Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36.694
Filter
1.
Lab Chip ; 24(11): 2906-2919, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38721867

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a prevalent and debilitating disease with numerous health risks, including cardiovascular diseases, kidney dysfunction, and nerve damage. One important aspect of T2DM is its association with the abnormal morphology of red blood cells (RBCs), which leads to increased blood viscosity and impaired blood flow. Therefore, evaluating the mechanical properties of RBCs is crucial for understanding the role of T2DM in cellular deformability. This provides valuable insights into disease progression and potential diagnostic applications. In this study, we developed an open micro-electro-fluidic (OMEF) biochip technology based on dielectrophoresis (DEP) to assess the deformability of RBCs in T2DM. The biochip facilitates high-throughput single-cell RBC stretching experiments, enabling quantitative measurements of the cell size, strain, stretch factor, and post-stretching relaxation time. Our results confirm the significant impact of T2DM on the deformability of RBCs. Compared to their healthy counterparts, diabetic RBCs exhibit ∼27% increased size and ∼29% reduced stretch factor, suggesting potential biomarkers for monitoring T2DM. The observed dynamic behaviors emphasize the contrast between the mechanical characteristics, where healthy RBCs demonstrate notable elasticity and diabetic RBCs exhibit plastic behavior. These differences highlight the significance of mechanical characteristics in understanding the implications for RBCs in T2DM. With its ∼90% sensitivity and rapid readout (ultimately within a few minutes), the OMEF biochip holds potential as an effective point-of-care diagnostic tool for evaluating the deformability of RBCs in individuals with T2DM and tracking disease progression.


Subject(s)
Diabetes Mellitus, Type 2 , Erythrocyte Deformability , Erythrocytes , Humans , Diabetes Mellitus, Type 2/diagnosis , Erythrocytes/cytology , Erythrocytes/pathology , Lab-On-A-Chip Devices , Electrophoresis/instrumentation , Microfluidic Analytical Techniques/instrumentation , Equipment Design
2.
Biomed Eng Online ; 23(1): 47, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750477

ABSTRACT

BACKGROUND: Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS: We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS: The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.


Subject(s)
Cell Differentiation , Electroporation , Gene Silencing , Muscle Fibers, Skeletal , RNA, Small Interfering , Humans , Electroporation/methods , RNA, Small Interfering/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Cell Survival , Electrophoresis , Transfection/methods
3.
Biosensors (Basel) ; 14(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38785691

ABSTRACT

Antimicrobial resistance (AMR) has become a crucial global health issue. Antibiotic-resistant bacteria can survive after antibiotic treatments, lowering drug efficacy and increasing lethal risks. A microfluidic water-in-oil emulsion droplet system can entrap microorganisms and antibiotics within the tiny bioreactor, separate from the surroundings, enabling independent assays that can be performed in a high-throughput manner. This study presents the development of a label-free dielectrophoresis (DEP)-based microfluidic platform to sort droplets that co-encapsulate Escherichia coli (E. coli) and ampicillin (Amp) and droplets that co-encapsulate Amp-resistant (AmpR) E. coli with Amp only based on the conductivity-dependent DEP force (FDEP) without the assistance of optical analyses. The 9.4% low conductivity (LC) Luria-Bertani (LB) broth diluted with 170 mM mannitol can maintain E. coli and AmpR E. coli growth for 3 h and allow Amp to kill almost all E. coli, which can significantly increase the LCLB conductivity by about 100 µS/cm. Therefore, the AmpR E. coli/9.4%LCLB/Amp where no cells are killed and the E. coli/9.4%LCLB/Amp-containing droplets where most of the cells are killed can be sorted based on this conductivity difference at an applied electric field of 2 MHz and 100 Vpp that generates positive FDEP. Moreover, the sorting ratio significantly decreased to about 50% when the population of AmpR E. coli was equal to or higher than 50% in droplets. The conductivity-dependent DEP-based sorting platform exhibits promising potential to probe the ratio of AmpR E. coli in an unknown bacterial sample by using the sorting ratio as an index.


