Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29.672
Filter
1.
J Chem Phys ; 161(3)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39007395

ABSTRACT

Electron transfer plays a crucial role in living systems, including the generation of reactive oxygen species (ROS). Oxygen acts as the terminal electron acceptor in the respiratory chains of aerobic organisms as well as in some photoinduced processes followed by the formation of ROS. This is why the participation of exogenous antioxidants in electron transfer processes in living systems is of particular interest. In the present study, using chemically induced dynamic nuclear polarization (CIDNP) and dissociative electron attachment (DEA) techniques, we have elucidated the affinity of solvated and free electrons to glycyrrhetinic acid (GA)-the aglicon of glycyrrhizin (the main active component of Licorice root). CIDNP is a powerful instrument to study the mechanisms of electron transfer reactions in solution, but the DEA technique shows its effectiveness in gas phase processes. For CIDNP experiments, the photoionization of the dianion of 5-sulfosalicylic acid (HSSA2-) was used as a model reaction of solvated electron generation. DEA experiments testify that GA molecules are even better electron acceptors than molecular oxygen, at least under gas-phase conditions. In addition, the effect of the solvent on the energetics of the reactants is discussed.


Subject(s)
Electrons , Glycyrrhetinic Acid , Glycyrrhetinic Acid/chemistry , Solvents/chemistry , Electron Transport , Salicylates/chemistry
2.
Nat Commun ; 15(1): 5973, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013847

ABSTRACT

Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting superoxide (O2●-) to molecular oxygen (O2) and hydrogen peroxide (H2O2) with proton-coupled electron transfers (PCETs). Human MnSOD has evolved to be highly product inhibited to limit the formation of H2O2, a freely diffusible oxidant and signaling molecule. The product-inhibited complex is thought to be composed of a peroxide (O22-) or hydroperoxide (HO2-) species bound to Mn ion and formed from an unknown PCET mechanism. PCET mechanisms of proteins are typically not known due to difficulties in detecting the protonation states of specific residues that coincide with the electronic state of the redox center. To shed light on the mechanism, we combine neutron diffraction and X-ray absorption spectroscopy of the product-bound, trivalent, and divalent states of the enzyme to reveal the positions of all the atoms, including hydrogen, and the electronic configuration of the metal ion. The data identifies the product-inhibited complex, and a PCET mechanism of inhibition is constructed.


Subject(s)
Superoxide Dismutase , Humans , Superoxide Dismutase/metabolism , Superoxide Dismutase/chemistry , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/chemistry , Manganese/metabolism , Manganese/chemistry , Electron Transport , Oxidation-Reduction , X-Ray Absorption Spectroscopy , Superoxides/metabolism , Superoxides/chemistry , Protons , Electrons , Models, Molecular , Oxygen/metabolism , Oxygen/chemistry
3.
J Am Chem Soc ; 146(29): 19728-19736, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39001879

ABSTRACT

Electroactive microbes that can release or take up electrons are essential components of nearly every ecological niche and are powerful tools for the development of alternative energy technologies. Small-molecule mediators are critical for this electron transfer but remain difficult to study and engineer because they perform concerted two-electron transfer in native systems but only individual, one-electron transfers in electrochemical studies. Here, we report that electrode modification with ion- and electron-conductive polymers yields biosimilar, concerted two-electron transfer from Shewanella oneidensis via flavin mediators. S. oneidensis biofilms on these polymers show significantly improved per-microbe current generation and morphologies that more closely resemble native systems, setting a new paradigm for the study and optimization of these electron transfer processes. The unprecedented concerted electron transfer was found to be due to altered mediator electron transfer thermodynamics, enabling biologically relevant studies of electroactive biofilms in the lab for the first time. These important findings pave the way for a complete understanding of the ecological role of electroactive microbes and their broad application in sustainable technologies.


