Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.468
Filter
1.
Sci Rep ; 14(1): 13179, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849388

ABSTRACT

Efficient, facile gene modification of cells has become an indispensable part of modern molecular biology. For the majority of cell lines and several primary populations, such modifications can be readily performed through a variety of methods. However, many primary cell lines such as stem cells frequently suffer from poor transfection efficiency. Though several physical approaches have been introduced to circumvent these issues, they often require expensive/specialized equipment and/or consumables, utilize substantial cell numbers and often still suffer from poor efficiency. Viral methods are capable of transducing difficult cellular populations, however such methods can be time consuming for large arrays of gene targets, present biohazard concerns, and result in expression of viral proteins; issues of concern for certain experimental approaches. We report here a widely applicable, low-cost (< $100 CAD) method of electroporation, applicable to small (1-10 µl) cell volumes and composed of equipment readily available to the average investigator. Using this system we observe a sixfold increase in transfection efficiency in embryonic stem cell lines compared to commercial devices. Due to efficiency gains and reductions in volume and applied voltage, this process improves the survival of sensitive stem cell populations while reducing reagent requirements for protocols such as Cas9/gRNAs transfections.


Subject(s)
Electroporation , Transfection , Transfection/methods , Electroporation/methods , Animals , Mice , Cell Line , Humans , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism
2.
Sci Rep ; 14(1): 12779, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834729

ABSTRACT

To evaluate the safety and efficacy of combining EW-7197 with irreversible electroporation (IRE) for improving wound healing, 16 male Sprague-Dawley rats were randomly divided into four groups of four rats each after dorsal excisional wound induction: sham control group; oral administration of EW-7197 for 7 days group; one-time application of IRE group; and one-time application of IRE followed by oral administration of EW-7197 for 7 days group. Measurement of wound closure rate, laser Doppler scanning, histological staining (hematoxylin and eosin and Masson's trichrome), and immunohistochemical analyses (Ki-67 and α-SMA) were performed to evaluate the efficacy. Fifteen of 16 rats survived throughout the study. Statistically significant differences in wound closure rates were observed between the combination therapy group and the other three groups (all P < 0.05). The degrees of inflammation, α-SMA, and Ki-67 were reduced in the EW-7197 and IRE monotherapy groups; however, not statistically significant. The fibrosis score exhibited significant reduction in all three treatment groups, with the most prominent being in the combination therapy group. This study concludes that oral administration of EW-7197 combined with IRE demonstrated effectiveness in improving skin wound in a rat excisional model and may serve as a potential alternative for promoting healing outcomes.


Subject(s)
Electroporation , Rats, Sprague-Dawley , Skin , Wound Healing , Animals , Wound Healing/drug effects , Male , Rats , Electroporation/methods , Skin/metabolism , Skin/pathology , Transforming Growth Factor beta/metabolism , Disease Models, Animal , Combined Modality Therapy/methods
3.
J Vis Exp ; (207)2024 May 24.
Article in English | MEDLINE | ID: mdl-38856229

ABSTRACT

The mammalian heart is a complex organ formed during development via highly diverse populations of progenitor cells. The origin, timing of recruitment, and fate of these progenitors are vital for the proper development of this organ. The molecular mechanisms that govern the morphogenesis of the heart are essential for understanding the pathogenesis of congenital heart diseases and embryonic cardiac regeneration. Classical approaches to investigate these mechanisms employed the generation of transgenic mice to assess the function of specific genes during cardiac development. However, mouse transgenesis is a complex, time-consuming process that often cannot be performed to assess the role of specific genes during heart development. To address this, we have developed a protocol for efficient electroporation and culture of mouse embryonic hearts, enabling transient transgenesis to rapidly assess the effect of gain- or loss-of-function of genes involved in cardiac development. Using this methodology, we successfully overexpressed Meis1 in the embryonic heart, with a preference for epicardial cell transfection, demonstrating the capabilities of the technique.