Subject(s)
Drug Resistance, Bacterial , Electrophoresis , Escherichia coli , Escherichia coli/drug effects , Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Electric Conductivity , Microfluidic Analytical Techniques , Microbial Sensitivity Tests
4.
Biosensors (Basel) ; 14(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38785706

ABSTRACT

The development of gel electrophoresis-based biodetection assays for point-of-care analysis are highly demanding. In this work, we proposed a ratiometric gel electrophoresis-based biosensing platform by employing catalytic hairpin assembly (CHA) process functions as both the signal output and the signal amplification module. Two types of nucleic acids, DNA and miRNA, are chosen for demonstration. The proposed strategy indeed provides a new paradigm for the design of a portable detection platform and may hold great potential for sensitive diagnoses.


Subject(s)
Biosensing Techniques , DNA , MicroRNAs , MicroRNAs/analysis , Catalysis , Electrophoresis , Nucleic Acids/analysis
5.
Biosens Bioelectron ; 259: 116382, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38749284

ABSTRACT

Small extracellular vesicles (sEVs) reflect the genotype and phenotype of original cells and are biomarkers for early diagnosis and treatment monitoring of tumors. Yet, their small size and low density make them difficult to isolate and detect in body fluid samples. This study proposes a novel acDEP-Exo chip filled with transparent micro-beads, which formed a non-uniform electrical field, and finally achieved rapid, sensitive, and tunable sEVs capture and detection. The method requires only 20-50 µL of sample, achieved a limit of detection (LOD) of 161 particles/µL, and can detect biomarkers within 13 min. We applied the chip to analyze the two markers of sEV's EpCAM and MUC1 in clinical plasma samples from breast cancer (BC) patients and healthy volunteers and found that the combined evaluation of sEV's biomarkers has extremely high sensitivity, specificity and accuracy. The present study introduces an alternative approach to sEVs isolation and detection, has a great potential in real-time sEVs-based liquid biopsy.


Subject(s)
Biomarkers, Tumor , Biosensing Techniques , Breast Neoplasms , Epithelial Cell Adhesion Molecule , Extracellular Vesicles , Lab-On-A-Chip Devices , Mucin-1 , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/blood , Extracellular Vesicles/chemistry , Female , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Mucin-1/blood , Mucin-1/analysis , Biomarkers, Tumor/blood , Biomarkers, Tumor/isolation & purification , Limit of Detection , Equipment Design , Electrophoresis/instrumentation , Microfluidic Analytical Techniques/instrumentation , Liquid Biopsy/methods , Liquid Biopsy/instrumentation
6.
Anal Chim Acta ; 1311: 342713, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38816152

ABSTRACT

BACKGROUND: Psychrophiles can survive under cryogenic conditions because of various biomolecules. These molecules interact with cells, ice crystals, and lipid bilayers to enhance their functionality. Previous studies typically measured these interactions by thawing frozen samples and conducting biological assays at room temperature; however, studying these interactions under cryogenic conditions is crucial. This is because these biomolecules can function at lower temperatures. Therefore, a platform for measuring chemical interactions under sub-zero temperature conditions must be established. RESULTS: The chemical interactions between biomolecules under sub-zero temperature conditions were evaluated within ice grain boundaries with a channel-like structure, which circumvents the need for thawing. An aqueous solution of sucrose was frozen within a microfluidic channel, facilitating the formation of freeze-concentrated solutions (FCSs) that functioned as size-tunable electrophoretic fields. Avidin proteins or single-stranded DNA (ssDNA) were introduced into the FCS in advance. Probe micro/nanospheres whose surfaces were modified with molecules complementary to the target analytes were introduced into the FCS. If the targets have functionalities under sub-zero temperature conditions, they interact with complementary molecules. The chemical interactions between the target molecules and nanospheres led to the aggregation of the particles. The size tunability of the diameter of the FCS channels enabled the recognition of aggregation levels, which is indicative of interaction reactivity. The avidin-biotin interaction and ssDNA hybridization served as models for chemical interactions, demonstrating interactivity under sub-zero temperature conditions. The results presented herein suggest the potential for in situ measurement of biochemical assays in the frozen state, elucidating the functionality of bio-related macromolecules at or slightly below 0 °C. SIGNIFICANCE: This is the first methodology to evaluate chemical interactions under sub-zero temperature conditions without employing the freeze-and-thaw process. This method has the advantage of revealing the chemical interactions only at low temperatures. Therefore, it can be used to screen and evaluate the functionality of cryo-related biomolecules, including cold-shock and antifreeze proteins.