Subject(s)
Biofilms , Polymers , Shewanella , Thermodynamics , Shewanella/metabolism , Shewanella/chemistry , Electron Transport , Biofilms/drug effects , Polymers/chemistry , Bioelectric Energy Sources , Electrodes , Electric Conductivity , Electrons , Electrochemical Techniques
4.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000077

ABSTRACT

Alkoxyalkylation and hydroxyalkylation methods utilizing oxo-compound derivatives such as aldehydes, acetals or acetylenes and various alcohols or water are widely used tools in preparative organic chemistry to synthesize bioactive compounds, biosensors, supramolecular compounds and petrochemicals. The syntheses of such molecules of broad relevance are facilitated by acid, base or heterogenous catalysis. However, degradation of the N-analogous Mannich bases are reported to yield alkoxyalkyl derivatives via the retro-Mannich reaction. The mutual derivative of all mentioned species are quinone methides, which are reported to form under both alkoxy- and aminoalkylative conditions and via the degradation of the Mannich-products. The aim of this review is to summarize the alkoxyalkylation (most commonly alkoxymethylation) of electron-rich arenes sorted by the methods of alkoxyalkylation (direct or via retro-Mannich reaction) and the substrate arenes, such as phenolic and derived carbocycles, heterocycles and the widely examined indole derivatives.


Subject(s)
Electrons , Alkylation , Alcohols/chemistry , Catalysis , Hydrocarbons, Aromatic/chemistry
5.
Bioresour Technol ; 406: 131081, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977037

ABSTRACT

Denitrifying phosphorus removal (DPR), which is dominated by denitrifying polyphosphate-accumulating organisms (DPAOs), is a promising process for nitrogen and phosphorus removal. Denitrifying glycogen-accumulating organisms (DGAOs) and DPAOs typically coexist in the DPR sludge, complicating the study of DPAOs' denitrification capacity. In this study, two reactors were fed with nitrate and nitrite during the anoxic phase to cultivate nitrate-DPR and nitrite-DPR sludge. Both reactors yielded high and low DGAO abundance sludges, enabling the evaluation of the denitrification capacity of DPAOs. For the nitrate-DPR sludge, the nitrite reduction rate was 1.63 times higher than the nitrate reduction rate when DPAOs were the primary denitrifiers. For the nitrite-DPR sludge, the reduction rate of nitrite was more than three times that of nitrate, irrespective of DGAO abundance. These findings indicated that DPAOs preferred nitrite to nitrate and were well suited to reduce nitrite rather than reduce nitrate to supply nitrite.


Subject(s)
Bioreactors , Denitrification , Nitrates , Nitrites , Phosphorus , Sewage , Nitrites/metabolism , Phosphorus/metabolism , Nitrates/metabolism , Electrons , Biodegradation, Environmental
6.
Sci Adv ; 10(29): eado2957, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39018407

ABSTRACT

Enzymatic cleavage of C─F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, ß-unsaturated per- and polyfluorocarboxylic acids by Acetobacterium spp. The microbial defluorination products were structurally confirmed and showed regiospecificity and stereospecificity, consistent with their formation by enzymatic reactions. A comparison of defluorination activities among several Acetobacterium species indicated that a functional fluoride exporter was required for the detoxification of the released fluoride. Results from both in vivo inhibition tests and in silico enzyme modeling suggested the involvement of enzymes of the flavin-based electron-bifurcating caffeate reduction pathway [caffeoyl-CoA reductase (CarABCDE)] in the reductive defluorination. This is a report on specific microorganisms carrying out enzymatic reductive defluorination of PFAS, which could be linked to electron-bifurcating reductases that are environmentally widespread.


Subject(s)
Acetobacterium , Fluorides , Fluorides/metabolism , Fluorides/chemistry , Acetobacterium/metabolism , Carboxylic Acids/metabolism , Carboxylic Acids/chemistry , Electrons , Biodegradation, Environmental , Halogenation , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Fluorocarbons/metabolism , Fluorocarbons/chemistry
8.
Phys Rev E ; 109(6-1): 064413, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39020927

ABSTRACT

After photoexcitation of DNA, the excited electron (in the LUMO) and the remaining hole (in the HOMO) localized on the same DNA base form a bound pair, called the Frenkel exciton, due to their mutual Coulomb interaction. In this study, we demonstrate that a tight-binding (TB) approach, using TB parameters for electrons and holes available in the literature, allows us to correlate relaxation properties, average charge separation, and dipole moments to a large ensemble of double-stranded DNA sequences (all 16384 possible sequences with 14 nucleobases). This way, we are able to identify a relatively small subensemble of sequences responsible for long-lived excited states, high average charge separation, and high dipole moment. Further analysis shows that these sequences are particularly T rich. By systematically screening the impact of electron-hole interaction (Coulomb forces), we verify that these correlations are relatively robust against finite-size variations of the interaction parameter, not directly accessible experimentally. This methodology combines simulation methods from quantum physics and physical chemistry with statistical analysis known from genetics and epigenetics, thus representing a powerful bridge to combine information from both fields.


