are complex and diverse, mainly manifested by proximal muscle weakness and exercise intolerance in the extremities. The pathological images of LSM muscles are abnormal storage of lipid droplets in muscle fibers, primarily involving type I fibers. The LSM patients were mainly multiple acyl-CoA dehydrogenase deficiency (MADD) caused by the ETFDH gene mutation. It is necessary to perform an accurate typing diagnosis of LSM.


Subject(s)
Iron-Sulfur Proteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Oxidoreductases Acting on CH-NH Group Donors , Humans , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/therapeutic use , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Mutation/genetics
13.
J R Coll Physicians Edinb ; 52(3): 256-258, 2022 09.
Article in English | MEDLINE | ID: mdl-36369806

ABSTRACT

Multiple-acyl-CoA dehydrogenase deficiency (MADD) is a rare autosomal recessive disorder which can be split into three types. Type III MADD is associated with acute or subacute proximal muscle weakness and other variable non-specific features making it a challenging diagnosis for the clinician. This case report describes MADD in a 64 year-old lady, thought to be one of the latest first presentations of the disease. Unusually for this condition, the initial presentation was with dyspnoea. Furthermore, since this case provides further evidence that gene variants can predict age of onset, we advocate for further subclassification of type III MADD into late onset MADD (LO-MADD) when homozygous gene variants are present and very LO-MADD when heterozygous gene variants are found.


Subject(s)
Acyl-CoA Dehydrogenases , Iron-Sulfur Proteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Oxidoreductases Acting on CH-NH Group Donors , Female , Humans , Middle Aged , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Iron-Sulfur Proteins/genetics , Mutation , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Acyl-CoA Dehydrogenases/genetics
14.
Clin Chim Acta ; 537: 181-187, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36334790

ABSTRACT

BACKGROUND: Newborn screening (NBS) for multiple acyl-CoA dehydrogenase deficiency (MADD) has poor sensitivity. This study aimed to evaluate the feasibility of incorporating second-tier genetic screening for MADD. METHODS: A total of 453,390 newborns were screened for inherited metabolic disorders using tandem mass spectrometry from January 2017 to May 2022. A matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assay was developed to identify 23 common ETFDH variants and used for second-tier screening of MADD. RESULTS: Overall, 185 newborns with suspected MADD received second-tier genetic screening. Thirty-three (17.8 %) newborns with positive results, of which 7 were homozygotes, 5 were compound heterozygotes, 21 were heterozygotes. Further genetic analysis revealed that 6 of the 21 newborns had a second ETFDH variant. Therefore, 18 patients were finally diagnosed with MADD, with a positive predictive value of 9.73 %. The detection rate and diagnostic rate of MALDI-TOF MS assay were 83.33 % and 66.67 %, respectively. Thus the incidence of MADD in our population was estimated at 1:25,188. Nine different ETFDH variants were identified in MADD patients. The most common ETFDH variant being c.250G > A with an allelic frequency of 47.22 %, followed by c.524G > A (13.89 %) and c.998A > G (13.89 %). All patients had elevation of multiple acylcarnitines at NBS. However, seven patients had normal acylcarnitine levels and two patients showed mild elevation of only two acylcarnitines during the recall review. CONCLUSION: We have established a high throughput MALDI-TOF MS assay for MADD screening. Half of the MADD patients would not be detected under conventional screening protocols. Incorporating second-tier genetic screening into the current NBS could improve the performance of MADD NBS.


Subject(s)
Iron-Sulfur Proteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Oxidoreductases Acting on CH-NH Group Donors , Humans , Infant, Newborn , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/metabolism , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Riboflavin/metabolism , Genetic Testing , Neonatal Screening , Mutation
15.
Stem Cell Res ; 64: 102914, 2022 10.
Article in English | MEDLINE | ID: mdl-36162333
16.
Ital J Pediatr ; 48(1): 164, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064718

ABSTRACT

BACKGROUND: Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II is an extremely rare autosomal recessive inborn error of fatty acid beta oxidation and branched-chain amino acids, secondary to mutations in the genes encoding the electron transfer flavoproteins A and B (ETFs; ETFA or ETFB) or ETF dehydrogenase (ETFDH). The clinical manifestation of MADD are heterogeneous, from severe neonatal forms to mild late-onset forms. CASE PRESENTATION: We report the case of a preterm newborn who died a few days after birth for a severe picture of untreatable metabolic acidosis. The diagnosis of neonatal onset MADD was suggested on the basis of clinical features displaying congenital abnormalities and confirmed by the results of expanded newborn screening, which arrived the day the newborn died. Molecular genetic test revealed a homozygous indel variant c.606 + 1 _606 + 2insT in the ETFDH gene, localized in a canonical splite site. This variant, segregated from the two heterozygous parents, is not present in the general population frequency database and has never been reported in the literature. DISCUSSION AND CONCLUSION: Recently introduced Expanded Newborn Screening is very important for a timely diagnosis of Inherited Metabolic Disorders like MADD. In some cases which are the most severe, diagnosis may arrive after symptoms are already present or may be the neonate already died. This stress the importance of collecting all possible samples to give parents a proper diagnosis and a genetic counselling for future pregnacies.