Subject(s)
Electroporation , Gene Transfer Techniques , Heart , Animals , Mice , Heart/embryology , Electroporation/methods , Mice, Transgenic , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Pregnancy
4.
Europace ; 26(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38848447

ABSTRACT

Pulsed field ablation (PFA) is an innovative approach in the field of cardiac electrophysiology aimed at treating cardiac arrhythmias. Unlike traditional catheter ablation energies, which use radiofrequency or cryothermal energy to create lesions in the heart, PFA utilizes pulsed electric fields to induce irreversible electroporation, leading to targeted tissue destruction. This state-of-the-art review summarizes biophysical principles and clinical applications of PFA, highlighting its potential advantages over conventional ablation methods. Clinical data of contemporary PFA devices are discussed, which combine predictable procedural outcomes and a reduced risk of thermal collateral damage. Overall, these technological developments have propelled the rapid evolution of contemporary PFA catheters, with future advancements potentially impacting patient care.


Subject(s)
Arrhythmias, Cardiac , Humans , Arrhythmias, Cardiac/surgery , Arrhythmias, Cardiac/therapy , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/diagnosis , Electroporation/trends , Electroporation/methods , Treatment Outcome , Forecasting , Catheter Ablation/trends , Catheter Ablation/methods , Ablation Techniques/trends , Cardiac Catheters , Animals
5.
Skin Res Technol ; 30(5): e13706, 2024 May.
Article in English | MEDLINE | ID: mdl-38721854

ABSTRACT

BACKGROUND: The incidence rates of cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC) skin cancers are rising, while the current diagnostic process is time-consuming. We describe the development of a novel approach to high-throughput sampling of tissue lipids using electroporation-based biopsy, termed e-biopsy. We report on the ability of the e-biopsy technique to harvest large amounts of lipids from human skin samples. MATERIALS AND METHODS: Here, 168 lipids were reliably identified from 12 patients providing a total of 13 samples. The extracted lipids were profiled with ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS-MS) providing cSCC, BCC, and healthy skin lipidomic profiles. RESULTS: Comparative analysis identified 27 differentially expressed lipids (p < 0.05). The general profile trend is low diglycerides in both cSCC and BCC, high phospholipids in BCC, and high lyso-phospholipids in cSCC compared to healthy skin tissue samples. CONCLUSION: The results contribute to the growing body of knowledge that can potentially lead to novel insights into these skin cancers and demonstrate the potential of the e-biopsy technique for the analysis of lipidomic profiles of human skin tissues.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Electroporation , Lipidomics , Skin Neoplasms , Skin , Humans , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/metabolism , Carcinoma, Basal Cell/diagnosis , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/chemistry , Lipidomics/methods , Biopsy , Skin/pathology , Skin/metabolism , Skin/chemistry , Female , Male , Electroporation/methods , Middle Aged , Aged , Lipids/analysis , Tandem Mass Spectrometry/methods
6.
Nat Commun ; 15(1): 3812, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760380

ABSTRACT

The molecular system regulating cellular mechanical properties remains unexplored at single-cell resolution mainly due to a limited ability to combine mechanophenotyping with unbiased transcriptional screening. Here, we describe an electroporation-based lipid-bilayer assay for cell surface tension and transcriptomics (ELASTomics), a method in which oligonucleotide-labelled macromolecules are imported into cells via nanopore electroporation to assess the mechanical state of the cell surface and are enumerated by sequencing. ELASTomics can be readily integrated with existing single-cell sequencing approaches and enables the joint study of cell surface mechanics and underlying transcriptional regulation at an unprecedented resolution. We validate ELASTomics via analysis of cancer cell lines from various malignancies and show that the method can accurately identify cell types and assess cell surface tension. ELASTomics enables exploration of the relationships between cell surface tension, surface proteins, and transcripts along cell lineages differentiating from the haematopoietic progenitor cells of mice. We study the surface mechanics of cellular senescence and demonstrate that RRAD regulates cell surface tension in senescent TIG-1 cells. ELASTomics provides a unique opportunity to profile the mechanical and molecular phenotypes of single cells and can dissect the interplay among these in a range of biological contexts.