Subject(s)
DNA , Quantum Theory , DNA/chemistry , DNA/metabolism , Electrons , Base Sequence , Models, Molecular
9.
Vet Med Sci ; 10(4): e1519, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952247

ABSTRACT

BACKGROUND: Sarcocystis is a food-borne zoonotic protozoan whose final hosts are humans, dogs, cats, and other carnivores and intermediate hosts are birds and mammals, especially humans and herbivores. Humans become infected by eating raw and undercooked meat contaminated with bradyzoites or by consuming water or food contaminated with the sporocyst stage of the parasite. OBJECTIVES: The aim of this study was to investigate the effects of gamma radiation and electron beam on the survival rate of Sarcocystis bradyzoites in infected beef and to determine the effective dose. METHODS: Three replicates of 100 g of infected meat were treated with different doses (0.5, 1, 1.5 and 2 kGy). As a control, 20 g of contaminated meat was stored separately at 4°C. The viability of the bradyzoites after digestion in pepsin solution was assessed, stained (trypan blue) and unstained, under a stereomicroscope. To assess survival of the bradyzoites, the irradiated meat samples were fed to 30 dogs. After 10 days, faecal samples were examined for sporocysts. RESULTS: The results showed that the highest and lowest mortality rate of Sarcocystis bradyzoites in infected organs using electron beam at a dose of 2 kGy were 92.5% and 100%, respectively, and the lowest mortality rate at a dose of 0.5 kGy were 2.5% and 7.89%, respectively. CONCLUSION: The results of statistical analysis showed that the mortality rate of Sarcocystis bradyzoites was significant between different doses of gamma ray and electron beam, so that gamma rays were better compared to electron beam in destroying Sarcocystis bradyzoites.


Subject(s)
Sarcocystis , Sarcocystis/radiation effects , Sarcocystis/physiology , Animals , Cattle , Sarcocystosis/veterinary , Sarcocystosis/parasitology , Red Meat/parasitology , Gamma Rays , Dogs , Food Irradiation , Dose-Response Relationship, Radiation , Cattle Diseases/parasitology , Electrons
10.
Nature ; 631(8019): 18, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956341

Subject(s)
Electrons
11.
Annu Rev Biophys ; 53(1): 343-365, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39013027

ABSTRACT

The structure and mechanism of the water-oxidation chemistry that occurs in photosystem II have been subjects of great interest. The advent of X-ray free electron lasers allowed the determination of structures of the stable intermediate states and of steps in the transitions between these intermediate states, bringing a new perspective to this field. The room-temperature structures collected as the photosynthetic water oxidation reaction proceeds in real time have provided important novel insights into the structural changes and the mechanism of the water oxidation reaction. The time-resolved measurements have also given us a view of how this reaction-which involves multielectron, multiproton processes-is facilitated by the interaction of the ligands and the protein residues in the oxygen-evolving complex. These structures have also provided a picture of the dynamics occurring in the channels within photosystem II that are involved in the transport of the substrate water to the catalytic center and protons to the bulk.


Subject(s)
Lasers , Photosystem II Protein Complex , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/ultrastructure , Photosystem II Protein Complex/metabolism , Electrons , Water/chemistry , Water/metabolism , X-Rays , Oxidation-Reduction , Models, Molecular
12.
Anal Chem ; 96(26): 10817-10826, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874982

ABSTRACT

Lipidomics by high-resolution mass spectrometry (HRMS) has become a prominent tool in clinical chemistry due to the proven connections between lipid dysregulation and the insurgence of pathologies. However, it is difficult to achieve structural characterization beyond the fatty acid level by HRMS, especially when it comes to the regiochemistry of carbon-carbon double bonds, which play a major role in determining the properties of cell membranes. Several approaches have been proposed for elucidating the regiochemistry of double bonds, such as derivatization before MS analysis by photochemical reactions, which have shown great potential for their versatility but have the unavoidable drawback of splitting the MS signal. Among other possible approaches for derivatizing electron-rich double bonds, the emerging inverse-electron-demand Diels-Alder (IEDDA) reaction with tetrazines stands out for its unmatchable kinetics and has found several applications in basic biology and protein imaging. In this study, a catalyst-free click IEDDA reaction was employed for the first time to pinpoint carbon-carbon double bonds in free and conjugated fatty acids. Fatty acid and glycerophospholipid regioisomers were analyzed alone and in combination, demonstrating that the IEDDA reaction had click character and allowed the obtention of diagnostic product ions following MS/MS fragmentation as well as the possibility of performing relative quantitation of lipid regioisomers. The IEDDA protocol was later employed in an untargeted lipidomics study on plasma samples of patients suffering from prostate cancer and benign prostatic conditions, confirming the applicability of the proposed reaction to complex matrices of clinical interest.