Subject(s)
Cold Temperature , Electrophoresis , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/analysis , Ice/analysis , Freezing
7.
ACS Appl Mater Interfaces ; 16(21): 26984-26997, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38753459

ABSTRACT

Lipid nanoparticles (LNPs) are clinically advanced nonviral gene delivery vehicles with a demonstrated ability to address viral, oncological, and genetic diseases. However, the further development of LNP therapies requires rapid analytical techniques to support their development and manufacturing. The method developed and described in this paper presents an approach to rapidly and accurately analyze LNPs for optimized therapeutic loading by utilizing an electrophoresis microfluidic platform to analyze the composition of LNPs with different clinical lipid compositions (Onpattro, Comirnaty, and Spikevax) and nucleic acid (plasmid DNA (pDNA) and messenger RNA (mRNA)) formulations. This method enables the high-throughput screening of LNPs using a 96- or 384-well plate with approximate times of 2-4 min per sample using a total volume of 11 µL. The lipid analysis requires concentrations approximately between 109 and 1010 particles/mL and has an average precision error of 10.4% and a prediction error of 19.1% when compared to using a NanoSight, while the nucleic acid analysis requires low concentrations of 1.17 ng/µL for pDNA and 0.17 ng/µL for mRNA and has an average precision error of 4.8% and a prediction error of 9.4% when compared to using a PicoGreen and RiboGreen assay. In addition, our method quantifies the relative concentration of nucleic acid per LNP. Utilizing this approach, we observed an average of 263 ± 62.2 mRNA per LNP and 126.3 ± 21.2 pDNA per LNP for the LNP formulations used in this study, where the accuracy of these estimations is dependent on reference standards. We foresee the utility of this technique in the high-throughput characterization of LNPs during manufacturing and formulation research and development.


Subject(s)
DNA , Lipids , Nanoparticles , Plasmids , RNA, Messenger , RNA, Messenger/genetics , Nanoparticles/chemistry , Plasmids/genetics , DNA/chemistry , Lipids/chemistry , Humans , Microfluidics/methods , Gene Transfer Techniques , Electrophoresis , Liposomes
8.
Anal Methods ; 16(15): 2368-2377, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38572530

ABSTRACT

Microfluidic technology has great advantages in the precise manipulation of micro-nano particles, and the hybrid microfluidic separation technology has attracted much attention due to the advantages of both active and passive separation technology at the same time. In this paper, the hydrophoresis sorting technique is combined with the dielectrophoresis technique, and a dielectrophoresis-assisted hydrophoresis microdevice is studied to separate blood cells. By using the dielectrophoresis force to change the suspension position of the cells in the channel, the scope of the hydrophoresis device for sorting particles is expanded. At the same time, the effects of microchannel width, fluid velocity, and electrode voltage on cell sorting were discussed, and the cell separation process was simulated. This work has laid a certain theoretical foundation for the rapid diagnosis of diseases in practical applications.


Subject(s)
Microfluidic Analytical Techniques , Microfluidic Analytical Techniques/methods , Computer Simulation , Microfluidics , Electrophoresis/methods , Cell Separation/methods
9.
World J Microbiol Biotechnol ; 40(5): 157, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592517