Subject(s)
Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Oxidoreductases Acting on CH-NH Group Donors , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Humans , Infant, Newborn , Iron-Sulfur Proteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/metabolism , Mutation , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism
17.
Balkan Med J ; 39(4): 290-296, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35734957

ABSTRACT

Aims: To evaluate the clinical, pathological, and genetic features of patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MADD). Methods: Thirty-one patients with RR-MADD admitted to our hospital from January 2005 to November 2020 were enrolled, and their clinical data were collected. Pathological characteristics of the muscle tissue and possible pathogenic gene mutations were analyzed. Results: The most common clinical features in all patients were symmetrical proximal muscle weakness. Laboratory examination revealed elevated levels of creatine kinase, homocysteine, and uric acid, acylcarnitines, and organic acid. The muscle biopsy revealed typical pathological changes like lipid deposition. Genetic analysis identified ETFDH mutations in 29 patients, among which one had homozygotes, 19 had compound heterozygotes, 7 had heterozygous mutations, and 2 had heterozygous mutations of both ETFDH and ETFA. Two patients had no pathogenic gene mutations. All patients were treated with riboflavin, and their symptoms improved, which was consistent with the diagnosis of RR-MADD. Conclusion: The clinical manifestations and genetic test results of patients with RR-MADD are heterogeneous. Therefore, a comprehensive analysis of clinical, pathological, and genetic testing is essential for the early diagnosis of RR-MADD.


Subject(s)
Iron-Sulfur Proteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Oxidoreductases Acting on CH-NH Group Donors , Electron-Transferring Flavoproteins/genetics , Humans , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/therapeutic use , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Oxidoreductases Acting on CH-NH Group Donors/genetics , Riboflavin/pharmacology , Riboflavin/therapeutic use
18.
EMBO Mol Med ; 14(5): e14904, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35362222

ABSTRACT

In this report, we discovered a new entity named cataract, alopecia, oral mucosal disorder, and psoriasis-like (CAOP) syndrome in two unrelated and ethnically diverse patients. Furthermore, patient 1 failed to respond to regular treatment. We found that CAOP syndrome was caused by an autosomal recessive defect in the mitochondrial membrane-bound transcription factor peptidase/site-1 protease (MBTPS1, S1P). Mitochondrial abnormalities were observed in patient 1 with CAOP syndrome. Furthermore, we found that S1P is a novel mitochondrial protein that forms a trimeric complex with ETFA/ETFB. S1P enhances ETFA/ETFB flavination and maintains its stability. Patient S1P variants destabilize ETFA/ETFB, impair mitochondrial respiration, decrease fatty acid ß-oxidation activity, and shift mitochondrial oxidative phosphorylation (OXPHOS) to glycolysis. Mitochondrial dysfunction and inflammatory lesions in patient 1 were significantly ameliorated by riboflavin supplementation, which restored the stability of ETFA/ETFB. Our study discovered that mutations in MBTPS1 resulted in a new entity of CAOP syndrome and elucidated the mechanism of the mutations in the new disease.


Subject(s)
Cataract , Psoriasis , Alopecia/genetics , Cataract/genetics , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Humans , Riboflavin/metabolism
19.
Oxid Med Cell Longev ; 2022: 7969916, 2022.
Article in English | MEDLINE | ID: mdl-35313640

ABSTRACT

While impairment of vascular homeostasis induced by hypercholesterolemia is the first step of cardiovascular diseases, the molecular mechanism behind such impairment is not well known. Here, we reported that high-cholesterol diet (HCD) induced defective vessel sprouting in zebrafish larvae. Electron transfer flavoprotein subunit α (ETFα) (encoded by the ETFA gene), a protein that mediates transfer of electrons from a series of mitochondrial flavoenzymes to the respiratory chain, was downregulated in HCD-fed zebrafish and in endothelial cells treated with oxidized low-density lipoprotein. Knockdown of ETFα with morpholino antisense oligonucleotides reproduced vascular sprouting defects in zebrafish larvae, while replenishing with exogeneous ETFA mRNA could successfully rescue these defects. ETFA knockdown in endothelial cells reduces cell migration, proliferation, and tube formation in vitro. Finally, knockdown of ETFA in endothelial cells also reduced fatty acid oxidation, oxygen consumption rate, and hypoxia-inducible factor-1α (HIF1α) protein levels. Taken together, we demonstrate that downregulation of ETFα is involved in hypercholesterolemia-induced defective vessel sprouting in zebrafish larvae via inhibition of endothelial proliferation and migration. The molecular mechanism behind this phenomenon is the decrease of HIF1α induced by downregulation of ETFα in endothelial cells. This work suggests that disturbance of ETFα-mediated oxygen homeostasis is one of the mechanisms behind hypercholesterolemia-induced vascular dysfunction.


Subject(s)
Electron-Transferring Flavoproteins , Zebrafish , Animals , Electron Transport , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Endothelial Cells/metabolism , Oxygen Consumption , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...