Subject(s)
Carbon , Cycloaddition Reaction , Lipidomics , Lipidomics/methods , Humans , Carbon/chemistry , Electrons , Click Chemistry , Stereoisomerism , Male , Molecular Structure , Lipids/chemistry
13.
Nature ; 631(8019): 60-66, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38867046

ABSTRACT

Broken time-reversal symmetry in the absence of spin order indicates the presence of unusual phases such as orbital magnetism and loop currents1-4. The recently discovered kagome superconductors AV3Sb5 (where A is K, Rb or Cs)5,6 display an exotic charge-density-wave (CDW) state and have emerged as a strong candidate for materials hosting a loop current phase. The idea that the CDW breaks time-reversal symmetry7-14 is, however, being intensely debated due to conflicting experimental data15-17. Here we use laser-coupled scanning tunnelling microscopy to study RbV3Sb5. By applying linearly polarized light along high-symmetry directions, we show that the relative intensities of the CDW peaks can be reversibly switched, implying a substantial electro-striction response, indicative of strong nonlinear electron-phonon coupling. A similar CDW intensity switching is observed with perpendicular magnetic fields, which implies an unusual piezo-magnetic response that, in turn, requires time-reversal symmetry breaking. We show that the simplest CDW that satisfies these constraints is an out-of-phase combination of bond charge order and loop currents that we dub a congruent CDW flux phase. Our laser scanning tunnelling microscopy data open the door to the possibility of dynamic optical control of complex quantum phenomenon in correlated materials.


Subject(s)
Superconductivity , Microscopy, Scanning Tunneling , Magnetic Fields , Phonons , Electrons , Light
14.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928511

ABSTRACT

The influence of accelerated electrons on neuronal structures is scarcely explored compared to gamma and X-rays. This study aims to investigate the effects of accelerated electron radiation on some pivotal neurotransmitter circuits (cholinergic and serotonergic) of rats' myenteric plexus. Male Wistar rats were irradiated with an electron beam (9 MeV, 5 Gy) generated by a multimodality linear accelerator. The contractile activity of isolated smooth muscle samples from the gastric corpus was measured. Furthermore, an electrical stimulation (200 µs, 20 Hz, 50 s, 60 V) was performed on the samples and an assessment of the cholinergic and serotonergic circuits was made. Five days after irradiation, the recorded mechanical responses were biphasic-contraction/relaxation in controls and contraction/contraction in irradiated samples. The nature of the contractile phase of control samples was cholinergic with serotonin involvement. The relaxation phase involved ACh-induced nitric oxide release from gastric neurons. There was a significant increase in serotonergic involvement during the first and second contractile phases of the irradiated samples, along with a diminished role of acetylcholine in the first phase. This study demonstrates an increased involvement of serotonergic neurotransmitter circuits in the gastric myenteric plexus caused by radiation with accelerated electrons.


Subject(s)
Electrons , Myenteric Plexus , Rats, Wistar , Stomach , Animals , Myenteric Plexus/radiation effects , Myenteric Plexus/metabolism , Male , Rats , Stomach/innervation , Stomach/radiation effects , Stomach/physiology , Muscle, Smooth/physiology , Muscle, Smooth/radiation effects , Muscle, Smooth/metabolism , Serotonin/metabolism , Muscle Contraction/radiation effects , Muscle Contraction/physiology , Acetylcholine/metabolism , Nitric Oxide/metabolism
15.
Protein Sci ; 33(7): e5005, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923423

ABSTRACT

New features in the dose estimation program RADDOSE-3D are summarised. They include the facility to enter a diffraction intensity decay model which modifies the "Diffraction Weighted Dose" output from a "Fluence Weighted Dose" to a "Diffraction-Decay Weighted Dose", a description of RADDOSE-ED for use in electron diffraction experiments, where dose is historically quoted in electrons/Å2 rather than in gray (Gy), and finally the development of a RADDOSE-3D GUI, enabling easy access to all the options available in the program.


