Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Nucl Med ; 34(12): 884-891, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33141408

ABSTRACT

OBJECTIVE: 18F is the most extensively used radioisotope in current clinical practices of PET imaging. This selection is based on the several criteria of pure PET radioisotopes with an optimum half-life, and low positron energy that contributes to a smaller positron range. In addition to 18F, other radioisotopes such as 68Ga and 124I are currently gained much attention with the increase in interest in new PET tracers entering the clinical trials. This study aims to determine the minimal scan time per bed position (Tmin) for the 124I and 68Ga based on the quantitative differences in PET imaging of 68Ga and 124I relative to 18F. METHODS: The European Association of Nuclear Medicine (EANM) procedure guidelines version 2.0 for FDG-PET tumor imaging has adhered for this purpose. A NEMA2012/IEC2008 phantom was filled with tumor to background ratio of 10:1 with the activity concentration of 30 kBq/ml ± 10 and 3 kBq/ml ± 10% for each radioisotope. The phantom was scanned using different acquisition times per bed position (1, 5, 7, 10 and 15 min) to determine the Tmin. The definition of Tmin was performed using an image coefficient of variations (COV) of 15%. RESULTS: Tmin obtained for 18F, 68Ga and 124I were 3.08, 3.24 and 32.93 min, respectively. Quantitative analyses among 18F, 68Ga and 124I images were performed. Signal-to-noise ratio (SNR), contrast recovery coefficients (CRC), and visibility (VH) are the image quality parameters analysed in this study. Generally, 68Ga and 18F gave better image quality as compared to 124I for all the parameters studied. CONCLUSION: We have defined Tmin for 18F, 68Ga and 124I SPECT CT imaging based on NEMA2012/IEC2008 phantom imaging. Despite the long scanning time suggested by Tmin, improvement in the image quality is acquired especially for 124I. In clinical practice, the long acquisition time, nevertheless, may cause patient discomfort and motion artifact.


Subject(s)
Elements, Radioactive/chemistry , Isotope Labeling/methods , Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/instrumentation , Positron Emission Tomography Computed Tomography/methods , Drug Compounding , Fluorine Radioisotopes/chemistry , Gallium Radioisotopes/chemistry , Humans , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Iodine Radioisotopes/chemistry , Phantoms, Imaging , Radiation Dosage , Radioactive Tracers , Signal-To-Noise Ratio , Time Factors
2.
J Environ Radioact ; 167: 86-91, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28007441

ABSTRACT

The thermal behavior of insoluble radiogenic particles at the solid-liquid interface of an advancing solidification front and its significance with regard to environmental impact are discussed. It is shown that, unlike classical particles, where the most probable behavior is engulfing by the solidification front, radiogenic particles are more likely to be rejected by the solidification front. Utilizing a simplified physical model, an adaptation of classical theoretical models is performed, where it is shown that, unlike classical particles, for radiogenic particles the mechanism is thermally driven. An analytical expression for the critical velocity of the solidification front for engulfing/rejection to occur is derived. The study could be potentially important to several fields, e.g. in engineering applications where technological processes for the physical removal of radionuclide particles dispersed throughout another substance by inducing solidification could be envisaged, in planetary science where the occurrence of radiogenic concentration could result in the possibility of the eruption of primordial comet/planetoids, or, if specific conditions are suitable, particle ejection may result in an increase in concentration as the front moves, which can translate into the formation of hot spots.


Subject(s)
Elements, Radioactive/analysis , Models, Chemical , Elements, Radioactive/chemistry , Models, Theoretical , Surface Properties
3.
Molecules ; 19(8): 10755-802, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-25061724

ABSTRACT

Recent advances (during the 2007-2014 period) in the coordination and organometallic chemistry of compounds containing natural and artificially prepared radionuclides (actinides and technetium), are reviewed. Radioactive isotopes of naturally stable elements are not included for discussion in this work. Actinide and technetium complexes with O-, N-, N,O, N,S-, P-containing ligands, as well π-organometallics are discussed from the view point of their synthesis, properties, and main applications. On the basis of their properties, several mono-, bi-, tri-, tetra- or polydentate ligands have been designed for specific recognition of some particular radionuclides, and can be used in the processes of nuclear waste remediation, i.e., recycling of nuclear fuel and the separation of actinides and fission products from waste solutions or for analytical determination of actinides in solutions; actinide metal complexes are also usefulas catalysts forcoupling gaseous carbon monoxide,as well as antimicrobial and anti-fungi agents due to their biological activity. Radioactive labeling based on the short-lived metastable nuclide technetium-99m ((99m)Tc) for biomedical use as heart, lung, kidney, bone, brain, liver or cancer imaging agents is also discussed. Finally, the promising applications of technetium labeling of nanomaterials, with potential applications as drug transport and delivery vehicles, radiotherapeutic agents or radiotracers for monitoring metabolic pathways, are also described.