ABSTRACT

This research investigated the physicochemical, microbiological, and bacterial diversity of Jben cheese, a popular artisanal variety in Morocco. The bacterial diversity was explored using culture-independent methods, including temporal temperature gel electrophoresis (TTGE), denaturing gradient gel electrophoresis (DGGE), and high-throughput sequencing (HTS). Significant intra-sample differences were observed for most physicochemical parameters within each milk type, while inter-sample differences occurred between cow and goat cheeses for dry matter and ash. Jben cheese exhibited distinct characteristics, with low pH values of 3.96, 4.16, and 4.18 for cow, goat, and mixed cheeses, respectively. Goat cheeses had higher fat (49.23 g/100 g), ash (1.91 g/100 g), and dry matter (36.39 g/100 g) than cow cheeses. All cheeses displayed high microbial counts, with a notable prevalence of the lactic acid bacteria (LAB) group, averaging 8.80 ± 0.92 log CFU/g. Jben cheese also displayed high contamination levels with total coliforms, faecal coliforms, yeast, and molds. Fatty acid profiling revealed fraudulent practices in Jben cheese marketing, with cow or mixed cheeses sold as goat cheese, as proven by low capric acid concentration. HTS analysis of Jben cheese identified ten genera and twenty-four species, highlighting Lactococcus lactis as predominant. TTGE and DGGE confirmed the presence of L. lactis but failed to provide the detailed profile achieved through HTS analysis. HTS has been demonstrated to be more reliable, whereas TTGE/DGGE methods, though informative, were more time-consuming and less reliable. Despite limitations, the combined use of TTGE, DGGE, and HTS provided a comprehensive view of indigenous bacterial communities in Jben cheese, identifying L. lactis as the main species.


Subject(s)
Cheese , Animals , Cattle , Female , RNA, Ribosomal, 16S/genetics , Temperature , Electrophoresis , Goats , Saccharomyces cerevisiae
10.
Electrophoresis ; 45(7-8): 587-588, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38669318
11.
J Am Chem Soc ; 146(17): 11634-11647, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38628144

ABSTRACT

Supported membrane electrophoresis is a promising technique for collecting membrane proteins in native bilayer environments. However, the slow mobility of typical transmembrane proteins has impeded the technique's advancement. Here, we successfully applied cell membrane electrophoresis to rapidly enrich a 12-transmembrane helix protein, glucose transporter 1 with antibodies (GLUT1 complex), by tuning the buffer pH and ionic strength. The identified conditions allowed the separation of the GLUT1 complex and a lipid probe, Fast-DiO, within a native-like environment in a few minutes. A force model was developed to account for distinct electric and drag forces acting on the transmembrane and aqueous-exposed portion of a transmembrane protein as well as the electroosmotic force. This model not only elucidates the impact of size and charge properties of transmembrane proteins but also highlights the influence of pH and ionic strength on the driving forces and, consequently, electrophoretic mobility. Model predictions align well with experimentally measured electrophoretic mobilities of the GLUT1 complex and Fast-DiO at various pH and ionic strengths as well as with several lipid probes, lipid-anchored proteins, and reconstituted membrane proteins from previous studies. Force analyses revealed the substantial membrane drag of the GLUT1 complex, significantly slowing down electrophoretic mobility. Besides, the counterbalance of similar magnitudes of electroosmotic and electric forces results in a small net driving force and, consequently, reduced mobility under typical neutral pH conditions. Our results further highlight how the size and charge properties of transmembrane proteins influence the suitable range of operating conditions for effective movement, providing potential applications for concentrating and isolating membrane proteins within this platform.


Subject(s)
Cell Membrane , Electrophoresis , Hydrogen-Ion Concentration , Osmolar Concentration , Cell Membrane/chemistry , Membrane Proteins/chemistry , Buffers , Glucose Transporter Type 1/chemistry , Glucose Transporter Type 1/metabolism
12.
Nat Commun ; 15(1): 3564, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670952