Subject(s)
Electrons , X-Ray Diffraction , X-Ray Diffraction/methods , Software
16.
Sci Rep ; 14(1): 14866, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937505

ABSTRACT

Radiation delivery at ultrahigh dose rates (UHDRs) has potential for use as a new anticancer therapeutic strategy. The FLASH effect induced by UHDR irradiation has been shown to maintain antitumour efficacy with a reduction in normal tissue toxicity; however, the FLASH effect has been difficult to demonstrate in vitro. The objective to demonstrate the FLASH effect in vitro is challenging, aiming to reveal a differential response between cancer and normal cells to further identify cell molecular mechanisms. New high-intensity petawatt laser-driven accelerators can deliver very high-energy electrons (VHEEs) at dose rates as high as 1013 Gy/s in very short pulses (10-13 s). Here, we present the first in vitro experiments carried out on cancer cells and normal non-transformed cells concurrently exposed to laser-plasma accelerated (LPA) electrons. Specifically, melanoma cancer cells and normal melanocyte co-cultures grown on chamber slides were simultaneously irradiated with LPA electrons. A non-uniform dose distribution on the cell cultures was revealed by Gafchromic films placed behind the chamber slide supporting the cells. In parallel experiments, cell co-cultures were exposed to pulsed X-ray irradiation, which served as positive controls for radiation-induced nuclear DNA double-strand breaks. By measuring the impact on discrete areas of the cell monolayers, the greatest proportion of the damaged DNA-containing nuclei was attained by the LPA electrons at a cumulative dose one order of magnitude lower than the dose obtained by pulsed X-ray irradiation. Interestingly, in certain discrete areas, we observed that LPA electron exposure had a different effect on the DNA damage in healthy normal human epidermal melanocyte (NHEM) cells than in A375 melanoma cells; here, the normal cells were less affected by the LPA exposure than cancer cells. This result is the first in vitro demonstration of a differential response of tumour and normal cells exposed to FLASH irradiation and may contribute to the development of new cell culture strategies to explore fundamental understanding of FLASH-induced cell effect.


Subject(s)
Coculture Techniques , Electrons , Lasers , Humans , Coculture Techniques/methods , Cell Line, Tumor , Melanocytes/radiation effects , DNA Damage , Melanoma/radiotherapy , Melanoma/pathology , DNA Breaks, Double-Stranded/radiation effects
17.
Sci Rep ; 14(1): 14803, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926450

ABSTRACT

Ultra-high dose rate (UHDR) irradiation has been shown to have a sparing effect on healthy tissue, an effect known as 'FLASH'. This effect has been studied across several radiation modalities, including photons, protons and clinical energy electrons, however, very little data is available for the effect of FLASH with Very High Energy Electrons (VHEE). pBR322 plasmid DNA was used as a biological model to measure DNA damage in response to Very High Energy Electron (VHEE) irradiation at conventional (0.08 Gy/s), intermediate (96 Gy/s) and ultra-high dose rates (UHDR, (2 × 109 Gy/s) at the CERN Linear Electron Accelerator (CLEAR) user facility. UHDRs were used to determine if the biological FLASH effect could be measured in the plasmid model, within a hydroxyl scavenging environment. Two different concentrations of the hydroxyl radical scavenger Tris were used in the plasmid environment to alter the proportions of indirect damage, and to replicate a cellular scavenging capacity. Indirect damage refers to the interaction of ionising radiation with molecules and species to generate reactive species which can then attack DNA. UHDR irradiated plasmid was shown to have significantly reduced amounts of damage in comparison to conventionally irradiated, where single strand breaks (SSBs) was used as the biological endpoint. This was the case for both hydroxyl scavenging capacities. A reduced electron energy within the VHEE range was also determined to increase the DNA damage to pBR322 plasmid. Results indicate that the pBR322 plasmid model can be successfully used to explore and test the effect of UHDR regimes on DNA damage. This is the first study to report FLASH sparing with VHEE, with induced damage to pBR322 plasmid DNA as the biological endpoint. UHDR irradiated plasmid had reduced amounts of DNA single-strand breaks (SSBs) in comparison with conventional dose rates. The magnitude of the FLASH sparing was a 27% reduction in SSB frequency in a 10 mM Tris environment and a 16% reduction in a 100 mM Tris environment.