Subject(s)
Coordination Complexes/chemistry , Elements, Radioactive/chemistry , Actinoid Series Elements/chemistry , Ligands , Organometallic Compounds/chemistry , Technetium/chemistry
4.
J Phys Chem B ; 117(8): 2231-8, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23301791

ABSTRACT

Three fundamental properties of atomic nuclei-mass, spin (and related magnetic moment), and volume-are the source of isotope effects. The mostly deserved and popular, with almost hundred-year history, is the mass-dependent isotope effect. The first mass-independent isotope effect which chemically discriminates isotopes by their nuclear spins and nuclear magnetic moments rather than by their masses was detected in 1976. It was named as the magnetic isotope effect because it is controlled by magnetic interaction, i.e., electron-nuclear hyperfine coupling in the paramagnetic species, the reaction intermediates. The effect follows from the universal physical property of chemical reactions to conserve angular momentum (spin) of electrons and nuclei. It is now detected for oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc, and uranium in a great variety of chemical and biochemical reactions including those of medical and ecological importance. Another mass-independent isotope effect was detected in 1983 as a deviation of isotopic distribution in reaction products from that which would be expected from the mass-dependent isotope effect. On the physical basis, it is in fact a mass-dependent effect, but it surprisingly results in isotope fractionation which is incompatible with that predicted by traditional mass-dependent effects. It is supposed to be a function of dynamic parameters of reaction and energy relaxation in excited states of products. The third, nuclear volume mass-independent isotope effect is detected in the high-resolution atomic and molecular spectra and in the extraction processes, but there are no unambiguous indications of its importance as an isotope fractionation factor in chemical reactions.


Subject(s)
Quantum Theory , Catalysis , Elements, Radioactive/chemistry , Magnetics , Molecular Weight , Oxygen Isotopes/chemistry , Sulfur Isotopes/chemistry
5.
J Hazard Mater ; 243: 1-18, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23141377

ABSTRACT

Pu, U, Np, Am and Tc are among the major risk drivers at nuclear waste management facilities throughout the world. Furthermore, uranium mining and milling operations have generated an enormous legacy of radioactively contaminated soils and groundwater. The sorption process of radionulcides onto ubiquitous Fe (hydr)oxides (FHOs; hematite, magnetite, goethite and ferrihydrite) is one of the most vital geochemical processes controlling the transport and fate of radionuclides and nuclear wastes in the subsurface zones. Meanwhile, understanding molecular-level chemical speciation of radionuclides onto FHOs is crucial to model their behavior in subsurface environments, and to develop new technologies for nuclear waste treatment and long-term remediation strategies for contaminated soils and groundwater. This review article aims (1) to provide risk or performance assessment modelers with macroscopic distribution coefficient (K(d)) data of Pu, U, Np, Am and Tc onto FHOs under different conditions (pH, radionuclide concentration, solution ion strength, sorbent loading, partial pressure of CO(2) (P CO(2)), equilibrium time) pertinent to environmental and engineered systems, and (2) to provide a microscopic or molecular-level understanding of the chemical speciation and sorption processes of these radionuclides to FHOs.


Subject(s)
Elements, Radioactive/chemistry , Ferric Compounds/chemistry , Iron/chemistry , Americium/chemistry , Americium/isolation & purification , Elements, Radioactive/isolation & purification , Ferric Compounds/isolation & purification , Hydroxides/chemistry , Hydroxides/isolation & purification , Neptunium/chemistry , Neptunium/isolation & purification , Plutonium/chemistry , Plutonium/isolation & purification , Radioactive Waste , Soil/analysis , Technetium/chemistry , Technetium/isolation & purification , Uranium/chemistry , Uranium/isolation & purification
6.
Sensors (Basel) ; 10(9): 8070-91, 2010.
Article in English | MEDLINE | ID: mdl-22163641

ABSTRACT

In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.


Subject(s)
Crime/prevention & control , Elements, Radioactive/chemistry , Environmental Monitoring/instrumentation , Models, Theoretical , Transportation/standards , Algorithms , Geographic Information Systems , Terrorism/prevention & control
7.
J Environ Radioact ; 100(11): 970-6, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19716213

ABSTRACT

The analysis of the isotopic composition of nuclear or non-nuclear solid materials is performed in a variety of fields, e.g., for quality assurance in the production of nuclear fuels, as signatures in forensics, nuclear safeguards, and non-proliferation control, in material characterization, geology, and archeology. We have investigated the capability of laser ablation (New Wave Research, 213 nm) coupled to time-of-flight (TOF) ICP-MS (GBC OptiMass 8000) as a rapid analytical protocol for multi-isotope screening of nuclear and non-nuclear solid samples. This includes natural and non-natural isotopic compositions for elements including Cu, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, Pb, and U, in pure metals, alloys, and glasses. Without correcting for mass bias (mass fractionation), an overall precision and accuracy of about 4% (1 sigma) can be achieved by minimizing the deposited laser power and thus fractionation (mass removal based on thermal properties). The precision and accuracy in combination with literally no or minimized sample preparation enables a rapid isotope screening of solid samples that is of particular interest to support nuclear forensic and safeguard analysis.


Subject(s)
Elements, Radioactive/chemistry , Isotopes/analysis , Lasers , Mass Spectrometry/methods , Mass Spectrometry/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...