ABSTRACT

Biomolecular condensates play an important role in cellular organization. Coacervates are commonly used models that mimic the physicochemical properties of biomolecular condensates. The surface of condensates plays a key role in governing molecular exchange between condensates, accumulation of species at the interface, and the stability of condensates against coalescence. However, most important surface properties, including the surface charge and zeta potential, remain poorly characterized and understood. The zeta potential of coacervates is often measured using laser doppler electrophoresis, which assumes a size-independent electrophoretic mobility. Here, we show that this assumption is incorrect for liquid-like condensates and present an alternative method to study the electrophoretic mobility of coacervates and in vitro condensate models by microelectrophoresis and single-particle tracking. Coacervates have a size-dependent electrophoretic mobility, originating from their fluid nature, from which a well-defined zeta potential is calculated. Interestingly, microelectrophoresis measurements reveal that polylysine chains are enriched at the surface of polylysine/polyaspartic acid complex coacervates, which causes the negatively charged protein ɑ-synuclein to adsorb and accumulate at the interface. Addition of ATP inverts the surface charge, displaces ɑ-synuclein from the surface and may help to suppress its interface-catalyzed aggregation. Together, these findings show how condensate surface charge can be measured and altered, making this microelectrophoresis platform combined with automated single-particle tracking a promising characterization technique for both biomolecular condensates and coacervate protocells.


Subject(s)
Electrophoresis , Surface Properties , Electrophoresis/methods , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Polylysine/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Humans , Static Electricity
13.
Lab Chip ; 24(9): 2506-2517, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38619815

ABSTRACT

Non-spherical flagellate algae play an increasingly significant role in handling problematic issues as versatile biological micro/nanorobots and resources of valuable bioproducts. However, the commensalism of flagellate algae with distinct structures and constituents causes considerable difficulties in their further biological utilization. Therefore, it is imperative to develop a novel method to realize high-efficiency selection of non-spherical flagellate algae in a non-invasive manner. Enthused by these, we proposed a novel method to accomplish the selection of flagellate algae based on the numerical and experimental investigation of dielectrophoretic characterizations of flagellate algae. Firstly, an arbitrary Lagrangian-Eulerian method was utilized to study the electro-orientation and dielectrophoretic assembly process of spindle-shaped and ellipsoid-shaped cells in a uniform electric field. Secondly, we studied the equilibrium state of spherical, ellipsoid-shaped, and spindle-shaped cells under positive DEP forces actuated by right-angle bipolar electrodes. Thirdly, we investigated the dielectrophoretic assembly and escape processes of the non-spherical flagellate algae in continuous flow to explore their influences on the selection. Fourthly, freshwater flagellate algae (Euglena, H. pluvialis, and C. reinhardtii) and marine ones (Euglena, Dunaliella salina, and Platymonas) were separated to validate the feasibility and adaptability of this method. Finally, this approach was engineered in the selection of Euglena cells with high viability and motility. This method presents immense prospects in the selection of pure non-spherical flagellate algae with high motility for chronic wound healing, bio-micromotor construction, and decontamination with advantages of no sheath, strong reliability, and shape-insensitivity.


Subject(s)
Electrodes , Electrophoresis , Electrophoresis/instrumentation , Chlamydomonas reinhardtii
14.
ACS Appl Bio Mater ; 7(5): 2704-2709, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38635922

ABSTRACT

The structural integrity, assembly yield, and biostability of DNA nanostructures are influenced by the metal ions used to construct them. Although high (>10 mM) concentrations of divalent ions are often preferred for assembling DNA nanostructures, the range of ion concentrations and the composition of the assembly products vary for different assembly conditions. Here, we examined the unique ability of Ba2+ to retard double crossover DNA motifs by forming a low mobility species, whose mobility on the gel is determined by the concentration ratio of DNA and Ba2+. The formation of this electrophoretically retarded species is promoted by divalent ions such as Mg2+, Ca2+, and Sr2+ when combined with Ba2+ but not on their own, while monovalent ions such as Na+, K+, and Li+ do not have any effect on this phenomenon. Our results highlight the complex interplay between the metal ions and DNA self-assembly and could inform the design of DNA nanostructures for applications that expose them to multiple ions at high concentrations.