Subject(s)
Single-Cell Analysis , Transcriptome , Single-Cell Analysis/methods , Animals , Mice , Humans , Cell Line, Tumor , Phenotype , Gene Expression Profiling/methods , Cellular Senescence/genetics , Surface Tension , Electroporation/methods , Cell Membrane/metabolism
7.
BMC Mol Cell Biol ; 25(1): 15, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741034

ABSTRACT

BACKGROUND: Transfection is an important analytical method for studying gene expression in the cellular environment. There are some barriers to efficient DNA transfection in host cells, including circumventing the plasma membrane, escaping endosomal compartmentalization, autophagy, immune sensing pathways, and translocating the nuclear envelope. Therefore, it would be very useful to introduce an optimum transfection approach to achieve a high transfection efficiency in the Vero cell line. The aim of this study was to compare various transfection techniques and introduce a highly efficient method for gene delivery in Vero cells. METHODS: In the current study, three transfection methods were used, including chemical transfection, electroporation, and lentiviral vector transduction, to obtain the optimum transfection conditions in the Vero cell line. Vero cells were cultured and transfected with chemical transfection reagents, electroporation, or HIV-1-based lentivectors under different experimental conditions. Transfection efficiency was assessed using flow cytometry and fluorescence microscopy to detect GFP-positive cells. RESULTS: Among the tested methods, TurboFect™ chemical transfection exhibited the highest efficiency. Optimal transfection conditions were achieved using 1 µg DNA and 4 µL TurboFect™ in 6 × 104 Vero cells. CONCLUSION: TurboFect™, a cationic polymer transfection reagent, demonstrated superior transfection efficiency in Vero cells compared with electroporation and lentivirus particles, and is the optimal choice for chemical transfection in the Vero cell line.


Subject(s)
Electroporation , Genetic Vectors , Transfection , Animals , Chlorocebus aethiops , Vero Cells , Electroporation/methods , Transfection/methods , Genetic Vectors/genetics , Lentivirus/genetics , Transduction, Genetic/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans
8.
Biomed Eng Online ; 23(1): 47, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750477

ABSTRACT

BACKGROUND: Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS: We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS: The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.


Subject(s)
Cell Differentiation , Electroporation , Gene Silencing , Muscle Fibers, Skeletal , RNA, Small Interfering , Humans , Electroporation/methods , RNA, Small Interfering/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Cell Survival , Electrophoresis , Transfection/methods
9.
Bioelectrochemistry ; 158: 108726, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733722

ABSTRACT

Mucus hypersecretion resulting from excessive proliferation and metaplasia of goblet cells in the airways is the pathological foundation for Chronic obstructive pulmonary disease (COPD). Clinical trials have confirmed the clinical efficacy of pulsed electric field ablation (PFA) for COPD, but its underlying mechanisms is poorly understood. Cellular and animal models of COPD (rich in goblet cells) were established in this study to detect goblet cells' sensitivity to PFA. Schwan's equation was adopted to calculate the cells' transmembrane potential and the electroporation areas in the cell membrane. We found that goblet cells are more sensitive to low-intensity PFA (250 V/cm-500 V/cm) than BEAS-2B cells. It is attributed to the larger size of goblet cells, which allows a stronger transmembrane potential formation under the same electric field strength. Additionally, the transmembrane potential of larger-sized cells can reach the cell membrane electroporation threshold in more areas. Trypan blue staining confirmed that the cells underwent IRE rate was higher in goblet cells than in BEAS-2B cells. Animal experiments also confirmed that the airway epithelium of COPD is more sensitive to PFA. We conclude that lower-intensity PFA can selectively kill goblet cells in the COPD airway epithelium, ultimately achieving the therapeutic effect of treating COPD.


Subject(s)
Electroporation , Goblet Cells , Pulmonary Disease, Chronic Obstructive , Goblet Cells/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/therapy , Animals , Humans , Electroporation/methods , Cell Line , Membrane Potentials , Male , Ablation Techniques/methods , Electricity , Mice
10.
Nanoscale ; 16(22): 10500-10521, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38757536

ABSTRACT

Gene therapy is a promising disease treatment approach by editing target genes, and thus plays a fundamental role in precision medicine. To ensure gene therapy efficacy, the effective delivery of therapeutic genes into specific cells is a key challenge. Electroporation utilizes short electric pulses to physically break the cell membrane barrier, allowing gene transfer into the cells. It dodges the off-target risks associated with viral vectors, and also stands out from other physical-based gene delivery methods with its high-throughput and cargo-accelerating features. In recent years, with the help of advanced micro/nanotechnology, micro/nanostructure-integrated electroporation (micro/nano-electroporation) techniques and devices have significantly improved cell viability, transfection efficiency and dose controllability of the electroporation strategy, enhancing its application practicality especially in vivo. This technical advancement makes micro/nano-electroporation an effective and versatile tool for gene therapy. In this review, we first introduce the evolution of electroporation technique with a brief explanation of the perforation mechanism, and then provide an overview of the recent advancements and prospects of micro/nano-electroporation technology in the field of gene therapy. To comprehensively showcase the latest developments of micro/nano-electroporation technology in gene therapy, we focus on discussing micro/nano-electroporation devices and current applications at both in vitro and in vivo levels. Additionally, we outline the ongoing clinical studies of gene electrotransfer (GET), revealing the tremendous potential of electroporation-based gene delivery in disease treatment and healthcare. Lastly, the challenges and future directions in this field are discussed.