Subject(s)
DNA Damage , Electrons , Plasmids , Plasmids/genetics , Dose-Response Relationship, Radiation , Humans , Particle Accelerators , DNA Breaks, Single-Stranded/radiation effects
18.
Environ Sci Technol ; 58(25): 11152-11161, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38867504

ABSTRACT

Research on the use of peracetic acid (PAA) activated by nonmetal solid catalysts for the removal of dissolved refractory organic compounds has gained attention recently due to its improved efficiency and suitability for advanced water treatment (AWT). Among these catalysts, nanocarbon (NC) stands out as an exceptional example. In the NC-based peroxide AWT studies, the focus on the mechanism involving multimedia coordination on the NC surface (reactive species (RS) path, electron reduction non-RS pathway, and singlet oxygen non-RS path) has been confined to the one-step electron reaction, leaving the mechanisms of multichannel or continuous electron transfer paths unexplored. Moreover, there are very few studies that have identified the nonfree radical pathway initiated by electron transfer within PAA AWT. In this study, the complete decomposition (kobs = 0.1995) and significant defluorination of perfluorooctanoic acid (PFOA, deF% = 72%) through PAA/NC has been confirmed. Through the use of multiple electrochemical monitors and the exploration of current diffusion effects, the process of electron reception and conduction stimulated by PAA activation was examined, leading to the discovery of the dynamic process from the PAA molecule → NC solid surface → target object. The vital role of prehydrated electrons (epre-) before the entry of resolvable electrons into the aqueous phase was also detailed. To the best of our knowledge, this is the first instance of identifying the nonradical mechanism of continuous electron transfer in PAA-based AWT, which deviates from the previously identified mechanisms of singlet oxygen, single-electron, or double-electron single-path transfer. The pathway, along with the strong reducibility of epre- initiated by this pathway, has been proven to be essential in reducing the need for catalysts and chemicals in AWT.


Subject(s)
Diamond , Electrons , Peracetic Acid , Peracetic Acid/chemistry , Diamond/chemistry , Electron Transport , Fluorocarbons/chemistry , Caprylates/chemistry , Surface Properties , Water Purification , Water Pollutants, Chemical/chemistry
19.
Nat Commun ; 15(1): 4992, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862519

ABSTRACT

It has been previously shown that devices based on microbial biofilms can generate hydrovoltaic energy from water evaporation. However, the potential of hydrovoltaic energy as an energy source for microbial growth has remained unexplored. Here, we show that the electroautotrophic bacterium Rhodopseudomonas palustris can directly utilize evaporation-induced hydrovoltaic electrons for growth within biofilms through extracellular electron uptake, with a strong reliance on carbon fixation coupled with nitrate reduction. We obtained similar results with two other electroautotrophic bacterial species. Although the energy conversion efficiency for microbial growth based on hydrovoltaic energy is low compared to other processes such as photosynthesis, we hypothesize that hydrovoltaic energy may potentially contribute to microbial survival and growth in energy-limited environments, given the ubiquity of microbial biofilms and water evaporation conditions.


Subject(s)
Biofilms , Rhodopseudomonas , Water , Biofilms/growth & development , Rhodopseudomonas/metabolism , Rhodopseudomonas/growth & development , Water/chemistry , Water/metabolism , Photosynthesis , Electrons , Carbon Cycle , Nitrates/metabolism , Bioelectric Energy Sources/microbiology
20.
J Chem Inf Model ; 64(12): 4802-4810, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38856665

ABSTRACT

The number of innovative applications for DNA nowadays is growing quickly. Its use as a nanowire or electrochemical biosensor leads to the need for a deep understanding of the charge-transfer process along the strand, as well as its redox properties. These features are computationally simulated and analyzed in detail throughout this work by combining molecular dynamics, multilayer schemes, and the Marcus theory. One-electron oxidation potential and hole delocalization have been analyzed for six DNA double strands that cover all possible binary combinations of nucleotides. The results have revealed that the one-electron oxidation potential decreases with respect to the single-stranded DNA, giving evidence that the greater rigidity of a double helix induces an increase in the capacity of storing the positive charge generated upon oxidation. In addition, the hole is mainly stored in nucleobases with large reducer character, i.e., purines, especially when those are arranged in a stacked configuration in the same strand. From the computational point of view, the sampling needed to describe biological systems implies a significant computational cost. Here, we show that a small number of representative conformations generated by clustering analysis provides accurate results when compared with those obtained from sampling, reducing considerably the computational cost.


Subject(s)
DNA , Electrons , Molecular Dynamics Simulation , Oxidation-Reduction , DNA/chemistry , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...