Subject(s)
Barium , DNA , Materials Testing , Particle Size , DNA/chemistry , Barium/chemistry , Nanostructures/chemistry , Electrophoresis , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis
15.
Nanotechnology ; 35(29)2024 May 01.
Article in English | MEDLINE | ID: mdl-38604130

ABSTRACT

Numerous efforts have been undertaken to mitigate the Debye screening effect of FET biosensors for achieving higher sensitivity. There are few reports that show sub-femtomolar detection of biomolecules by FET mechanisms but they either suffer from significant background noise or lack robust control. In this aspect, deformed/crumpled graphene has been recently deployed by other researchers for various biomolecule detection like DNA, COVID-19 spike proteins and immunity markers like IL-6 at sub-femtomolar levels. However, the chemical vapor deposition (CVD) approach for graphene fabrication suffers from various surface contamination while the transfer process induces structural defects. In this paper, an alternative fabrication methodology has been proposed where glass substrate has been initially texturized by wet chemical etching through the sacrificial layer of synthesized silver nanoparticles, obtained by annealing of thin silver films leading to solid state dewetting. Graphene has been subsequently deposited by thermal reduction technique from graphene oxide solution. The resulting deformed graphene structure exhibits higher sensor response towards glial fibrillary acidic protein (GFAP) detection with respect to flat graphene owing to the combined effect of reduced Debye screening and higher surface area for receptor immobilization. Additionally, another interesting aspect of the reported work lies in the biomolecule capture by dielectrophoretic (DEP) transport on the crests of the convex surfaces of graphene in a coplanar gated topology structure which has resulted in 10 aM and 28 aM detection limits of GFAP in buffer and undiluted plasma respectively, within 15 min of application of analyte. The detection limit in buffer is almost four decades lower than that documented for GFAP using biosensors which is is expected to pave way for advancing graphene FET based sensors towards ultrasensitive point-of-care diagnosis of GFAP, a biomarker for traumatic brain injury.


Subject(s)
Biosensing Techniques , Glial Fibrillary Acidic Protein , Graphite , Humans , Biosensing Techniques/methods , Electrophoresis/methods , Glass/chemistry , Glial Fibrillary Acidic Protein/analysis , Graphite/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Silver/chemistry , Transistors, Electronic
16.
Environ Sci Pollut Res Int ; 31(21): 31123-31134, 2024 May.
Article in English | MEDLINE | ID: mdl-38627346

ABSTRACT

Electrochemical desalination is an effective method for recovering salts from reverse osmosis (RO) brine. However, traditional technologies like bipolar membrane technology often face challenges related to membrane blockage. To overcome this issue, a preparative vertical-flow electrophoresis (PVFE) system was used for the first time to treat RO brine of petrochemical wastewater. In order to optimize the PVFE operation and maximize acids and bases production while minimizing energy consumption, the response surface method was employed. The independent variables selected were the electric field intensity (E) and flow rate (v), while the dependent variables were the acid-base concentration and energy consumption (EC) for acid-base production. Using the central composite design methodology, the operation parameters were optimized to be E = 154.311 V/m and v = 0.83 mL/min. Under these conditions, the base concentrations of the produced bases and acids reached 3183.06 and 2231.63 mg/L, respectively. The corresponding base EC and acid EC were calculated to be 12.57 and 11.62 kW·h/kg. In terms of the acid-base concentration and energy consumption during the PVFE process, the electric field intensity was found to have a greater influence than the flow rate. These findings provide a practical and targeted solution for recycling waste salt resources from RO brine.


Subject(s)
Osmosis , Wastewater , Wastewater/chemistry , Electrophoresis , Waste Disposal, Fluid/methods , Salts
17.
Electrophoresis ; 45(9-10): 777-778, 2024 May.
Article in English | MEDLINE | ID: mdl-38623893
18.
Transfus Apher Sci ; 63(3): 103919, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582651

ABSTRACT

Delayed hemolytic transfusion reaction (DHTR) and hyperhemolysis syndrome (HHS) are both complications of red blood cell transfusions in patients with sickle cell disease.Clinically, both present with hemolysis and can be difficult to differentiate. Hemoglobin electrophoresis may aid in the diagnosis. Herein we describe a case in which a patient with hemoglobin SC disease presented with features of severe hemolysis several days after initiation of red blood cell exchange. Increase in reticulocyte count and complete absence of hemoglobin A on electrophoresis during this event supported the diagnosis of severe DHTR, indicating a rapid and selective destruction of the transfused red blood cells. Ability to interpret the hemoglobin electrophoresis can help clinicians distinguish between these two severe transfusion complications in patients living with sickle cell disease. It is important to identify the presence or absence of concomitant HHS, as patients with HHS tend to have a worse prognosis and there is a higher rate of recurrence of HHS with subsequent transfusions. Accurate diagnosis can lead to prompt management and decrease morbidity and mortality.