Subject(s)
Electroporation , Genetic Therapy , Humans , Genetic Therapy/methods , Electroporation/methods , Animals , Gene Transfer Techniques , Nanotechnology , Nanostructures/chemistry , Transfection/methods
12.
Methods Mol Biol ; 2786: 219-235, 2024.
Article in English | MEDLINE | ID: mdl-38814397

ABSTRACT

Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than two decades to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs) and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers (i.e. caIKK), and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs and mRNA-electroporated T cells for therapeutic applications in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types; (2) scalability from 106 to approximately 108 cells per shot; (3) high transfection efficiency (80-99%); (4) homogenous protein expression; (5) GMP compliance if the EP is performed in a class A clean room; and (6) no transgene integration into the genome. The provided protocol involves: OptiMEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time has to be altered. Thus, we share an overview of proven electroporation settings (including recovery media), which we have established for various cell types. Next to the basic protocol, we also provide an extensive list of hints and tricks, which, in our opinion, are of great value for everyone who intends to use this transfection technique.


Subject(s)
Dendritic Cells , Electroporation , RNA, Messenger , Transfection , Electroporation/methods , Humans , RNA, Messenger/genetics , Transfection/methods , Dendritic Cells/metabolism , Dendritic Cells/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Antigens/genetics , B-Lymphocytes/metabolism , B-Lymphocytes/immunology
13.
Acta Oncol ; 63: 398-410, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804839

ABSTRACT

BACKGROUND AND PURPOSE: Calcium electroporation (CaEP) involves injecting calcium into tumour tissues and using electrical pulses to create membrane pores that induce cell death. This study assesses resultant immune responses and histopathological changes in patients with cutaneous metastases. PATIENTS/MATERIALS AND METHODS: The aimed cohort comprised 24 patients with metastases exceeding 5 mm. Tumours were treated once with CaEP (day 0) or twice (day 28). Biopsies were performed on days 0 and 2, with additional samples on days 7, 28, 30, 35, 60, and 90 if multiple tumours were treated. The primary endpoint was the change in tumour-infiltrating lymphocytes (TILs) two days post-treatment, with secondary endpoints evaluating local and systemic immune responses via histopathological analysis of immune markers, necrosis, and inflammation. RESULTS: Seventeen patients, with metastases primarily from breast cancer (14 patients), but also lung cancer (1), melanoma (1), and urothelial cancer (1), completed the study. Of the 49 lesions treated, no significant changes in TIL count or PD-L1 expression were observed. However, there was substantial necrosis and a decrease in FOXP3-expression (p = 0.0025) noted, with a slight increase in CD4+ cells but no changes in CD3, CD8, or CD20 expressions. Notably, four patients showed reduced tumour invasiveness, including one case of an abscopal response. INTERPRETATION: This exploratory study indicates that CaEP can be an effective anti-tumour therapy potentially enhancing immunity. Significant necrosis and decreased regulatory lymphocytes were observed, although TIL count remained unchanged. Several patients exhibited clinical signs of immune response following treatment.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Skin Neoplasms , Tumor Microenvironment , Humans , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Female , Lymphocytes, Tumor-Infiltrating/immunology , Male , Aged , Middle Aged , Tumor Microenvironment/immunology , Calcium/metabolism , Aged, 80 and over , Electroporation/methods , Adult , Necrosis/immunology , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Electrochemotherapy/methods
14.
J Vis Exp ; (205)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38557598

ABSTRACT

Genome editing technology is widely used to produce genetically modified animals, including rats. Cytoplasmic or pronuclear injection of DNA repair templates and CRISPR-Cas reagents is the most common delivery method into embryos. However, this type of micromanipulation necessitates access to specialized equipment, is laborious, and requires a certain level of technical skill. Moreover, microinjection techniques often result in lower embryo survival due to the mechanical stress on the embryo. In this protocol, we developed an optimized method to deliver large DNA repair templates to work in conjunction with CRISPR-Cas9 genome editing without the need for microinjection. This protocol combines AAV-mediated DNA delivery of single-stranded DNA donor templates along with the delivery of CRISPR-Cas9 ribonucleoprotein (RNP) by electroporation to modify 2-cell embryos. Using this novel strategy, we have successfully produced targeted knock-in rat models carrying insertion of DNA sequences from 1.2 to 3.0 kb in size with efficiencies between 42% and 90%.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Rats , Animals , Gene Editing/methods , Dependovirus/genetics , Electroporation/methods , Zygote
15.
Biotechnol J ; 19(4): e2300475, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651262

ABSTRACT

The application of pulsed electric fields (PEFs) is becoming a promising tool for application in biotechnology, and the food industry. However, real-time monitoring of the efficiency of PEF treatment conditions is challenging, especially at the industrial scale and in continuous production conditions.  To overcome this challenge, we have developed a straightforward setup capable of real-time detection of yeast biological autoluminescence (BAL) during pulsing. Saccharomyces cerevisiae culture was exposed to 8 pulses of 100 µs width with electric field strength magnitude 2-7 kV cm-1. To assess the sensitivity of our method in detecting yeast electroporation, we conducted a comparison with established methods including impedance measurements, propidium iodide uptake, cell growth assay, and fluorescence microscopy. Our results demonstrate that yeast electroporation can be instantaneously monitored during pulsing, making it highly suitable for industrial applications. Furthermore, the simplicity of our setup facilitates its integration into continuous liquid flow systems. Additionally, we have established quantitative indicators based on a thorough statistical analysis of the data that can be implemented through a dedicated machine interface, providing efficiency indicators for analysis.


Subject(s)
Electroporation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/growth & development , Electroporation/methods
16.
Sci Rep ; 14(1): 7962, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575628

ABSTRACT

The underlying study was carried out aiming at transdermal drug delivery (TDD) of Goniothalamus macrophyllus as sono-photo-sensitizer (SPS) using microneedle (MN) arrays with iontophoresis (MN-IP), electroporation (MN-EP) in conjunction with applying photodynamic therapy (PDT), sonodynamic therapy (SDT) and sono-photodynamic therapy (SPDT) as an up-to-date activated cancer treatment modality. Study was conducted on 120 male Swiss Albino mice, inoculated with Ehrlich ascites carcinoma (EAC) divided into 9 groups. We employed three different arrays of MN electrodes were used (parallel, triangular, and circular), EP, IP with different volts (6, 9, 12 V), an infrared laser and an ultrasound (pulsed and continuous wave) as our two energy sources. Results revealed that parallel 6 V TDD@MN@IP@EP can be used as effective delivery system for G. macrophyllus from skin directly to target EAC cells. In addition MN@IP@EP@TDD G. macrophyllus is a potential SPS for SPDT treatment of EAC. With respect to normal control mice and as opposed to the EAC untreated control mice, MN@EP@IP TDD G. macrophyllus in the laser, ultrasound, and combination activated groups showed a significant increase in the antioxidant markers TAC level and the GST, GR, Catalase, and SOD activities, while decrease in lipid peroxidation oxidative stress parameter MDA levels. In addition significantly increased apoptotic genes expressions (p53, caspase (3, 9), Bax, and TNF alpha) and on the other hand decreased anti- apoptotic (Bcl-2) and angiogenic (VEGF) genes expressions. Moreover significantly ameliorate liver and kidney function decreasing ALT, AST, urea and creatinine respectively. Furthermore MN@IP@EP@TDD G. macrophyllus combined with SPDT was very effective at reducing the growth of tumors and even causing cell death according to microscopic H&E stain results. This process may be related to a sono- and/or photochemical activation mechanism. According to the findings, MN@IP@EP@TDD G. macrophyllus has a lot of potential as a novel, efficient delivery method that in combination with infrared laser and ultrasound activation SPDT demonstrated promising anticancer impact for treating cancer.