Subject(s)
Hemolysis , Humans , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/therapy , Male , Female , Transfusion Reaction/blood , Hemoglobins/analysis , Erythrocyte Transfusion/methods , Adult , Electrophoresis/methods
19.
ACS Appl Bio Mater ; 7(5): 2966-2981, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38652577

ABSTRACT

This study presents a facile fabrication of 58S bioactive glass (BG)-polymer composite coatings on a 316L stainless steel (SS) substrate using the electrophoretic deposition technique. The suspension characteristics and deposition kinetics of BG, along with three different polymers, namely ethylcellulose (EC), poly(acrylic acid) (PAA), and polyvinylpyrrolidone (PVP), have been utilized to fabricate the coatings. Among all coatings, 58S BG and EC polymers are selected as the final composite coating (EC6) owing to their homogeneity and good adhesion. EC6 coating exhibits a thickness of ∼18 µm and an average roughness of ∼2.5 µm. Herein, EC6 demonstrates better hydroxyapatite formation compared to PAA and PVP coatings in simulated body fluid-based mineralization studies for a period of 28 days. Corrosion studies of EC6 in phosphate-buffered saline further confirm the higher corrosion resistance properties after 14 days. In vitro cytocompatibility studies using human placental mesenchymal stem cells demonstrate an increase in cellular viability, attachment, and higher proliferation compared to the bare SS substrate. EC6 coatings promote osteogenic differentiation, which is confirmed via the upregulation of the OPN and OCN genes. Moreover, the EC6 sample exhibits improved antibacterial properties against Escherichia coli and Staphylococcus aureus compared to the uncoated ones. The findings of this work emphasize the potential of electrophoretically fabricated BG-EC composite coatings on SS substrates for orthopedic applications.


Subject(s)
Coated Materials, Biocompatible , Glass , Materials Testing , Polymers , Stainless Steel , Stainless Steel/chemistry , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Glass/chemistry , Polymers/chemistry , Polymers/pharmacology , Corrosion , Particle Size , Surface Properties , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Electrophoresis , Cell Survival/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Microbial Sensitivity Tests , Cell Proliferation/drug effects
20.
Biosensors (Basel) ; 14(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38667167

ABSTRACT

Exosomes, with diameters ranging from 30 to 150 nm, are saucer-shaped extracellular vesicles (EVs) secreted by various type of human cells. They are present in virtually all bodily fluids. Owing to their abundant nucleic acid and protein content, exosomes have emerged as promising biomarkers for noninvasive molecular diagnostics. However, the need for exosome separation purification presents tremendous technical challenges due to their minuscule size. In recent years, microfluidic technology has garnered substantial interest as a promising alternative capable of excellent separation performance, reduced reagent consumption, and lower overall device and operation costs. In this context, we hereby propose a novel microfluidic strategy based on thermally oxidized deterministic lateral displacement (DLD) arrays with tapered shapes to enhance separation performance. We have achieved more than 90% purity in both polystyrene nanoparticle and exosome experiments. The use of thermal oxidation also significantly reduces fabrication complexity by avoiding the use of high-precision lithography. Furthermore, in a simulation model, we attempt to integrate the use of dielectrophoresis (DEP) to overcome the size-based nature of DLD and distinguish particles that are close in size but differ in biochemical compositions (e.g., lipoproteins, exomeres, retroviruses). We believe the proposed strategy heralds a versatile and innovative platform poised to enhance exosome analysis across a spectrum of biochemical applications.


Subject(s)
Electrophoresis , Exosomes , Humans , Microfluidic Analytical Techniques , Microfluidics , Nanoparticles/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...