Subject(s)
Carcinoma , Goniothalamus , Male , Animals , Mice , Iontophoresis , Administration, Cutaneous , Skin/metabolism , Electroporation/methods , Carcinoma/metabolism
17.
Bioelectrochemistry ; 158: 108696, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38583283

ABSTRACT

RNA interference (RNAi) is a powerful and rapidly developing technology that enables precise silencing of genes of interest. However, the clinical development of RNAi is hampered by the limited cellular uptake and stability of the transferred molecules. Electroporation (EP) is an efficient and versatile technique for the transfer of both RNA and DNA. Although the mechanism of electrotransfer of small nucleic acids has been studied previously, too little is known about the potential effects of significantly larger pDNA on this process. Here we present a fundamental study of the mechanism of electrotransfer of oligonucleotides and siRNA that occur independently and simultaneously with pDNA by employing confocal fluorescence microscopy. In contrast to the conditional understanding of the mechanism, we have shown that the electrotransfer of oligonucleotides and siRNA is driven by both electrophoretic forces and diffusion after EP, followed by subsequent entry into the nucleus within 5 min after treatment. The study also revealed that the efficiency of siRNA electrotransfer decreases in response to an increase in pDNA concentration. Overall, the study provides new insights into the mechanism of electrotransfer of small nucleic acids which may have broader implications for the future application of RNAi-based strategies.


Subject(s)
Electroporation , RNA, Small Interfering , Electroporation/methods , RNA, Small Interfering/genetics , RNA, Small Interfering/chemistry , Oligonucleotides/chemistry , Plasmids/genetics , DNA/genetics , DNA/chemistry , RNA Interference , Humans , Microscopy, Confocal
18.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673901

ABSTRACT

Irreversible electroporation (IRE) is a prominent non-thermal ablation method widely employed in clinical settings for the focal ablation therapy of solid tumors. Utilizing high-voltage, short-duration electric pulses, IRE induces perforation defects in the cell membrane, leading to apoptotic cell death. Despite the promise of irreversible electroporation (IRE) in clinical applications, it faces challenges concerning the coverage of target tissues for ablation, particularly when compared to other thermal ablation therapies such as radiofrequency ablation, microwave ablation, and cryoablation. This study aims to investigate the induced hyperthermal effect of IRE by applying a polydopamine nanoparticle (Dopa NP) coating on the electrode. We hypothesize that the induced hyperthermal effect enhances the therapeutic efficacy of IRE for cancer ablation. First, we observed the hyperthermal effect of IRE using Dopa NP-coated electrodes in hydrogel phantom models and then moved to in vivo models. In particular, in in vivo animal studies, the IRE treatment of rabbit hepatic lobes with Dopa NP-coated electrodes exhibited a two-fold higher increase in temperature (ΔT) compared to non-coated electrodes. Through a comprehensive analysis, we found that IRE treatment with Dopa NP-coated electrodes displayed the typical histological signatures of hyperthermal ablation, including the disruption of the hepatic cord and lobular structure, as well as the infiltration of erythrocytes. These findings unequivocally highlight the combined efficacy of IRE with Dopa NPs for electroporation and the hyperthermal ablation of target cancer tissues.


Subject(s)
Electrodes , Electroporation , Indoles , Nanoparticles , Polymers , Indoles/chemistry , Indoles/pharmacology , Animals , Polymers/chemistry , Nanoparticles/chemistry , Electroporation/methods , Rabbits , Liver/surgery , Liver/drug effects , Hyperthermia, Induced/methods
19.
Sci Rep ; 14(1): 9902, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688960

ABSTRACT

Irreversible electroporation (IRE) is a non-thermal ablation technique for local tumor treatment known to be influenced by pulse duration and voltage settings, affecting its efficacy. This study aims to investigate the effects of bipolar IRE with different pulse durations in a prostate cancer mouse model. The therapeutic effectiveness was assessed with in vitro cell experiments, in vivo tumor volume changes with magnetic resonance imaging, and gross and histological analysis in a mouse model. The tumor volume continuously decreased over time in all IRE-treated groups. The tumor volume changes, necroptosis (%), necrosis (%), the degree of TUNEL-positive cell expression, and ROS1-positive cell (%) in the long pulse duration-treated groups (300 µs) were significantly increased compared to the short pulse duration-treated groups (100 µs) (all p < 0.001). The bipolar IRE with a relatively long pulse duration at the same voltage significantly increased IRE-induced cell death in a prostate cancer mouse model.


Subject(s)
Disease Models, Animal , Electroporation , Prostatic Neoplasms , Animals , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Mice , Electroporation/methods , Cell Line, Tumor , Humans , Magnetic Resonance Imaging , Tumor Burden , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...